1
|
Zarbin MA, Novack G. N-of-1 Clinical Trials: A Scientific Approach to Personalized Medicine for Patients with Rare Retinal Diseases Such as Retinitis Pigmentosa. J Ocul Pharmacol Ther 2021; 37:495-501. [PMID: 34491833 DOI: 10.1089/jop.2021.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
N-of-1 trials are randomized, prospective, controlled, multiple crossover trials in a single patient. Effects of one or more treatments are studied by following individual patients who receive alternative treatments (eg, therapeutic intervention). Such trials may provide a path to assess treatments for rare diseases with rigor equal to or greater than that afforded by parallel group randomized clinical trials provided that the condition is reasonably stable during the trial and has a sign/symptom that responds reversibly to the therapy and that can be measured repeatedly. In this article, the authors propose that N-of-1 trials may improve the feasibility and affordability of clinical trials for patients with rare inherited retinal diseases.
Collapse
Affiliation(s)
- Marco A Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Gary Novack
- PharmaLogic Development, Inc., San Rafael, California, USA.,Department of Ophthalmology & Visual Sciences, School of Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
2
|
Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, Kilicoglu H. Menagerie: A text-mining tool to support animal-human translation in neurodegeneration research. PLoS One 2019; 14:e0226176. [PMID: 31846471 PMCID: PMC6917268 DOI: 10.1371/journal.pone.0226176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Discovery studies in animals constitute a cornerstone of biomedical research, but suffer from lack of generalizability to human populations. We propose that large-scale interrogation of these data could reveal patterns of animal use that could narrow the translational divide. We describe a text-mining approach that extracts translationally useful data from PubMed abstracts. These comprise six modules: species, model, genes, interventions/disease modifiers, overall outcome and functional outcome measures. Existing National Library of Medicine natural language processing tools (SemRep, GNormPlus and the Chemical annotator) underpin the program and are further augmented by various rules, term lists, and machine learning models. Evaluation of the program using a 98-abstract test set achieved F1 scores ranging from 0.75-0.95 across all modules, and exceeded F1 scores obtained from comparable baseline programs. Next, the program was applied to a larger 14,481 abstract data set (2008-2017). Expected and previously identified patterns of species and model use for the field were obtained. As previously noted, the majority of studies reported promising outcomes. Longitudinal patterns of intervention type or gene mentions were demonstrated, and patterns of animal model use characteristic of the Parkinson's disease field were confirmed. The primary function of the program is to overcome low external validity of animal model systems by aggregating evidence across a diversity of models that capture different aspects of a multifaceted cellular process. Some aspects of the tool are generalizable, whereas others are field-specific. In the initial version presented here, we demonstrate proof of concept within a single disease area, Parkinson's disease. However, the program can be expanded in modular fashion to support a wider range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Caroline J. Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| | - Dongwook Shin
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland, United States of America
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Amanda P. Beck
- Department of Pathology, Albert Einstein College of Medicine, New York, United States of America
| | - Natalie Zatz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Charles A. Sneiderman
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland, United States of America
| | - Halil Kilicoglu
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Olvera-Montaño O, Baiza-Duran L, Quintana-Hau JD, Quiñonez-Alvarado MG, Zeng W, Gong L, Muñoz-Villegas P. Comparing The Efficacy Of An Anti-Human VEGF-A Neutralizing Antibody Versus Bevacizumab On A Laser-Induced Choroidal Neovascularization (CNV) Rhesus Monkey Model. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3813-3821. [PMID: 31806932 PMCID: PMC6839577 DOI: 10.2147/dddt.s219350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022]
Abstract
Purpose To evaluate the efficacy of a therapy on improving characteristics of laser-induced choroidal neovascularization (CNV) via single intravitreal injection of a humanized anti-human VEGF monoclonal antibody (PRO-169) versus bevacizumab in a rhesus monkey model. Methods To induce experimental CNV, small high-energy laser spots were used to treat several areas, around the macula in the retinas of monkeys at Day −21. Eighteen rhesus monkeys were used for CNV induction. The efficacy endpoints were fluorescein leakage by FFA and retinal thickness by OCT. FFA examinations were performed 19 days after induction. Appropriate animals were enrolled for treatment and randomly divided into 3 groups: bevacizumab (n=5, 7 eyes), PRO-169 (n=5, 7 eyes), and vehicle controls (n=4, 7 eyes). Results In 25 of 36 (69.4%) eyes, CNV lesions were identified. The average percent change of retinal thickness in the eyes of bevacizumab group was −159.3±62.2% and −154.0±45.1% (p<0.01 vs Vehicle) at Day 14 and Day 28, respectively; in the eyes of PRO-169 group it was −131.6±68.7% and −131.5±63.8% (p<0.01 vs Vehicle), respectively. The average percent change of leakage area in the eyes of bevacizumab group was −75.3±49.4% and −78.0±42.6% (p<0.01 vs Vehicle) at Day 14 and Day 28, respectively; in the eyes of PRO-169 group it was −82.0±19.3% and −81.4±21.0% (p<0.01 vs Vehicle), respectively. There were no abnormalities found in behavior, skin and hair, excretion and overall eye appearance before and after treatment in all groups. Conclusion After photocoagulation, the eyes enrolled in this studio showed CNV related characteristics including increased retinal thickness, and fluorescein leakage at laser spots. PRO-169 (1.25 mg per eye) can reduce the retinal thickness and fluorescein leakage area after treatment for 14 and 28 days in this rhesus monkeys model, without toxic effect or adverse events. These findings suggested that PRO-169 can inhibit CNV.
Collapse
Affiliation(s)
- Oscar Olvera-Montaño
- Clinical Research Department, Laboratorios Sophia, SA De CV, Zapopan, Jalisco, Mexico
| | - Leopoldo Baiza-Duran
- Clinical Research Department, Laboratorios Sophia, SA De CV, Zapopan, Jalisco, Mexico
| | | | | | - Wen Zeng
- Sichuan Primed Shines Bio-Tech Co, Ltd, Chengdu, Sichuan, People's Republic of China
| | - Li Gong
- Sichuan Primed Shines Bio-Tech Co, Ltd, Chengdu, Sichuan, People's Republic of China
| | | |
Collapse
|
4
|
Sharif NA. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. J Ocul Pharmacol Ther 2018; 34:7-39. [PMID: 29323613 DOI: 10.1089/jop.2017.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Discovery ophthalmic research is centered around delineating the molecular and cellular basis of ocular diseases and finding and exploiting molecular and genetic pathways associated with them. From such studies it is possible to determine suitable intervention points to address the disease process and hopefully to discover therapeutics to treat them. An investigational new drug (IND) filing for a new small-molecule drug, peptide, antibody, genetic treatment, or a device with global health authorities requires a number of preclinical studies to provide necessary safety and efficacy data. Specific regulatory elements needed for such IND-enabling studies are beyond the scope of this article. However, to enhance the overall data packages for such entities and permit high-quality foundation-building publications for medical affairs, additional research and development studies are always desirable. This review aims to provide examples of some target localization/verification, ocular drug discovery processes, and mechanistic and portfolio-enhancing exploratory investigations for candidate drugs and devices for the treatment of ocular hypertension and glaucomatous optic neuropathy (neurodegeneration of retinal ganglion cells and their axons). Examples of compound screening assays, use of various technologies and techniques, deployment of animal models, and data obtained from such studies are also presented.
Collapse
Affiliation(s)
- Najam A Sharif
- 1 Global Alliances & External Research , Santen Incorporated, Emeryville, California.,2 Department of Pharmaceutical Sciences, Texas Southern University , Houston, Texas.,3 Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center , Fort Worth, Texas
| |
Collapse
|
5
|
Zeiss CJ. From Reproducibility to Translation in Neurodegenerative Disease. ILAR J 2017; 58:106-114. [PMID: 28444192 DOI: 10.1093/ilar/ilx006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Despite tremendous investment and preclinical success in neurodegenerative disease, effective disease-altering treatments for patients have remained elusive. One highly cited reason for this discrepancy is flawed animal study design and reporting. If this can be broadly remedied, reproducibility of preclinical studies will improve. However, without concurrent efforts to improve generalizability, these improvements may not translate effectively from animal experiments to more complex human neurodegenerative diseases. Mechanistic and phenotypic variability of neurodegenerative disease is such that most models are only able to interrogate individual aspects of complex phenomena. One approach is to consider animals as models of individual targets rather than as models of individual diseases and to migrate the concept of predictive validity from the individual model to the body of experiments that demonstrate translatability of a target. Both exploratory and therapeutic preclinical studies are dependent upon study design methods that promote rigor and reproducibility. However, the body of evidence that is needed to demonstrate efficacy in therapeutic studies is substantially broader than that needed for exploratory studies. In addition to requiring rigor within individual experiments, convincing evidence for therapeutic potential must assess the relationships between model choice, intended goal of the intervention, pharmacologic criteria, and integration of biomarker data with outcome measures that are clinically relevant to humans. It is conceivable that proof-of-concept studies will migrate to cell-based systems and that animal systems will be increasingly reserved for more distal translational purposes. If this occurs, it is likely to prompt reexamination of what the term "translational" truly means.
Collapse
|
6
|
Novack GD, Asbell P, Barabino S, Bergamini MVW, Ciolino JB, Foulks GN, Goldstein M, Lemp MA, Schrader S, Woods C, Stapleton F. TFOS DEWS II Clinical Trial Design Report. Ocul Surf 2017; 15:629-649. [PMID: 28736344 PMCID: PMC8557254 DOI: 10.1016/j.jtos.2017.05.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 12/17/2022]
Abstract
The development of novel therapies for Dry Eye Disease (DED) is formidable, and relatively few treatments evaluated have been approved for marketing. In this report, the Subcommittee reviewed challenges in designing and conducting quality trials, with special reference to issues in trials in patients with DED and present the regulatory perspective on DED therapies. The Subcommittee reviewed the literature and while there are some observations about the possible reasons why so many trials have failed, there is no obvious single reason other than the lack of correlation between signs and symptoms in DED. Therefore the report advocates for conducting good quality studies, as described, going forward. A key recommendation for future studies is conduct consistent with Good Clinical Practice (GCP), including use of Good Manufacturing Practice (GMP) quality clinical trial material. The report also recommends that the design, treatments, and sample size be consistent with the investigational treatment, the objectives of the study, and the phase of development. Other recommendations for pivotal studies are a priori selection of the outcome measure, and an appropriate sample size.
Collapse
Affiliation(s)
- Gary D Novack
- Pharma Logic Development, San Rafael, CA, USA; Departments of Pharmacology and Ophthalmology, University of California, Davis, School of Medicine, CA, USA.
| | - Penny Asbell
- Department of Ophthalmology, Icahn School of Medicine at Mt Sinai, New York, NY, USA
| | | | - Michael V W Bergamini
- Nicox Ophthalmics, Inc., Fort Worth, TX, USA; University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Joseph B Ciolino
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Gary N Foulks
- Emeritus Professor of Ophthalmology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Michael Goldstein
- Department of Ophthalmology, New England Medical Center and Tufts University, Boston, MA, USA
| | - Michael A Lemp
- Department of Ophthalmology, School of Medicine, Georgetown University, Washington, DC, USA
| | - Stefan Schrader
- Department of Ophthalmology, Heinrich-Heine University, Düsseldorf, Germany
| | - Craig Woods
- Deakin Optometry, School of Medicine, Deakin University, Geelong, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
7
|
Zeiss CJ, Allore HG, Beck AP. Established patterns of animal study design undermine translation of disease-modifying therapies for Parkinson's disease. PLoS One 2017; 12:e0171790. [PMID: 28182759 PMCID: PMC5300282 DOI: 10.1371/journal.pone.0171790] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/25/2017] [Indexed: 11/18/2022] Open
Abstract
Translation of disease-modifying therapies in neurodegenerative disease has been disappointing. Parkinson's disease (PD) was used to compare patterns of preclinical study design for symptomatic and potentially disease-modifying interventions. We examined the relationship of model, intervention type and timing, outcomes and outcome measures in 543 animal and human studies (1973-2015) across a contemporary cohort of animal and human interventional studies (n = 445), animal studies for approved interventions (n = 28), animal and human studies for those that failed to translate (n = 70). Detailed study design data were collected for 216 studies in non-human primate (NHP) and rodent toxin-induced models. Species-specific patterns of study design prevailed regardless of whether interventions were symptomatic or potentially disease-modifying. In humans and NHPs, interventions were typically given to both sexes well after the PD phenotype was established, and clinical outcome measures were collected at single (symptomatic) or multiple (disease-modifying) time-points. In rodents, interventions often preceded induction of the model, acute toxic protocols were common, usually given to young males, clinical outcome measures were used less commonly, and outcomes were less commonly assessed at multiple time points. These patterns were more prevalent in mice than rats. In contrast, study design factors such as randomization and blinding did not differ appreciably across symptomatic and disease-modifying intervention categories. The translational gap for potentially disease-modifying interventions in PD in part results from study designs, particularly in mice, that fail to model the progressive nature and relatively late intervention characteristic of PD, or that anchor mechanistic and neuropathologic data to longitudinal clinical outcomes. Even if measures to improve reproducibility are broadly adopted, perpetuation of these norms will continue to impede effective translation.
Collapse
Affiliation(s)
- Caroline J. Zeiss
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Heather G. Allore
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Amanda P. Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
8
|
Novack GD, Moyer ED. How Much Nonclinical Safety Data Are Required for a Clinical Study in Ophthalmology? J Ocul Pharmacol Ther 2016; 32:5-10. [DOI: 10.1089/jop.2015.0120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gary D. Novack
- PharmaLogic Development, Inc., San Rafael, California
- Departments of Pharmacology and Ophthalmology, University of California Davis School of Medicine, Davis, California
| | | |
Collapse
|
9
|
Novack GD. The right to try. Ocul Surf 2015; 13:88-9. [PMID: 25557348 DOI: 10.1016/j.jtos.2014.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/26/2022]
|
10
|
Zeiss CJ. Improving the predictive value of interventional animal models data. Drug Discov Today 2014; 20:475-82. [PMID: 25448761 DOI: 10.1016/j.drudis.2014.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/03/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022]
Abstract
For many chronic diseases, translational success using the animal model paradigm has reached an impasse. Using Alzheimer's disease as an example, this review employs a networks-based method to assess repeatability of outcomes across species, by intervention and mechanism. Over 75% of animal studies reported an improved outcome. Strain background was a significant potential confounder. Five percent of interventions had been tested across animals and humans, or examined across three or more animal models. Positive outcomes across species emerged for donepezil, memantine and exercise. Repeatable positive outcomes in animals were identified for the amyloid hypothesis and three additional mechanisms. This approach supports in silico reduction of positive outcomes bias in animal studies.
Collapse
Affiliation(s)
- Caroline J Zeiss
- Section of Comparative Medicine, Yale University School of Medicine, 375 Congress Ave, New Haven, CT 06520, USA.
| |
Collapse
|
11
|
Novack GD. Phases of clinical development. Ocul Surf 2014; 12:307-11. [PMID: 25284775 DOI: 10.1016/j.jtos.2014.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 11/28/2022]
|