1
|
Choy KC, Li G, Stamer WD, Farsiu S. Open-source deep learning-based automatic segmentation of mouse Schlemm's canal in optical coherence tomography images. Exp Eye Res 2022; 214:108844. [PMID: 34793828 PMCID: PMC8792324 DOI: 10.1016/j.exer.2021.108844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to develop an automatic deep learning-based approach and corresponding free, open-source software to perform segmentation of the Schlemm's canal (SC) lumen in optical coherence tomography (OCT) scans of living mouse eyes. A novel convolutional neural network (CNN) for semantic segmentation grounded in a U-Net architecture was developed by incorporating a late fusion scheme, multi-scale input image pyramid, dilated residual convolution blocks, and attention-gating. 163 pairs of intensity and speckle variance (SV) OCT B-scans acquired from 32 living mouse eyes were used for training, validation, and testing of this CNN model for segmentation of the SC lumen. The proposed model achieved a mean Dice Similarity Coefficient (DSC) of 0.694 ± 0.256 and median DSC of 0.791, while manual segmentation performed by a second expert grader achieved a mean and median DSC of 0.713 ± 0.209 and 0.763, respectively. This work presents the first automatic method for segmentation of the SC lumen in OCT images of living mouse eyes. The performance of the proposed model is comparable to the performance of a second human grader. Open-source automatic software for segmentation of the SC lumen is expected to accelerate experiments for studying treatment efficacy of new drugs affecting intraocular pressure and related diseases such as glaucoma, which present as changes in the SC area.
Collapse
Affiliation(s)
- Kevin C Choy
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Guorong Li
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | - W Daniel Stamer
- Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Ophthalmology, Duke University, Durham, NC, United States
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Ophthalmology, Duke University, Durham, NC, United States.
| |
Collapse
|
2
|
Yao X, Tan B, Ho Y, Liu X, Wong D, Chua J, Wong TT, Perera S, Ang M, Werkmeister RM, Schmetterer L. Full circumferential morphological analysis of Schlemm's canal in human eyes using megahertz swept source OCT. BIOMEDICAL OPTICS EXPRESS 2021; 12:3865-3877. [PMID: 34457385 PMCID: PMC8367246 DOI: 10.1364/boe.426218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 05/16/2023]
Abstract
We performed full circumferential imaging of the Schlemm's canal (SC) of two human eyes using a Fourier domain mode-lock laser (FDML) based 1.66-MHz SS-OCT prototype at 1060 nm. Eight volumes with overlapping margins were acquired around the limbal area with customized raster scanning patterns designed to fully cover the SC while minimizing motion artifacts. The SC was segmented from the volumes using a semi-automated active contour segmentation algorithm, whose mean dice similarity coefficient was 0.76 compared to the manual segmentation results. We also reconstructed three-dimensional (3D) renderings of the 360° SC by stitching the segmented SCs from the volumetric datasets. Quantitative metrics of the full circumferential SC were provided, including the mean and standard deviation (SD) of the cross-sectional area (CSA), the maximum CSA, the minimum and maximum SC opening width, and the number of collector channels (CC) stemming from the SC.
Collapse
Affiliation(s)
- Xinwen Yao
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Bingyao Tan
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Yijie Ho
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xinyu Liu
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Damon Wong
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Jacqueline Chua
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Tina T. Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Shamira Perera
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - René M. Werkmeister
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|