1
|
Chiu L, Agrawal V, Armstrong D, Brittain E, Collins S, Hemnes AR, Hill JA, Lindenfeld J, Shah SJ, Stevenson LW, Wang TJ, Gupta DK. Correlates of Plasma NT-proBNP/Cyclic GMP Ratio in Heart Failure With Preserved Ejection Fraction: An Analysis of the RELAX Trial. J Am Heart Assoc 2024; 13:e031796. [PMID: 38533961 PMCID: PMC11179778 DOI: 10.1161/jaha.123.031796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Phosphodiesterases degrade cyclic GMP (cGMP), the second messenger that mediates the cardioprotective effects of natriuretic peptides. High natriuretic peptide/cGMP ratio may reflect, in part, phosphodiesterase activity. Correlates of natriuretic peptide/cGMP in patients with heart failure with preserved ejection fraction are not well understood. Among patients with heart failure with preserved ejection fraction in the RELAX (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Heart Failure With Preserved Ejection Fraction) trial, we examined (1) cross-sectional correlates of circulating NT-proBNP (N-terminal pro-B-type natriuretic peptide)/cGMP ratio, (2) whether selective phosphodiesterase-5 inhibition by sildenafil changed the ratio, and (3) whether the effect of sildenafil on 24-week outcomes varied by baseline ratio. METHODS AND RESULTS In 212 subjects, NT-proBNP/cGMP ratio was calculated at randomization and 24 weeks. Correlates of the ratio and its change were examined in multivariable proportional odds models. Whether baseline ratio modified the sildenafil effect on outcomes was examined by interaction terms. Higher NT-proBNP/cGMP ratio was associated with greater left ventricular mass and troponin, the presence of atrial fibrillation, and lower estimated glomerular filtration rate and peak oxygen consumption. Compared with placebo, sildenafil did not alter the ratio from baseline to 24 weeks (P=0.17). The effect of sildenafil on 24-week change in peak oxygen consumption, left ventricular mass, or clinical composite outcome was not modified by baseline NT-proBNP/cGMP ratio (P-interaction >0.30 for all). CONCLUSIONS Among patients with heart failure with preserved ejection fraction, higher NT-proBNP/cGMP ratio associated with an adverse cardiorenal phenotype, which was not improved by selective phosphodiesterase-5 inhibition. Other phosphodiesterases may be greater contributors than phosphodiesterase-5 to the adverse phenotype associated with a high natriuretic peptide/cGMP ratio in HFpEF. REGISTRATION INFORMATION clinicaltrials.gov. Identifier: NCT00763867.
Collapse
Affiliation(s)
- Leonard Chiu
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Vineet Agrawal
- Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - David Armstrong
- Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Evan Brittain
- Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Sheila Collins
- Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Anna R. Hemnes
- Division of Pulmonary MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology)University of Texas Southwestern Medical CenterDallasTXUSA
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - JoAnn Lindenfeld
- Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Sanjiv J. Shah
- Division of Cardiology, Department of Medicine and Bluhm Cardiovascular InstituteNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Lynne W. Stevenson
- Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Thomas J. Wang
- Department of Internal Medicine (Cardiology)University of Texas Southwestern Medical CenterDallasTXUSA
| | - Deepak K. Gupta
- Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
2
|
Medzikovic L, Aryan L, Ruffenach G, Li M, Savalli N, Sun W, Sarji S, Hong J, Sharma S, Olcese R, Fishbein G, Eghbali M. Myocardial fibrosis and calcification are attenuated by microRNA-129-5p targeting Asporin and Sox9 in cardiac fibroblasts. JCI Insight 2023; 8:e168655. [PMID: 37154157 PMCID: PMC10243800 DOI: 10.1172/jci.insight.168655] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Myocardial fibrosis and calcification associate with adverse outcomes in nonischemic heart failure. Cardiac fibroblasts (CF) transition into myofibroblasts (MF) and osteogenic fibroblasts (OF) to promote myocardial fibrosis and calcification. However, common upstream mechanisms regulating both CF-to-MF transition and CF-to-OF transition remain unknown. microRNAs are promising targets to modulate CF plasticity. Our bioinformatics revealed downregulation of miR-129-5p and upregulation of its targets small leucine-rich proteoglycan Asporin (ASPN) and transcription factor SOX9 as common in mouse and human heart failure (HF). We experimentally confirmed decreased miR-129-5p and enhanced SOX9 and ASPN expression in CF in human hearts with myocardial fibrosis and calcification. miR-129-5p repressed both CF-to-MF and CF-to-OF transition in primary CF, as did knockdown of SOX9 and ASPN. Sox9 and Aspn are direct targets of miR-129-5p that inhibit downstream β-catenin expression. Chronic Angiotensin II infusion downregulated miR-129-5p in CF in WT and TCF21-lineage CF reporter mice, and it was restored by miR-129-5p mimic. Importantly, miR-129-5p mimic not only attenuated progression of myocardial fibrosis, calcification marker expression, and SOX9 and ASPN expression in CF but also restored diastolic and systolic function. Together, we demonstrate miR-129-5p/ASPN and miR-129-5p/SOX9 as potentially novel dysregulated axes in CF-to-MF and CF-to-OF transition in myocardial fibrosis and calcification and the therapeutic relevance of miR-129-5p.
Collapse
Affiliation(s)
| | - Laila Aryan
- Department of Anesthesiology & Perioperative Medicine
| | | | - Min Li
- Department of Anesthesiology & Perioperative Medicine
| | | | - Wasila Sun
- Department of Anesthesiology & Perioperative Medicine
| | - Shervin Sarji
- Department of Anesthesiology & Perioperative Medicine
| | - Jason Hong
- Department of Anesthesiology & Perioperative Medicine
- Division of Pulmonary & Critical Care Medicine
| | - Salil Sharma
- Department of Anesthesiology & Perioperative Medicine
| | - Riccardo Olcese
- Department of Anesthesiology & Perioperative Medicine
- Department of Physiology, and
| | - Gregory Fishbein
- Department of Physiology, and
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
3
|
Caruso G, Falzone L, Palermo G, Ricci D, Mazza G, Libra M, Caruso S, Gattuso G. Analysis of hsa-miR-19a-3p and hsa-miR-19b-3p modulation and phosphodiesterase type 5 expression in the vaginal epithelium of premenopausal women with genital arousal disorder. J Sex Med 2023:7143629. [PMID: 37185899 DOI: 10.1093/jsxmed/qdad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Few studies have investigated the role of the phosphodiesterase type 5A (PDE5A) isoenzyme in female genital tissue disorders, exclusively taken from cadavers, as well as the epigenetic mechanisms responsible for the regulation of PDE5A levels. AIM The aim was to study the in vivo association between microRNA (miRNA) expression and the expression levels of PDE5A in women with female genital arousal disorder (FGAD) compared with healthy women. METHODS Premenopausal women affected by FGAD (cases) and sexually healthy women (control group) underwent microbiopsy of the periclitoral anterior vaginal wall for the collection of tissue samples. Computational analyses were preliminarily performed in order to identify miRNAs involved in the modulation of PDE5A by using miRNA-messenger RNA interaction prediction tools. Differences in the expression levels of miRNAs and PDE5A were finally investigated in cases and control subjects by using the droplet digital polymerase chain reaction amplification system and stratifying women considering their age, number of pregnancies, and body mass index. OUTCOMES Expression levels of miRNAs were able to target PDE5A and the tissue expression in women with FGAD compared with healthy women. RESULTS The experimental analyses were performed on 22 (43.1%) cases and 29 (56.9%) control subjects. Two miRNAs with the highest interaction levels with PDE5A, hsa-miR-19a-3p (miR-19a) and hsa-miR-19b-3p (miR-19b), were identified and selected for validation analyses. A reduction of the expression levels of both miRNAs was observed in women with FGAD compared with the control subjects (P < .05). Moreover, PDE5A expression levels were higher in women with FGAD and lower in women without sexual dysfunctions (P < .05). Finally, a correlation between body mass index and the expression levels of miR-19a was found (P < .01). CLINICAL IMPLICATIONS Women with FGAD had higher levels of PDE5 compared with control subjects; therefore, the administration of PDE5 inhibitors (PDE5 inhibitors) could be useful in women with FGAD. STRENGTHS AND LIMITATIONS The strength of the current study was to analyze genital tissue obtained in vivo from premenopausal women. A limitation was to not investigate other factors, including endothelial nitric oxide synthetases, nitric oxide, and cyclic guanosine monophosphate. CONCLUSION The results of the present study indicate that the modulation of selected miRNAs could influence PDE5A expression in genital tissues in healthy women or in those with FGAD. Such findings further suggest that treatment with PDE5 inhibitors, as a modulator of PDE5A expression, could be indicated for women with FGAD.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Research Group for Sexology, Gynecological Clinic, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Gaia Palermo
- Research Group for Sexology, Gynecological Clinic, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Daria Ricci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Gabriele Mazza
- Research Group for Sexology, Gynecological Clinic, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Salvatore Caruso
- Research Group for Sexology, Gynecological Clinic, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| |
Collapse
|
4
|
Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 2023; 20:90-108. [PMID: 36050457 DOI: 10.1038/s41569-022-00756-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) modulate the neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple PDE isozymes with different enzymatic properties and subcellular localization regulate local pools of cyclic nucleotides and specific functions. This organization is heavily perturbed during cardiac hypertrophy and heart failure (HF), which can contribute to disease progression. Clinically, PDE inhibition has been considered a promising approach to compensate for the catecholamine desensitization that accompanies HF. Although PDE3 inhibitors, such as milrinone or enoximone, have been used clinically to improve systolic function and alleviate the symptoms of acute HF, their chronic use has proved to be detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as new potential targets to treat HF, each having a unique role in local cyclic nucleotide signalling pathways. In this Review, we describe cAMP and cGMP signalling in cardiomyocytes and present the various PDE families expressed in the heart as well as their modifications in pathological cardiac hypertrophy and HF. We also appraise the evidence from preclinical models as well as clinical data pointing to the use of inhibitors or activators of specific PDEs that could have therapeutic potential in HF.
Collapse
|
5
|
Numata G, Takimoto E. Cyclic GMP and PKG Signaling in Heart Failure. Front Pharmacol 2022; 13:792798. [PMID: 35479330 PMCID: PMC9036358 DOI: 10.3389/fphar.2022.792798] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic guanosine monophosphate (cGMP), produced by guanylate cyclase (GC), activates protein kinase G (PKG) and regulates cardiac remodeling. cGMP/PKG signal is activated by two intrinsic pathways: nitric oxide (NO)-soluble GC and natriuretic peptide (NP)-particulate GC (pGC) pathways. Activation of these pathways has emerged as a potent therapeutic strategy to treat patients with heart failure, given cGMP-PKG signaling is impaired in heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF). Large scale clinical trials in patients with HFrEF have shown positive results with agents that activate cGMP-PKG pathways. In patients with HFpEF, however, benefits were observed only in a subgroup of patients. Further investigation for cGMP-PKG pathway is needed to develop better targeting strategies for HFpEF. This review outlines cGMP-PKG pathway and its modulation in heart failure.
Collapse
Affiliation(s)
- Genri Numata
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
- Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, The University of Tokyo Hospital, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|
6
|
Expression of cardiovascular-related microRNAs is altered in L-arginine:glycine amidinotransferase deficient mice. Sci Rep 2022; 12:5108. [PMID: 35332188 PMCID: PMC8948300 DOI: 10.1038/s41598-022-08846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
In humans and mice, L-arginine:glycine amidinotransferase (AGAT) and its metabolites homoarginine (hArg) and creatine have been linked to cardiovascular disease (CVD), specifically myocardial infarction (MI) and heart failure (HF). The underlying molecular and regulatory mechanisms, however, remain unclear. To identify potential pathways of cardiac AGAT metabolism, we sequenced microRNA (miRNA) in left ventricles of wild-type (wt) compared to AGAT-deficient (AGAT-/-) mice. Using literature search and validation by qPCR, we identified eight significantly regulated miRNAs in AGAT-/- mice linked to atherosclerosis, MI and HF: miR-30b, miR-31, miR-130a, miR-135a, miR-148a, miR-204, miR-298, and let-7i. Analysis of Gene Expression Omnibus (GEO) data confirmed deregulation of these miRNAs in mouse models of MI and HF. Quantification of miRNA expression by qPCR in AGAT-/- mice supplemented with creatine or hArg revealed that miR-30b, miR-31, miR-130a, miR-148a, and miR-204 were regulated by creatine, while miR-135a and miR-298 showed a trend of regulation by hArg. Finally, bioinformatics-based target prediction showed that numerous AGAT-dependent genes previously linked to CVD are likely to be regulated by the identified miRNAs. Taken together, AGAT deficiency and hArg/creatine supplementation are associated with cardiac miRNA expression which may influence cardiac (dys)function and CVD.
Collapse
|
7
|
Grześk G, Nowaczyk A. Current Modulation of Guanylate Cyclase Pathway Activity-Mechanism and Clinical Implications. Molecules 2021; 26:molecules26113418. [PMID: 34200064 PMCID: PMC8200204 DOI: 10.3390/molecules26113418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
For years, guanylate cyclase seemed to be homogenic and tissue nonspecific enzyme; however, in the last few years, in light of preclinical and clinical trials, it became an interesting target for pharmacological intervention. There are several possible options leading to an increase in cyclic guanosine monophosphate concentrations. The first one is related to the uses of analogues of natriuretic peptides. The second is related to increasing levels of natriuretic peptides by the inhibition of degradation. The third leads to an increase in cyclic guanosine monophosphate concentration by the inhibition of its degradation by the inhibition of phosphodiesterase type 5. The last option involves increasing the concentration of cyclic guanosine monophosphate by the additional direct activation of soluble guanylate cyclase. Treatment based on the modulation of guanylate cyclase function is one of the most promising technologies in pharmacology. Pharmacological intervention is stable, effective and safe. Especially interesting is the role of stimulators and activators of soluble guanylate cyclase, which are able to increase the enzymatic activity to generate cyclic guanosine monophosphate independently of nitric oxide. Moreover, most of these agents are effective in chronic treatment in heart failure patients and pulmonary hypertension, and have potential to be a first line option.
Collapse
Affiliation(s)
- Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 75 Ujejskiego St., 85-168 Bydgoszcz, Poland;
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-585-3904
| |
Collapse
|
8
|
Huang R, Soneson C, Germain PL, Schmidt TSB, Mering CV, Robinson MD. treeclimbR pinpoints the data-dependent resolution of hierarchical hypotheses. Genome Biol 2021; 22:157. [PMID: 34001188 PMCID: PMC8127214 DOI: 10.1186/s13059-021-02368-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
treeclimbR is for analyzing hierarchical trees of entities, such as phylogenies or cell types, at different resolutions. It proposes multiple candidates that capture the latent signal and pinpoints branches or leaves that contain features of interest, in a data-driven way. It outperforms currently available methods on synthetic data, and we highlight the approach on various applications, including microbiome and microRNA surveys as well as single-cell cytometry and RNA-seq datasets. With the emergence of various multi-resolution genomic datasets, treeclimbR provides a thorough inspection on entities across resolutions and gives additional flexibility to uncover biological associations.
Collapse
Affiliation(s)
- Ruizhu Huang
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, 8057, Switzerland
| | - Charlotte Soneson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, 8057, Switzerland
- Present Address: Friedrich Miescher Institute for Biomedical Research and SIB Swiss Institute of Bioinformatics, Basel, 4058, Switzerland
| | - Pierre-Luc Germain
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, 8057, Switzerland
- D-HEST Institute for Neuroscience, Swiss Federal Institute of Technology, Zurich, 8057, Switzerland
| | - Thomas S B Schmidt
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, 8057, Switzerland
- Present Address: European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, 69117, Germany
| | - Christian Von Mering
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, 8057, Switzerland
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, 8057, Switzerland.
| |
Collapse
|
9
|
Current trends and future perspectives for heart failure treatment leveraging cGMP modifiers and the practical effector PKG. J Cardiol 2021; 78:261-268. [PMID: 33814252 DOI: 10.1016/j.jjcc.2021.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/22/2022]
Abstract
Cyclic guanosine monophosphate (cGMP), an intracellular second messenger molecule synthesized by guanylated cyclases (GCs), controls various myocardial properties, including cell growth and survival, interstitial fibrosis, endothelial permeability, cardiac contractility, and cardiovascular remodeling. These processes are mediated by the main cGMP effector protein kinase G (PKG) activation of which exerts intrinsic protective responses against the adverse effects of neurohormonal stimulation and pathological cardiac stress. Therapeutic strategies that enhance cGMP levels and PKG activation have been used for heart failure, which can be executed by reducing natriuretic peptide (NP) proteolysis, enhancing cGMP synthesis, or blocking cGMP hydrolysis. Among these, reducing NP clearance with neprilysin inhibitor combined with angiotensin receptor blocker has been shown to greatly improve the prognosis of patients with heart failure with reduced ejection fraction (HFrEF) compared to the prognosis of patients on standard therapy using angiotensin-converting enzyme inhibitors. Moreover, in a recent phase III clinical trial, soluble GC-derived cGMP generation was shown to have potential efficacy in the management of HFrEF. Despite the clinical significance of cGMP/PKG signaling activated by either soluble or particulate GCs in heart failure, the differential signaling events downstream of intracellular cGMP, which are precisely controlled not only by PKG activation but also by the changes in its targeting and compartmentalization depending on the pathophysiology of heart disease, are not yet completely understood. Hitherto, the importance of the latter PKG regulatory mechanisms in developing therapeutic strategies has not been elucidated. Further investigation of redox-based PKG modulation will aid in the successful development of clinical therapies and could also lead to the establishment of improved personalized treatments for patients with heart failure.
Collapse
|
10
|
The double face of miR-320: cardiomyocytes-derived miR-320 deteriorated while fibroblasts-derived miR-320 protected against heart failure induced by transverse aortic constriction. Signal Transduct Target Ther 2021; 6:69. [PMID: 33597502 PMCID: PMC7890065 DOI: 10.1038/s41392-020-00445-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/03/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are aberrantly expressed in the pathophysiologic process of heart failure (HF). However, the functions of a certain miRNA in different cardiac cell types during HF are scarcely reported, which might be covered by the globe effects of it on the heart. In the current study, Langendorff system was applied to isolate cardiomyocytes (CMs) and cardiac fibroblasts (CFs) from transverse aortic constriction (TAC)-induced mice. Slight increase of miR-320 expression was observed in the whole heart tissue of TAC mice. Interestingly, miR-320 was significantly elevated in CMs but decreased in CFs from TAC mice at different time points. Then, recombinant adeno-associated virus 9 with cell-type-specific promoters were used to manipulate miR-320 expressions in vivo. Both in vitro and in vivo experiments showed the miR-320 overexpression in CMs exacerbated cardiac dysfunction, whereas overexpression of miR-320 in CFs alleviated cardiac fibrosis and hypertrophy. Mechanically, downstream signaling pathway analyses revealed that miR-320 might induce various effects via targeting PLEKHM3 and IFITM1 in CMs and CFs, respectively. Moreover, miR-320 mediated effects could be abolished by PLEKHM3 re-expression in CMs or IFITM1 re-expression in CFs. Interestingly, miR-320 treated CFs were able to indirectly affect CMs function, but not vice versa. Meanwhile, upstream signaling pathway analyses showed that miR-320 expression and decay rate were rigorously manipulated by Ago2, which was regulated by a cluster of cell-type-specific TFs distinctively expressed in CMs and CFs, respectively. Together, we demonstrated that miR-320 functioned differently in various cell types of the heart during the progression of HF.
Collapse
|
11
|
Chen S, Yan C. An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases. Expert Opin Drug Discov 2021; 16:183-196. [PMID: 32957823 PMCID: PMC7854486 DOI: 10.1080/17460441.2020.1821643] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cyclic nucleotides, cAMP, and cGMP, are important second messengers of intracellular signaling and play crucial roles in cardiovascular biology and diseases. Cyclic nucleotide phosphodiesterases (PDEs) control the duration, magnitude, and compartmentalization of cyclic nucleotide signaling by catalyzing the hydrolysis of cyclic nucleotides. Individual PDEs modulate distinct signaling pathways and biological functions in the cell, making it a potential therapeutic target for the treatment of different cardiovascular disorders. The clinical success of several PDE inhibitors has ignited continued interest in PDE inhibitors and in PDE-target therapeutic strategies. AREAS COVERED This review concentrates on recent research advances of different PDE isoforms with regard to their expression patterns and biological functions in the heart. The limitations of current research and future directions are then discussed. The current and future development of PDE inhibitors is also covered. EXPERT OPINION Despite the therapeutic success of several marketed PDE inhibitors, the use of PDE inhibitors can be limited by their side effects, lack of efficacy, and lack of isoform selectivity. Advances in our understanding of the mechanisms by which cellular functions are changed through PDEs may enable the development of new approaches to achieve effective and specific PDE inhibition for various cardiac therapies.
Collapse
Affiliation(s)
- Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
12
|
Richards DA, Aronovitz MJ, Liu P, Martin GL, Tam K, Pande S, Karas RH, Bloomfield DM, Mendelsohn ME, Blanton RM. CRD-733, a Novel PDE9 (Phosphodiesterase 9) Inhibitor, Reverses Pressure Overload-Induced Heart Failure. Circ Heart Fail 2021; 14:e007300. [PMID: 33464954 DOI: 10.1161/circheartfailure.120.007300] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Augmentation of NP (natriuretic peptide) receptor and cyclic guanosine monophosphate (cGMP) signaling has emerged as a therapeutic strategy in heart failure (HF). cGMP-specific PDE9 (phosphodiesterase 9) inhibition increases cGMP signaling and attenuates stress-induced hypertrophic heart disease in preclinical studies. A novel cGMP-specific PDE9 inhibitor, CRD-733, is currently being advanced in human clinical studies. Here, we explore the effects of chronic PDE9 inhibition with CRD-733 in the mouse transverse aortic constriction pressure overload HF model. METHODS Adult male C57BL/6J mice were subjected to transverse aortic constriction and developed significant left ventricular (LV) hypertrophy after 7 days (P<0.001). Mice then received daily treatment with CRD-733 (600 mg/kg per day; n=10) or vehicle (n=17), alongside sham-operated controls (n=10). RESULTS CRD-733 treatment reversed existing LV hypertrophy compared with vehicle (P<0.001), significantly improved LV ejection fraction (P=0.009), and attenuated left atrial dilation (P<0.001), as assessed by serial echocardiography. CRD-733 prevented elevations in LV end diastolic pressures (P=0.037) compared with vehicle, while lung weights, a surrogate for pulmonary edema, were reduced to sham levels. Chronic CRD-733 treatment increased plasma cGMP levels compared with vehicle (P<0.001), alongside increased phosphorylation of Ser273 of cardiac myosin binding protein-C, a cGMP-dependent protein kinase I phosphorylation site. CONCLUSIONS The PDE9 inhibitor, CRD-733, improves key hallmarks of HF including LV hypertrophy, LV dysfunction, left atrial dilation, and pulmonary edema after pressure overload in the mouse transverse aortic constriction HF model. Additionally, elevated plasma cGMP may be used as a biomarker of target engagement. These findings support future investigation into the therapeutic potential of CRD-733 in human HF.
Collapse
Affiliation(s)
- Daniel A Richards
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Mark J Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Peiwen Liu
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA (P.L., R.M.B.)
| | - Gregory L Martin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Kelly Tam
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Suchita Pande
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Richard H Karas
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | | | | | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.).,Graduate School of Biomedical Sciences, Tufts University, Boston, MA (P.L., R.M.B.)
| |
Collapse
|
13
|
Abstract
Cyclic nucleotide phosphodiesterases comprise an 11-member superfamily yielding near 100 isoform variants that hydrolyze cAMP or cGMP to their respective 5'-monophosphate form. Each plays a role in compartmentalized cyclic nucleotide signaling, with varying selectivity for each substrate, and conveying cell and intracellular-specific localized control. This review focuses on the 5 phosphodiesterases (PDEs) expressed in the cardiac myocyte capable of hydrolyzing cGMP and that have been shown to play a role in cardiac physiological and pathological processes. PDE1, PDE2, and PDE3 catabolize cAMP as well, whereas PDE5 and PDE9 are cGMP selective. PDE3 and PDE5 are already in clinical use, the former for heart failure, and PDE1, PDE9, and PDE5 are all being actively studied for this indication in patients. Research in just the past few years has revealed many novel cardiac influences of each isoform, expanding the therapeutic potential from their selective pharmacological blockade or in some instances, activation. PDE1C inhibition was found to confer cell survival protection and enhance cardiac contractility, whereas PDE2 inhibition or activation induces beneficial effects in hypertrophied or failing hearts, respectively. PDE3 inhibition is already clinically used to treat acute decompensated heart failure, although toxicity has precluded its long-term use. However, newer approaches including isoform-specific allosteric modulation may change this. Finally, inhibition of PDE5A and PDE9A counter pathological remodeling of the heart and are both being pursued in clinical trials. Here, we discuss recent research advances in each of these PDEs, their impact on the myocardium, and cardiac therapeutic potential.
Collapse
|
14
|
Mishra S, Dunkerly-Eyring BL, Keceli G, Ranek MJ. Phosphorylation Modifications Regulating Cardiac Protein Quality Control Mechanisms. Front Physiol 2020; 11:593585. [PMID: 33281625 PMCID: PMC7689282 DOI: 10.3389/fphys.2020.593585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many forms of cardiac disease, including heart failure, present with inadequate protein quality control (PQC). Pathological conditions often involve impaired removal of terminally misfolded proteins. This results in the formation of large protein aggregates, which further reduce cellular viability and cardiac function. Cardiomyocytes have an intricately collaborative PQC system to minimize cellular proteotoxicity. Increased expression of chaperones or enhanced clearance of misfolded proteins either by the proteasome or lysosome has been demonstrated to attenuate disease pathogenesis, whereas reduced PQC exacerbates pathogenesis. Recent studies have revealed that phosphorylation of key proteins has a potent regulatory role, both promoting and hindering the PQC machinery. This review highlights the recent advances in phosphorylations regulating PQC, the impact in cardiac pathology, and the therapeutic opportunities presented by harnessing these modifications.
Collapse
Affiliation(s)
- Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brittany L Dunkerly-Eyring
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Shimizu T, Taguchi A, Higashijima Y, Takubo N, Kanki Y, Urade Y, Wada Y. PERK-Mediated Suppression of microRNAs by Sildenafil Improves Mitochondrial Dysfunction in Heart Failure. iScience 2020; 23:101410. [PMID: 32768667 PMCID: PMC7378464 DOI: 10.1016/j.isci.2020.101410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/03/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative/nitrosative stress is a major trigger of cardiac dysfunction, involving the unfolded protein response and mitochondrial dysfunction. Activation of nitric oxide-cyclic guanosine monophosphate-protein kinase G signaling by sildenafil improves cardiac mal-remodeling during pressure-overload-induced heart failure. Transcriptome analysis was conducted in failing hearts with or without sildenafil treatment. Protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) downstream signaling pathways, EIF2 and NRF2, were significantly altered. Although EIF2 signaling was suppressed, NRF2 signaling was upregulated, inhibiting the maturation of miR 24-3p through EGFR-mediated Ago2 phosphorylation. To study the effect of sildenafil on these pathways, we generated cardiac-specific PERK knockout mice. In these mice, sildenafil could not inhibit the maturations, the nuclear translocation of NRF2 was suppressed, and mitochondrial dysfunction advanced. Altogether, these results show that PERK-mediated suppression of miRNAs by sildenafil is vital for maintaining mitochondrial homeostasis through NRF2-mediated oxidative stress response.
Collapse
Affiliation(s)
- Takashi Shimizu
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Akashi Taguchi
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yoshiki Higashijima
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Naoko Takubo
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
16
|
Samidurai A, Xi L, Salloum FN, Das A, Kukreja RC. PDE5 inhibitor sildenafil attenuates cardiac microRNA 214 upregulation and pro-apoptotic signaling after chronic alcohol ingestion in mice. Mol Cell Biochem 2020; 471:189-201. [PMID: 32535704 PMCID: PMC10801845 DOI: 10.1007/s11010-020-03779-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Abusive chronic alcohol consumption can cause metabolic and functional derangements in the heart and is a risk factor for development of non-ischemic cardiomyopathy. microRNA 214 (miR-214) is a molecular sensor of stress signals that negatively impacts cell survival. Considering cardioprotective and microRNA modulatory effects of sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, we investigated the impact of chronic alcohol consumption on cardiac expression of miR-214 and its anti-apoptotic protein target, Bcl-2 and whether sildenafil attenuates such changes. Adult male FVB mice received unlimited access to either normal liquid diet (control), alcohol diet (35% daily calories intake), or alcohol + sildenafil (1 mg/kg/day, p.o.) for 14 weeks (n = 6-7/group). The alcohol-fed groups with or without sildenafil had increased total diet consumption and lower body weight as compared with controls. Echocardiography-assessed left ventricular function was unaltered by 14-week alcohol intake. Alcohol-fed group had 2.6-fold increase in miR-214 and significant decrease in Bcl-2 expression, along with enhanced phosphorylation of ERK1/2 and cleavage of PARP (marker of apoptotic DNA damage) in the heart. Co-ingestion with sildenafil blunted the alcohol-induced increase in miR-214, ERK1/2 phosphorylation, and maintained Bcl-2 and decreased PARP cleavage levels. In conclusion, chronic alcohol consumption triggers miR-214-mediated pro-apoptotic signaling in the heart, which was prevented by co-treatment with sildenafil. Thus, PDE5 inhibition may serve as a novel protective strategy against cardiac apoptosis due to chronic alcohol abuse.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA
| | - Fadi N Salloum
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA.
- Division of Cardiology, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA.
| |
Collapse
|
17
|
Oeing CU, Mishra S, Dunkerly-Eyring BL, Ranek MJ. Targeting Protein Kinase G to Treat Cardiac Proteotoxicity. Front Physiol 2020; 11:858. [PMID: 32848832 PMCID: PMC7399205 DOI: 10.3389/fphys.2020.00858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Impaired or insufficient protein kinase G (PKG) signaling and protein quality control (PQC) are hallmarks of most forms of cardiac disease, including heart failure. Their dysregulation has been shown to contribute to and exacerbate cardiac hypertrophy and remodeling, reduced cell survival and disease pathogenesis. Enhancement of PKG signaling and PQC are associated with improved cardiac function and survival in many pre-clinical models of heart disease. While many clinically used pharmacological approaches exist to stimulate PKG, there are no FDA-approved therapies to safely enhance cardiomyocyte PQC. The latter is predominantly due to our lack of knowledge and identification of proteins regulating cardiomyocyte PQC. Recently, multiple studies have demonstrated that PKG regulates PQC in the heart, both during physiological and pathological states. These studies tested already FDA-approved pharmacological therapies to activate PKG, which enhanced cardiomyocyte PQC and alleviated cardiac disease. This review examines the roles of PKG and PQC during disease pathogenesis and summarizes the experimental and clinical data supporting the utility of stimulating PKG to target cardiac proteotoxicity.
Collapse
Affiliation(s)
- Christian U Oeing
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Cardiology, Charité - University Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Brittany L Dunkerly-Eyring
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|
18
|
Methawasin M, Strom J, Borkowski T, Hourani Z, Runyan R, Smith JE, Granzier H. Phosphodiesterase 9a Inhibition in Mouse Models of Diastolic Dysfunction. Circ Heart Fail 2020; 13:e006609. [PMID: 32418479 DOI: 10.1161/circheartfailure.119.006609] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Low myocardial cGMP-PKG (cyclic guanosine monophosphate-protein kinase G) activity has been associated with increased cardiomyocyte diastolic stiffness in heart failure with preserved ejection fraction. Cyclic guanosine monophosphate is mainly hydrolyzed by PDE (phosphodiesterases) 5a and 9a. Importantly, PDE9a expression has been reported to be upregulated in human heart failure with preserved ejection fraction myocardium and chronic administration of a PDE9a inhibitor reverses preestablished cardiac hypertrophy and systolic dysfunction in mice subjected to transverse aortic constriction (TAC). We hypothesized that inhibiting PDE9a activity ameliorates diastolic dysfunction. METHODS To examine the effect of chronic PDE9a inhibition, 2 diastolic dysfunction mouse models were studied: (1) TAC-deoxycorticosterone acetate and (2) Leprdb/db. PDE9a inhibitor (5 and 8 mg/kg per day) was administered to the mice via subcutaneously implanted osmotic minipumps for 28 days. The effect of acute PDE9a inhibition was investigated in intact cardiomyocytes isolated from TAC-deoxycorticosterone acetate mice. Atrial natriuretic peptide together with PDE9a inhibitor were administered to the isolated intact cardiomyocytes through the cell perfusate. RESULTS For acute inhibition, no cellular stiffness reduction was found, whereas chronic PDE9a inhibition resulted in reduced left ventricular chamber stiffness in TAC-deoxycorticosterone acetate, but not in Leprdb/db mice. Passive cardiomyocyte stiffness was reduced by chronic PDE9a inhibition, with no differences in myocardial fibrosis or cardiac morphometry. PDE9a inhibition increased the ventricular-arterial coupling ratio, reflecting impaired systolic function. CONCLUSIONS Chronic PDE9a inhibition lowers left ventricular chamber stiffness in TAC-deoxycorticosterone acetate mice. However, the usefulness of PDE9a inhibition to treat high-diastolic stiffness may be limited as the required PDE9a inhibitor dose also impairs systolic function, observed as a decline in ventricular-arterial coordination, in this model.
Collapse
Affiliation(s)
- Mei Methawasin
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Joshua Strom
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Tomasz Borkowski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Ray Runyan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - John E Smith
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Henk Granzier
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| |
Collapse
|
19
|
Abstract
Advances in the treatment of heart failure with reduced ejection fraction due to systolic dysfunction are engaging an ever-expanding compendium of molecular signaling targets. Well established approaches modifying hemodynamics and cell biology by neurohumoral receptor blockade are evolving, exploring the role and impact of modulating intracellular signaling pathways with more direct myocardial effects. Even well-tread avenues are being reconsidered with new insights into the signaling engaged and thus opportunity to treat underlying myocardial disease. This review explores therapies that have proven successful, those that have not, those that are moving into the clinic but whose utility remains to be confirmed, and those that remain in the experimental realm. The emphasis is on signaling pathways that are tractable for therapeutic manipulation. Of the approaches yet to be tested in humans, we chose those with a well-established experimental history, where clinical translation may be around the corner. The breadth of opportunities bodes well for the next generation of heart failure therapeutics.
Collapse
Affiliation(s)
| | | | - David A. Kass
- Division of Cardiology, Department of Medicine
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore Maryland, 21205
| |
Collapse
|
20
|
Monroe TO, Hill MC, Morikawa Y, Leach JP, Heallen T, Cao S, Krijger PHL, de Laat W, Wehrens XHT, Rodney GG, Martin JF. YAP Partially Reprograms Chromatin Accessibility to Directly Induce Adult Cardiogenesis In Vivo. Dev Cell 2019; 48:765-779.e7. [PMID: 30773489 DOI: 10.1016/j.devcel.2019.01.017] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/10/2018] [Accepted: 01/17/2019] [Indexed: 01/22/2023]
Abstract
Specialized adult somatic cells, such as cardiomyocytes (CMs), are highly differentiated with poor renewal capacity, an integral reason underlying organ failure in disease and aging. Among the least renewable cells in the human body, CMs renew approximately 1% annually. Consistent with poor CM turnover, heart failure is the leading cause of death. Here, we show that an active version of the Hippo pathway effector YAP, termed YAP5SA, partially reprograms adult mouse CMs to a more fetal and proliferative state. One week after induction, 19% of CMs that enter S-phase do so twice, CM number increases by 40%, and YAP5SA lineage CMs couple to pre-existing CMs. Genomic studies showed that YAP5SA increases chromatin accessibility and expression of fetal genes, partially reprogramming long-lived somatic cells in vivo to a primitive, fetal-like, and proliferative state.
Collapse
Affiliation(s)
- Tanner O Monroe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuka Morikawa
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - John P Leach
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Todd Heallen
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Shuyi Cao
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands; University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands; University Medical Center Utrecht, Utrecht, the Netherlands
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Cardiomyocyte Renewal Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|