1
|
Naeem S, Zhang J, Zhang Y, Wang Y. Nucleic acid therapeutics: Past, present, and future. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102440. [PMID: 39897578 PMCID: PMC11786870 DOI: 10.1016/j.omtn.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nucleic acid therapeutics have become increasingly recognized in recent years for their capability to target both coding and non-coding sequences. Several types of nucleic acid modalities, including siRNA, mRNA, aptamer, along with antisense oligo, have been approved by regulatory bodies for therapeutic use. The field of nucleic acid therapeutics has been brought to the forefront by the rapid development of vaccines against COVID-19, followed by a number of approvals for clinical use including much anticipated CRISPR-Cas9. However, obstacles such as the difficulty of achieving efficient and targeted delivery to diseased sites remain. This review provides an overview of nucleic acid therapeutics and highlights substantial advancements, including critical engineering, conjugation, and delivery strategies, that are paving the way for their growing role in modern medicine.
Collapse
Affiliation(s)
- Sajid Naeem
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ju Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zhang
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
Wang R, Qu Z, Lv Y, Yao L, Qian Y, Zhang X, Xiang L. Important Roles of PI3K/AKT Signaling Pathway and Relevant Inhibitors in Prostate Cancer Progression. Cancer Med 2024; 13:e70354. [PMID: 39485722 PMCID: PMC11529649 DOI: 10.1002/cam4.70354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
Prostate cancer (PCa) is an extremely common malignant tumor of the male genitourinary system, originating from the prostate gland epithelium. Male patients are prone to relapse after treatment, which seriously threatens their health. Phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as Akt) plays an important role in the growth, invasion, and metastasis of PCa. This review aimed to present an overview of the mechanism of action of the PI3K/AKT signaling pathway in PCa and discuss the application prospects of inhibitors of this pathway in treating PCa, providing a theoretical basis and reference for its clinical treatment targets.
Collapse
Affiliation(s)
- Rui Wang
- Department of Clinical MedicineJining Medical UniversityJiningChina
| | - Zhen Qu
- Department of PathologyJining First People's HospitalJiningChina
| | - Ying Lv
- Department of Clinical MedicineJining Medical UniversityJiningChina
| | - Lu Yao
- Department of Clinical MedicineJining Medical UniversityJiningChina
| | - Yang Qian
- Department of Clinical MedicineJining Medical UniversityJiningChina
| | - Xiangyu Zhang
- Department of PathologyJining First People's HospitalJiningChina
| | - Longquan Xiang
- Department of PathologyJining First People's HospitalJiningChina
| |
Collapse
|
3
|
Kura Y, De Velasco MA, Sakai K, Uemura H, Fujita K, Nishio K. Exploring the relationship between ulcerative colitis, colorectal cancer, and prostate cancer. Hum Cell 2024; 37:1706-1718. [PMID: 39162974 DOI: 10.1007/s13577-024-01118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Chronic systemic inflammation caused by diseases such as ulcerative colitis (UC) and Crohn's disease (CD) increases the risk of developing colorectal cancer (CRC). Recent evidence indicates that patients with UC are more susceptible to prostate cancer (PCa), and individuals with PCa may also be at a higher risk of developing CRC. However, these relationships are not well defined. A better understanding of this phenomenon could improve the identification of high-risk populations. In this study, we characterized these relationships with experiments using preclinical mouse models of dextran sulfate sodium (DSS)-induced colitis (DSS-UC) and DSS/azoxymethane (AOM)-induced CRC (DSS/AOM-CRC) in wild-type and conditional transgenic mice of PCa. We showed that DSS-induced UC was more severe in mice with PCa and resulted in the development of CRC in the absence of AOM. We further showed that PCa-free mice that developed DSS-induced UC also showed histological changes in the normal prostate that resembled proliferative inflammatory atrophy. Finally, we used immunohistochemical immune profiling to show that mice with PCa-induced chronic systemic inflammation accumulated Gr1+ myeloid cells in the normal colon and exposure to DSS further enriched these cells in active colitis regions and colon tumors. Our study provides evidence to support a link between systemic chronic inflammation and cancer.
Collapse
Affiliation(s)
- Yurie Kura
- Department of Genome Biology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Marco A De Velasco
- Department of Genome Biology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Kazuko Sakai
- Department of Genome Biology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hirotsugu Uemura
- Department of Urology, Faculty of Medicine, Kindai University, 377-2 Ohno-Hiashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kazutoshi Fujita
- Department of Urology, Faculty of Medicine, Kindai University, 377-2 Ohno-Hiashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
4
|
Sergeeva O, Akhmetova E, Dukova S, Beloglazkina E, Uspenskaya A, Machulkin A, Stetsenko D, Zatsepin T. Structure-activity relationship study of mesyl and busyl phosphoramidate antisense oligonucleotides for unaided and PSMA-mediated uptake into prostate cancer cells. Front Chem 2024; 12:1342178. [PMID: 38501046 PMCID: PMC10944894 DOI: 10.3389/fchem.2024.1342178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Phosphorothioate (PS) group is a key component of a majority of FDA approved oligonucleotide drugs that increase stability to nucleases whilst maintaining interactions with many proteins, including RNase H in the case of antisense oligonucleotides (ASOs). At the same time, uniform PS modification increases nonspecific protein binding that can trigger toxicity and pro-inflammatory effects, so discovery and characterization of alternative phosphate mimics for RNA therapeutics is an actual task. Here we evaluated the effects of the introduction of several N-alkane sulfonyl phosphoramidate groups such as mesyl (methanesulfonyl) or busyl (1-butanesulfonyl) phosphoramidates into gapmer ASOs on the efficiency and pattern of RNase H cleavage, cellular uptake in vitro, and intracellular localization. Using Malat1 lncRNA as a target, we have identified patterns of mesyl or busyl modifications in the ASOs for optimal knockdown in vitro. Combination of the PSMA ligand-mediated delivery with optimized mesyl and busyl ASOs resulted in the efficient target depletion in the prostate cancer cells. Our study demonstrated that other N-alkanesulfonyl phosphoramidate groups apart from a known mesyl phosphoramidate can serve as an essential component of mixed backbone gapmer ASOs to reduce drawbacks of uniformly PS-modified gapmers, and deserve further investigation in RNA therapeutics.
Collapse
Affiliation(s)
- O. Sergeeva
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - E. Akhmetova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - S. Dukova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - E. Beloglazkina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - A. Uspenskaya
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - A. Machulkin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Department for Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Moscow, Russia
| | - D. Stetsenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T. Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Tien AH, Sadar MD. Treatments Targeting the Androgen Receptor and Its Splice Variants in Breast Cancer. Int J Mol Sci 2024; 25:1817. [PMID: 38339092 PMCID: PMC10855698 DOI: 10.3390/ijms25031817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer is a major cause of death worldwide. The complexity of endocrine regulation in breast cancer may allow the cancer cells to escape from a particular treatment and result in resistant and aggressive disease. These breast cancers usually have fewer treatment options. Targeted therapies for cancer patients may offer fewer adverse side effects because of specificity compared to conventional chemotherapy. Signaling pathways of nuclear receptors, such as the estrogen receptor (ER), have been intensively studied and used as therapeutic targets. Recently, the role of the androgen receptor (AR) in breast cancer is gaining greater attention as a therapeutic target and as a prognostic biomarker. The expression of constitutively active truncated AR splice variants in breast cancer is a possible mechanism contributing to treatment resistance. Therefore, targeting both the full-length AR and AR variants, either through the activation or suppression of AR function, depending on the status of the ER, progesterone receptor, or human epidermal growth factor receptor 2, may provide additional treatment options. Studies targeting AR in combination with other treatment strategies are ongoing in clinical trials. The determination of the status of nuclear receptors to classify and identify patient subgroups will facilitate optimized and targeted combination therapies.
Collapse
Affiliation(s)
- Amy H. Tien
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Marianne D. Sadar
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| |
Collapse
|
6
|
Ågmo A. Androgen receptors and sociosexual behaviors in mammals: The limits of generalization. Neurosci Biobehav Rev 2024; 157:105530. [PMID: 38176634 DOI: 10.1016/j.neubiorev.2023.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Circulating testosterone is easily aromatized to estradiol and reduced to dihydrotestosterone in target tissues and elsewhere in the body. Thus, the actions of testosterone can be mediated either by the estrogen receptors, the androgen receptor or by simultaneous action at both receptors. To determine the role of androgens acting at the androgen receptor, we need to eliminate actions at the estrogen receptors. Alternatively, actions at the androgen receptor itself can be eliminated. In the present review, I will analyze the specific role of androgen receptors in male and female sexual behavior as well as in aggression. Some comments about androgen receptors and social recognition are also made. It will be shown that there are important differences between species, even between strains within a species, concerning the actions of the androgen receptor on the behaviors mentioned. This fact makes generalizations from one species to another or from one strain to another very risky. The existence of important species differences is often ignored, leading to many misunderstandings and much confusion.
Collapse
Affiliation(s)
- Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| |
Collapse
|
7
|
Mougola Bissiengou P, Montcho Comlan JG, Atsame Ebang G, Sylla Niang M, Djoba Siawaya JF. Prostate malignant tumor and benign prostatic hyperplasia microenvironments in black African men: Limited infiltration of CD8+ T lymphocytes, NK-cells, and high frequency of CD73+ stromal cells. Cancer Rep (Hoboken) 2023; 6 Suppl 1:e1817. [PMID: 37092584 PMCID: PMC10440842 DOI: 10.1002/cnr2.1817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Anti-cancerous immunology has yet to be investigated in the African black population, despite being the dawn of precision medicine. AIM Here we investigated the tumor microenvironment of prostate cancer and benign prostatic hyperplasia (BPH) in black Africans. METHODS Through immunohistochemistry analysis of prostate cancer and BPH patients' biopsies, we investigated the expression and distribution of CD73, CCD8 T-lymphocytes, and natural killer cells. In addition, we looked at tumor-infiltrating features CD8 T-lymphocytes and natural killer cells. RESULTS We show for the first time in black Africans a high expression of CD73 in epithelial-stromal cells and virtually no infiltration of CD8 T lymphocytes and natural killer cells in the tumoral area. In addition, CD73 was seven (7) times more likely to be expressed in prostate cancer stromal tissues than in benign prostatic hyperplasia tissues (odds ratio = 7.2; χ2 = 21; p < .0001). In addition, PSA concentration was significantly higher in prostate cancer patients than in BPH patients (p < .001). Also, the PSA-based ROC. analysis showed an area under the curve of 0.87 (p < .0001). CONCLUSION CD73 expression is more likely expressed in prostate cancer stromal tissues than in benign prostatic hyperplasia tissues. The features of prostate cancer in Black Africans suggest CD73 expression as a possible target for immunotherapy in this population.
Collapse
Affiliation(s)
- Pélagie Mougola Bissiengou
- Service d'Immunologie, Département des Sciences Fondamentales, Faculté de MédecineUniversité des Sciences de la SantéLibrevilleGabon
- Service d'Immunologie, Département des Sciences Biologiques et Pharmaceutiques Appliquées, Faculté de Médecine, de Pharmacie et d'OdontostomatologieUniversité Cheikh Anta DiopDakarSenegal
| | - Jérôme Gaston Montcho Comlan
- Service d'Immunologie, Département des Sciences Biologiques et Pharmaceutiques Appliquées, Faculté de Médecine, de Pharmacie et d'OdontostomatologieUniversité Cheikh Anta DiopDakarSenegal
| | - Gabrielle Atsame Ebang
- Unité d'anatomie‐Cytologie‐PathologieCentre Hospitalier Universitaire de LibrevilleLibrevilleGabon
| | - Maguette Sylla Niang
- Service d'Immunologie, Département des Sciences Biologiques et Pharmaceutiques Appliquées, Faculté de Médecine, de Pharmacie et d'OdontostomatologieUniversité Cheikh Anta DiopDakarSenegal
| | - Joel Fleury Djoba Siawaya
- Service LaboratoireCentre Hospitalier Universitaire Mère‐Enfant Fondation Jeanne EBORILibrevilleGabon
| |
Collapse
|
8
|
Han Y, Shin SH, Lim CG, Heo YH, Choi IY, Kim HH. Synthetic RNA Therapeutics in Cancer. J Pharmacol Exp Ther 2023; 386:212-223. [PMID: 37188531 DOI: 10.1124/jpet.123.001587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Recent advances in the RNA delivery system have facilitated the development of a separate field of RNA therapeutics, with modalities including mRNA, microRNA (miRNA), antisense oligonucleotide (ASO), small interfering RNA, and circular (circRNA) that have been incorporated into oncology research. The main advantages of the RNA-based modalities are high flexibility in designing RNA and rapid production for clinical screening. It is challenging to eliminate tumors by tackling a single target in cancer. In the era of precision medicine, RNA-based therapeutic approaches potentially constitute suitable platforms for targeting heterogeneous tumors that possess multiple sub-clonal cancer cell populations. In this review, we discussed how synthetic coding and non-coding RNAs, such as mRNA, miRNA, ASO, and circRNA, can be applied in the development of therapeutics. SIGNIFICANCE STATEMENT: With development of vaccines against coronavirus, RNA-based therapeutics have received attention. Here, the authors discuss different types of RNA-based therapeutics potentially effective against tumor that are highly heterogeneous giving rise to resistance and relapses to the conventional therapeutics. Moreover, this study summarized recent findings suggesting combination approaches of RNA therapeutics and cancer immunotherapy.
Collapse
Affiliation(s)
- Youngjin Han
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Seung-Hyun Shin
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Chang Gyu Lim
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Yong Ho Heo
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - In Young Choi
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Ha Hyung Kim
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| |
Collapse
|
9
|
Li J, Huang X, Chen H, Gu C, Ni B, Zhou J. LINC01088/miR-22/CDC6 Axis Regulates Prostate Cancer Progression by Activating the PI3K/AKT Pathway. Mediators Inflamm 2023; 2023:9207148. [PMID: 37501932 PMCID: PMC10371595 DOI: 10.1155/2023/9207148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 07/29/2023] Open
Abstract
Background Prostate cancer (PCa) harms the male reproductive system, and lncRNA may play an important role in it. Here, we report that the LINC01088/microRNA- (miRNA/miR-) 22/cell division cycle 6 (CDC6) axis regulated through the phosphatidylinositide 3-kinases- (PI3K-) protein kinase B (AKT) signaling pathway controls the development of PCa. Methods lncRNA/miRNA/mRNA associated with PCa was downloaded and analyzed by Gene Expression Omnibus. The expression and correlation of LINC01088/miR-22/CDC6 in PCa were analyzed and verified by RT-qPCR. Dual-luciferase was used to analyze the binding between miR-22 and LINC01088 or CDC6. Cell Counting Kit-8 and Transwell were used to analyze the effects of LINC01088/miR-22/CDC6 interactions on PCa cell viability or migration/invasion ability. Localization of LINC01088 in cells was analyzed by nuclear cytoplasmic separation. The effect of LINC01088/miR-22/CDC6 interaction on downstream PI3K/AKT signaling was analyzed by Western blot. Results LINC01088 or CDC6 was upregulated in prostate tumor tissues or cells, whereas miR-22 was downregulated, miR-22 directly targets both LINC01088 and CDC6. si-LINC01088 inhibits the PCa process by suppressing the PI3K/AKT pathway. CDC6 reverses si-linc01088-mediated cell growth inhibition and reduction of PI3K and AKT protein levels. Conclusion Our results demonstrate that the LINC01088/miR-22/CDC6 axis functions in PCa progression and provide a promising diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Jianwei Li
- Department of Urology, Longgang District People's Hospital of Shenzhen, Guangdong 518000, China
| | - Xinghua Huang
- Department of Urology, Longgang District People's Hospital of Shenzhen, Guangdong 518000, China
| | - Haodong Chen
- Department of Urology, Longgang District People's Hospital of Shenzhen, Guangdong 518000, China
| | - Caifu Gu
- Department of Thyroid and Breast Surgery, Longgang Central Hospital, Shenzhen, Guangdong 518000, China
| | - Binyu Ni
- Department of Pediatrics, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518000, China
| | - Jianhua Zhou
- Department of Urology, Longgang District People's Hospital of Shenzhen, Guangdong 518000, China
| |
Collapse
|
10
|
Hovsepyan S, Giani C, Pasquali S, Di Giannatale A, Chiaravalli S, Colombo C, Orbach D, Bergamaschi L, Vennarini S, Gatz SA, Gasparini P, Berlanga P, Casanova M, Ferrari A. Desmoplastic small round cell tumor: from state of the art to future clinical prospects. Expert Rev Anticancer Ther 2023; 23:471-484. [PMID: 37017324 DOI: 10.1080/14737140.2023.2200171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Desmoplastic small round cell tumor (DSRCT) is an extremely rare and highly aggressive soft tissue sarcoma, presenting mainly in male adolescents and young adults with multiple nodules disseminated within the abdominopelvic cavity. Despite a multimodal approach including aggressive cytoreductive surgery, intensive multi-agent chemotherapy, and postoperative whole abdominopelvic radiotherapy, the prognosis for DSRCT remains dismal. Median progression-free survival ranges between 4 and 21 months, and overall survival between 17 and 60 months, with the 5-year overall survival rate in the range of 10-20%. AREA COVERED This review discusses the treatment strategies used for DSRCT over the years, the state of the art of current treatments, and future clinical prospects. EXPERT OPINION The unsatisfactory outcomes for patients with DSRCT warrant investigations into innovative treatment combinations. An international multidisciplinary and multi-stakeholder collaboration, involving both pediatric and adult sarcoma communities, is needed to propel preclinical model generation and drug development, and innovative clinical trial designs to enable the timely testing of treatments involving novel agents guided by biology to boost the chances of survival for patients with this devastating disease.
Collapse
Affiliation(s)
- Shushan Hovsepyan
- Department of Pediatric Oncology, Pediatric Cancer and Blood Disorders Center of Armenia, Yerevan, Armenia
| | - Claudia Giani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Sarcoma Service, Department of Surgery, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Angela Di Giannatale
- Department of Hematology/Oncology, Hematology/Oncology, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Colombo
- Sarcoma Service, Department of Surgery, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniel Orbach
- SIREDO Oncology Center, Institut Curie, PSL University, Paris, France
| | - Luca Bergamaschi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sabina Vennarini
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Susanne Andrea Gatz
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave-Roussy, Villejuif, France
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
11
|
Park WJ, Kim MJ. A New Wave of Targeting 'Undruggable' Wnt Signaling for Cancer Therapy: Challenges and Opportunities. Cells 2023; 12:cells12081110. [PMID: 37190019 DOI: 10.3390/cells12081110] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Aberrant Wnt signaling activation is frequently observed in many cancers. The mutation acquisition of Wnt signaling leads to tumorigenesis, whereas the inhibition of Wnt signaling robustly suppresses tumor development in various in vivo models. Based on the excellent preclinical effect of targeting Wnt signaling, over the past 40 years, numerous Wnt-targeted therapies have been investigated for cancer treatment. However, Wnt signaling-targeting drugs are still not clinically available. A major obstacle to Wnt targeting is the concomitant side effects during treatment due to the pleiotropic role of Wnt signaling in development, tissue homeostasis, and stem cells. Additionally, the complexity of the Wnt signaling cascades across different cancer contexts hinders the development of optimized targeted therapies. Although the therapeutic targeting of Wnt signaling remains challenging, alternative strategies have been continuously developed alongside technological advances. In this review, we give an overview of current Wnt targeting strategies and discuss recent promising trials that have the potential to be clinically realized based on their mechanism of action. Furthermore, we highlight new waves of Wnt targeting that combine recently developed technologies such as PROTAC/molecular glue, antibody-drug conjugates (ADC), and anti-sense oligonucleotides (ASO), which may provide us with new opportunities to target 'undruggable' Wnt signaling.
Collapse
Affiliation(s)
- Woo-Jung Park
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
12
|
Finicle B, Eckenstein K, Revenko A, Anderson B, Wan W, McCracken A, Gil D, Fruman D, Hanessian S, Seth P, Edinger A. Simultaneous inhibition of endocytic recycling and lysosomal fusion sensitizes cells and tissues to oligonucleotide therapeutics. Nucleic Acids Res 2023; 51:1583-1599. [PMID: 36727438 PMCID: PMC9976930 DOI: 10.1093/nar/gkad023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Inefficient endosomal escape remains the primary barrier to the broad application of oligonucleotide therapeutics. Liver uptake after systemic administration is sufficiently robust that a therapeutic effect can be achieved but targeting extrahepatic tissues remains challenging. Prior attempts to improve oligonucleotide activity using small molecules that increase the leakiness of endosomes have failed due to unacceptable toxicity. Here, we show that the well-tolerated and orally bioavailable synthetic sphingolipid analog, SH-BC-893, increases the activity of antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) up to 200-fold in vitro without permeabilizing endosomes. SH-BC-893 treatment trapped endocytosed oligonucleotides within extra-lysosomal compartments thought to be more permeable due to frequent membrane fission and fusion events. Simultaneous disruption of ARF6-dependent endocytic recycling and PIKfyve-dependent lysosomal fusion was necessary and sufficient for SH-BC-893 to increase non-lysosomal oligonucleotide levels and enhance their activity. In mice, oral administration of SH-BC-893 increased ASO potency in the liver by 15-fold without toxicity. More importantly, SH-BC-893 enabled target RNA knockdown in the CNS and lungs of mice treated subcutaneously with cholesterol-functionalized duplexed oligonucleotides or unmodified ASOs, respectively. Together, these results establish the feasibility of using a small molecule that disrupts endolysosomal trafficking to improve the activity of oligonucleotides in extrahepatic tissues.
Collapse
Affiliation(s)
- Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Kazumi H Eckenstein
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | | | | | - W Brad Wan
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | | | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | | | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
13
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
14
|
Barresi V, Musmeci C, Rinaldi A, Condorelli DF. Transcript-Targeted Therapy Based on RNA Interference and Antisense Oligonucleotides: Current Applications and Novel Molecular Targets. Int J Mol Sci 2022; 23:ijms23168875. [PMID: 36012138 PMCID: PMC9408055 DOI: 10.3390/ijms23168875] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/28/2022] Open
Abstract
The development of novel target therapies based on the use of RNA interference (RNAi) and antisense oligonucleotides (ASOs) is growing in an exponential way, challenging the chance for the treatment of the genetic diseases and cancer by hitting selectively targeted RNA in a sequence-dependent manner. Multiple opportunities are taking shape, able to remove defective protein by silencing RNA (e.g., Inclisiran targets mRNA of protein PCSK9, permitting a longer half-life of LDL receptors in heterozygous familial hypercholesteremia), by arresting mRNA translation (i.e., Fomivirsen that binds to UL123-RNA and blocks the translation into IE2 protein in CMV-retinitis), or by reactivating modified functional protein (e.g., Eteplirsen able to restore a functional shorter dystrophin by skipping the exon 51 in Duchenne muscular dystrophy) or a not very functional protein. In this last case, the use of ASOs permits modifying the expression of specific proteins by modulating splicing of specific pre-RNAs (e.g., Nusinersen acts on the splicing of exon 7 in SMN2 mRNA normally not expressed; it is used for spinal muscular atrophy) or by downregulation of transcript levels (e.g., Inotersen acts on the transthryretin mRNA to reduce its expression; it is prescribed for the treatment of hereditary transthyretin amyloidosis) in order to restore the biochemical/physiological condition and ameliorate quality of life. In the era of precision medicine, recently, an experimental splice-modulating antisense oligonucleotide, Milasen, was designed and used to treat an 8-year-old girl affected by a rare, fatal, progressive form of neurodegenerative disease leading to death during adolescence. In this review, we summarize the main transcriptional therapeutic drugs approved to date for the treatment of genetic diseases by principal regulatory government agencies and recent clinical trials aimed at the treatment of cancer. Their mechanism of action, chemical structure, administration, and biomedical performance are predominantly discussed.
Collapse
|
15
|
Huang J, Lin B, Li B. Anti-Androgen Receptor Therapies in Prostate Cancer: A Brief Update and Perspective. Front Oncol 2022; 12:865350. [PMID: 35372068 PMCID: PMC8965587 DOI: 10.3389/fonc.2022.865350] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is a major health issue in western countries and is the second leading cause of cancer death in American men. Prostate cancer depends on the androgen receptor (AR), a transcriptional factor critical for prostate cancer growth and progression. Castration by surgery or medical treatment reduces androgen levels, resulting in prostatic atrophy and prostate cancer regression. Thus, metastatic prostate cancers are initially managed with androgen deprivation therapy. Unfortunately, prostate cancers rapidly relapse after castration therapy and progress to a disease stage called castration-resistant prostate cancer (CRPC). Currently, clinical treatment for CRPCs is focused on suppressing AR activity with antagonists like Enzalutamide or by reducing androgen production with Abiraterone. In clinical practice, these treatments fail to yield a curative benefit in CRPC patients in part due to AR gene mutations or splicing variations, resulting in AR reactivation. It is conceivable that eliminating the AR protein in prostate cancer cells is a promising solution to provide a potential curative outcome. Multiple strategies have emerged, and several potent agents that reduce AR protein levels were reported to eliminate xenograft tumor growth in preclinical models via distinct mechanisms, including proteasome-mediated degradation, heat-shock protein inhibition, AR splicing suppression, blockage of AR nuclear localization, AR N-terminal suppression. A few small chemical compounds are undergoing clinical trials combined with existing AR antagonists. AR protein elimination by enhanced protein or mRNA degradation is a realistic solution for avoiding AR reactivation during androgen deprivation therapy in prostate cancers.
Collapse
Affiliation(s)
- Jian Huang
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Biyun Lin
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
16
|
Zogg H, Singh R, Ro S. Current Advances in RNA Therapeutics for Human Diseases. Int J Mol Sci 2022; 23:2736. [PMID: 35269876 PMCID: PMC8911101 DOI: 10.3390/ijms23052736] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Following the discovery of nucleic acids by Friedrich Miescher in 1868, DNA and RNA were recognized as the genetic code containing the necessary information for proper cell functioning. In the years following these discoveries, vast knowledge of the seemingly endless roles of RNA have become better understood. Additionally, many new types of RNAs were discovered that seemed to have no coding properties (non-coding RNAs), such as microRNAs (miRNAs). The discovery of these new RNAs created a new avenue for treating various human diseases. However, RNA is relatively unstable and is degraded fairly rapidly once administered; this has led to the development of novel delivery mechanisms, such as nanoparticles to increase stability as well as to prevent off-target effects of these molecules. Current advances in RNA-based therapies have substantial promise in treating and preventing many human diseases and disorders through fixing the pathology instead of merely treating the symptomology similarly to traditional therapeutics. Although many RNA therapeutics have made it to clinical trials, only a few have been FDA approved thus far. Additionally, the results of clinical trials for RNA therapeutics have been ambivalent to date, with some studies demonstrating potent efficacy, whereas others have limited effectiveness and/or toxicity. Momentum is building in the clinic for RNA therapeutics; future clinical care of human diseases will likely comprise promising RNA therapeutics. This review focuses on the current advances of RNA therapeutics and addresses current challenges with their development.
Collapse
Affiliation(s)
| | | | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, 1664 North Virginia Street, Reno, NV 89557, USA; (H.Z.); (R.S.)
| |
Collapse
|
17
|
Targeting a splicing-mediated drug resistance mechanism in prostate cancer by inhibiting transcriptional regulation by PKCβ1. Oncogene 2022; 41:1536-1549. [PMID: 35087237 PMCID: PMC8913362 DOI: 10.1038/s41388-022-02179-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Abstract
The androgen receptor (AR) is a central driver of aggressive prostate cancer. After initial treatment with androgen receptor signaling inhibitors (ARSi), reactivation of AR signaling leads to resistance. Alternative splicing of AR mRNA yields the AR-V7 splice variant, which is currently an undruggable mechanism of ARSi resistance: AR-V7 lacks a ligand binding domain, where hormones and anti-androgen antagonists act, but still activates AR signaling. We reveal PKCβ as a druggable regulator of transcription and splicing at the AR genomic locus. We identify a clinical PKCβ inhibitor in combination with an FDA-approved anti-androgen as an approach for repressing AR genomic locus expression, including expression of AR-V7, while antagonizing full-length AR. PKCβ inhibition reduces total AR gene expression, thus reducing AR-V7 protein levels and sensitizing prostate cancer cells to current anti-androgen therapies. We demonstrate that this combination may be a viable therapeutic strategy for AR-V7-positive prostate cancer.
Collapse
|
18
|
Moumné L, Marie AC, Crouvezier N. Oligonucleotide Therapeutics: From Discovery and Development to Patentability. Pharmaceutics 2022; 14:pharmaceutics14020260. [PMID: 35213992 PMCID: PMC8876811 DOI: 10.3390/pharmaceutics14020260] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Following the first proof of concept of using small nucleic acids to modulate gene expression, a long period of maturation led, at the end of the last century, to the first marketing authorization of an oligonucleotide-based therapy. Since then, 12 more compounds have hit the market and many more are in late clinical development. Many companies were founded to exploit their therapeutic potential and Big Pharma was quickly convinced that oligonucleotides could represent credible alternatives to protein-targeting products. Many technologies have been developed to improve oligonucleotide pharmacokinetics and pharmacodynamics. Initially targeting rare diseases and niche markets, oligonucleotides are now able to benefit large patient populations. However, there is still room for oligonucleotide improvement and further breakthroughs are likely to emerge in the coming years. In this review we provide an overview of therapeutic oligonucleotides. We present in particular the different types of oligonucleotides and their modes of action, the tissues they target and the routes by which they are administered to patients, and the therapeutic areas in which they are used. In addition, we present the different ways of patenting oligonucleotides. We finally discuss future challenges and opportunities for this drug-discovery platform.
Collapse
|
19
|
Context-Specific Efficacy of Apalutamide Therapy in Preclinical Models of Pten-Deficient Prostate Cancer. Cancers (Basel) 2021; 13:cancers13163975. [PMID: 34439133 PMCID: PMC8391912 DOI: 10.3390/cancers13163975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Next-generation antiandrogens have transformed the therapeutic landscape for castration-resistant prostate cancer. Their utility in other indications, such as high-risk castration-sensitive cancers and as combination therapy, are being investigated. Our aim was to profile the in vivo antitumor activity of apalutamide in phenotypically distinct mouse models of Pten-deficient castration-naïve and castration-resistant prostate cancer, using both early- and late-stage disease models, and to profile the molecular responses. We also evaluated the therapeutic potential and characterized the molecular responses of the combined targeted AR/AKT blockade and showed that while this approach was promising in vitro, it was mostly ineffective in vivo, particularly in the castration-resistant setting. Our findings provide evidence that links therapeutic resistance to STAT3 and PIM-1 in the castration-resistant setting and provide insights into the context-specific antitumor activity of apalutamide. Abstract Significant improvements with apalutamide, a nonsteroidal antiandrogen used to treat patients suffering from advanced prostate cancer (PCa), have prompted evaluation for additional indications and therapeutic development with other agents; however, persistent androgen receptor (AR) signaling remains problematic. We used autochthonous mouse models of Pten-deficient PCa to examine the context-specific antitumor activity of apalutamide and profile its molecular responses. Overall, apalutamide showed potent antitumor activity in both early-stage and late-stage models of castration-naïve prostate cancer (CNPC). Molecular profiling by Western blot and immunohistochemistry associated persistent surviving cancer cells with upregulated AKT signaling. While apalutamide was ineffective in an early-stage model of castration-resistant prostate cancer (CRPC), it tended to prolong survival in late-stage CRPC. Molecular features associated with surviving cancer cells in CRPC included upregulated aberrant-AR, and phosphorylated S6 and proline-rich Akt substrate of 40 kDa (PRAS40). Strong synergy was observed with the pan-AKT inhibitor GSK690693 and apalutamide in vitro against the CNPC- and CRPC-derived cell lines and tended to improve the antitumor responses in CNPC but not CRPC in vivo. Upregulation of signal transducer and activator of transcription 3 (STAT3) and proviral insertion in murine-1 (PIM-1) were associated with combined apalutamide/GSK690693. Our findings show that apalutamide can attenuate Pten-deficient PCa in a context-specific manner and provides data that can be used to further study and, possibly, develop additional combinations with apalutamide.
Collapse
|
20
|
Nascimento-Gonçalves E, Seixas F, Ferreira R, Colaço B, Parada B, Oliveira PA. An overview of the latest in state-of-the-art murine models for prostate cancer. Expert Opin Drug Discov 2021; 16:1349-1364. [PMID: 34224283 DOI: 10.1080/17460441.2021.1943354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is a complex, heterogenous and multifocal disease, which is debilitating for patients and often fatal - due to bone metastasis and castration-resistant cancer. The use of murine models that mimic human disease has been crucial in the development of innovative therapies and for better understanding the mechanisms associated with initiation and progression of PCa. AREAS COVERED This review presents a critical analysis of murine models for the study of PCa, highlighting their strengths, weaknesses and applications. EXPERT OPINION In animal models, disease may not occur exactly as it does in humans, and sometimes the levels of efficacy that certain treatments obtain in animal models cannot be translated into clinical practice. To choose the most appropriate animal model for each research work, it is crucial to understand the anatomical and physiological differences between the mouse and the human prostate, while it is also important to identify biological similarities and differences between murine and human prostate tumors. Although significant progress has already been made, thanks to many years of research and study, the number of new challenges and obstacles to overcome mean there is a long and difficult road still to travel.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Fernanda Seixas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Animal and Veterinary Research Centre (CECAV), UTAD, Vila Real, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Belmiro Parada
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal
| |
Collapse
|
21
|
Targeting Smyd3 by next-generation antisense oligonucleotides suppresses liver tumor growth. iScience 2021; 24:102473. [PMID: 34113819 PMCID: PMC8169948 DOI: 10.1016/j.isci.2021.102473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
The oncogenic function of suppressor of variegation, enhancer of zeste and MYeloid-Nervy-DEAF1-domain family methyltransferase Smyd3 has been implicated in various malignancies, including hepatocellular carcinoma (HCC). Here, we show that targeting Smyd3 by next-generation antisense oligonucleotides (Smyd3-ASO) is an efficient approach to modulate its mRNA levels in vivo and to halt the growth of already initiated liver tumors. Smyd3-ASO treatment dramatically decreased tumor burden in a mouse model of chemically induced HCC and negatively affected the growth rates, migration, oncosphere formation, and xenograft growth capacity of a panel of human hepatic cancer cell lines. Smyd3-ASOs prevented the activation of oncofetal genes and the development of cancer-specific gene expression program. The results point to a mechanism by which Smyd3-ASO treatment blocks cellular de-differentiation, a hallmark feature of HCC development, and, as a result, it inhibits the expansion of hepatic cancer stem cells, a population that has been presumed to resist chemotherapy.
Collapse
|
22
|
Zhang R, Huang C, Xiao X, Zhou J. Improving Strategies in the Development of Protein-Downregulation-Based Antiandrogens. ChemMedChem 2021; 16:2021-2033. [PMID: 33554455 DOI: 10.1002/cmdc.202100033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 12/20/2022]
Abstract
The androgen receptor (AR) plays a crucial role in the occurrence and development of prostate cancer (PCa), and its signaling pathway remains active in castration-resistant prostate cancer (CRPC) patients. The resistance against antiandrogen drugs in current clinical use is a major challenge for the treatment of PCa, and thus the development of new generations of antiandrogens is under high demand. Recently, strategies for downregulating the AR have attracted significant attention, given its potential in the discovery and development of new antiandrogens, including G-quadruplex stabilizers, ROR-γ inhibitors, AR-targeting proteolysis targeting chimeras (PROTACs), and other selective AR degraders (SARDs), which are able to overcome current resistance mechanisms such as acquired AR mutations, the expression of AR variable splices, or overexpression of AR. This review summarizes the various strategies for downregulating the AR protein, at either the mRNA or protein level, thus providing new ideas for the development of promising antiandrogen drugs.
Collapse
Affiliation(s)
- Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Chenchao Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Xiaohui Xiao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
23
|
The Role of Androgens and Androgen Receptor in Human Bladder Cancer. Biomolecules 2021; 11:biom11040594. [PMID: 33919565 PMCID: PMC8072960 DOI: 10.3390/biom11040594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (urothelial carcinoma) is one of the most frequently diagnosed neoplasms, with an estimated half a million new cases and 200,000 deaths per year worldwide. This pathology mainly affects men. Men have a higher risk (4:1) of developing bladder cancer than women. Cigarette smoking and exposure to chemicals such as aromatic amines, and aniline dyes have been established as risk factors for bladder cancer and may contribute to the sex disparity. Male internal genitalia, including the urothelium and prostate, are derived from urothelial sinus endoderm; both tissues express the androgen receptor (AR). Several investigations have shown evidence that the AR plays an important role in the initiation and development of different types of cancer including bladder cancer. In this article, we summarize the available data that help to explain the role of the AR in the development and progression of bladder cancer, as well as the therapies used for its treatment.
Collapse
|
24
|
Castanotto D, Zhang X, Rüger J, Alluin J, Sharma R, Pirrotte P, Joenson L, Ioannou S, Nelson MS, Vikeså J, Hansen BR, Koch T, Jensen MA, Rossi JJ, Stein CA. A Multifunctional LNA Oligonucleotide-Based Strategy Blocks AR Expression and Transactivation Activity in PCa Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:63-75. [PMID: 33335793 PMCID: PMC7723773 DOI: 10.1016/j.omtn.2020.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/21/2020] [Indexed: 01/05/2023]
Abstract
The androgen receptor (AR) plays a critical role in the development of prostate cancer (PCa) through the activation of androgen-induced cellular proliferation genes. Thus, blocking AR-mediated transcriptional activation is expected to inhibit the growth and spread of PCa. Using tailor-made splice-switching locked nucleic acid (LNA) oligonucleotides (SSOs), we successfully redirected splicing of the AR precursor (pre-)mRNA and destabilized the transcripts via the introduction of premature stop codons. Furthermore, the SSOs simultaneously favored production of the AR45 mRNA in lieu of the full-length AR. AR45 is an AR isoform that can attenuate the activity of both full-length and oncogenic forms of AR by binding to their common N-terminal domain (NTD), thereby blocking their transactivation potential. A large screen was subsequently used to identify individual SSOs that could best perform this dual function. The selected SSOs powerfully silence AR expression and modulate the expression of AR-responsive cellular genes. This bi-functional strategy that uses a single therapeutic molecule can be the basis for novel PCa treatments. It might also be customized to other types of therapies that require the silencing of one gene and the simultaneous expression of a different isoform.
Collapse
Affiliation(s)
- Daniela Castanotto
- Department of Medical Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Xiaowei Zhang
- Department of Medical Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jacqueline Rüger
- Department of Medical Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jessica Alluin
- Department of Molecular and Cellular Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Ritin Sharma
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Lars Joenson
- Roche Innovation Center Copenhagen A/S, Fremtidsvej 3, 2970 Hørsholm, Denmark
| | - Silvia Ioannou
- Science Department, Flintridge Preparatory School, 4543 Crown Avenue, La Cañada Flintridge, CA 91011, USA
| | - Michael S Nelson
- The Light Microscopy and Digital Imaging Core, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte CA 91010
| | - Jonas Vikeså
- Roche Innovation Center Copenhagen A/S, Fremtidsvej 3, 2970 Hørsholm, Denmark
| | - Bo Rode Hansen
- Genevant Sciences, 245 Main Street, Floor 2, Cambridge, MA 02142
| | - Troels Koch
- Frederikskaj 10B, 2nd floor, 2450 Copenhagen SV, Denmark
| | - Mads Aaboe Jensen
- Roche Innovation Center Copenhagen A/S, Fremtidsvej 3, 2970 Hørsholm, Denmark
| | - John J Rossi
- Department of Molecular and Cellular Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Cy A Stein
- Department of Medical Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
25
|
Obinata D, Lawrence MG, Takayama K, Choo N, Risbridger GP, Takahashi S, Inoue S. Recent Discoveries in the Androgen Receptor Pathway in Castration-Resistant Prostate Cancer. Front Oncol 2020; 10:581515. [PMID: 33134178 PMCID: PMC7578370 DOI: 10.3389/fonc.2020.581515] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
The androgen receptor (AR) is the main therapeutic target in advanced prostate cancer, because it regulates the growth and progression of prostate cancer cells. Patients may undergo multiple lines of AR-directed treatments, including androgen-deprivation therapy, AR signaling inhibitors (abiraterone acetate, enzalutamide, apalutamide, or darolutamide), or combinations of these therapies. Yet, tumors inevitably develop resistance to the successive lines of treatment. The diverse mechanisms of resistance include reactivation of the AR and dysregulation of AR cofactors and collaborative transcription factors (TFs). Further elucidating the nexus between the AR and collaborative TFs may reveal new strategies targeting the AR directly or indirectly, such as targeting BET proteins or OCT1. However, appropriate preclinical models will be required to test the efficacy of these approaches. Fortunately, an increasing variety of patient-derived models, such as xenografts and organoids, are being developed for discovery-based research and preclinical drug screening. Here we review the mechanisms of drug resistance in the AR signaling pathway, the intersection with collaborative TFs, and the use of patient-derived models for novel drug discovery.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Mitchell G. Lawrence
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Nicholas Choo
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Gail P. Risbridger
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
26
|
Jiang G, Shi L, Zheng X, Zhang X, Wu K, Liu B, Yan P, Liang X, Yu T, Wang Y, Cai X. Androgen receptor affects the response to immune checkpoint therapy by suppressing PD-L1 in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:11466-11484. [PMID: 32579541 PMCID: PMC7343489 DOI: 10.18632/aging.103231] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/29/2020] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with gender-related differences in onset and course. Androgen receptor (AR), a male hormone receptor, is critical in the initiation and progression of HCC. The role of AR in HCC has been mechanistically characterized and anti-AR therapies have been developed, showing limited efficacy. Immunotherapy targeting immune checkpoint proteins may substantially improve the clinical management of HCC. The mechanism by which AR influences HCC immune state remains unclear. In this study, we demonstrated that AR negatively regulated PD-L1, by acting as a transcriptional repressor of PD-L1. Notably, AR over-expression in HCC cells enhanced CD8+T function in vitro. We then verified the AR/PD-L1 correlation in patients. In animal experiment we found that lower AR expressed tumor achieved better response to PD-L1 inhibitor. Thus, AR suppressed PD-L1 expression, possibly contributing to gender disparity in HCC. Better understanding of the roles of AR during HCC initiation and progression will provide a novel angle to develop potential HCC immunotherapies.
Collapse
Affiliation(s)
- Guangyi Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Shi
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueyong Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinjie Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ke Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Boqiang Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peijian Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tunan Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Chemopreventive effects of nanoparticle curcumin in a mouse model of Pten-deficient prostate cancer. Hum Cell 2020; 33:730-736. [PMID: 32146706 DOI: 10.1007/s13577-020-00337-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/21/2020] [Indexed: 01/12/2023]
Abstract
The present study investigated the antitumor activity and chemopreventive effects of a nanoparticle formulation of curcumin in preclinical models of mouse Pten-deficient prostate cancer. The antitumor activity of the nanoparticle curcumin was evaluated in mouse castration-naïve (7113-D3) and castration-resistant prostate cancer (2945-E10) derived cell lines in vitro. Cell viability was reduced in both cell lines in a dose and time-dependent manner. The effects of long-term dietary supplementation with the nanoparticle curcumin formulation were evaluated in a conditional Pten-deficient mouse model. Prostate tissues from Pten-deficient prostate cancers were obtained after sixteen weeks of dietary supplementation of 76 mg/kg/day or 380 mg/kg/day nanoparticle curcumin. Daily supplementation of nanoparticle curcumin did not affect mouse bodyweights or spleen size but did result in enlargement of the liver. Dietary supplementation did not influence tumor burden, however, mice fed high-dose curcumin had lower cancer cell proliferation rates at 12 and 16 weeks of age. Together, these results show that daily supplementation of a nanoparticle formulation of curcumin is tolerable and suggest that curcumin could have chemopreventive activity in early-stage prostate cancer.
Collapse
|