1
|
Sun Z, Yi Z, Wei C, Wang W, Ren T, Cravedi P, Tedla F, Ward SC, Azeloglu E, Schrider DR, Li Y, Khan A, Zanoni F, Fu J, Ali S, Liu S, Liang D, Liu T, Li H, Xi C, Vy TH, Mosoyan G, Sun Q, Kumar A, Zhang Z, Farouk S, Campell K, Ochando J, Lee K, Coca S, Xiang J, Connolly P, Gallon L, O'Connell PJ, Colvin R, Menon MC, Nadkarni G, He JC, Kraft M, Jiang X, Zhang X, Kiryluk K, Cherukuri A, Lakkis FG, Zhang W, Chen SH, Heeger PS, Zhang W. LILRB3 genetic variation is associated with kidney transplant failure in African American recipients. Nat Med 2025:10.1038/s41591-025-03568-z. [PMID: 40065170 DOI: 10.1038/s41591-025-03568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/04/2025] [Indexed: 04/03/2025]
Abstract
African American (AA) kidney transplant recipients exhibit a higher rate of graft loss compared with other racial and ethnic populations, highlighting the need to identify causative factors. Here, in the Genomics of Chronic Allograft Rejection cohort, pretransplant blood RNA sequencing revealed a cluster of four consecutive missense single-nucelotide polymorphisms (SNPs), within the leukocyte immunoglobulin-like receptor B3 (LILRB3) gene, strongly associated with death-censored graft loss. This SNP cluster (named LILRB3-4SNPs) encodes missense mutations at amino acids 617-618 proximal to a SHP1/2 phosphatase-binding immunoreceptor tyrosine-based inhibitory motif. The LILRB3-4SNPs cluster is specifically enriched within AA individuals and exhibited a strong association with death-censored graft loss and estimated glomerular filtration rate decline in the AA participants from multiple transplant cohorts. In two large Biobanks (BioMe and All-of-Us), the LILRB3-4SNPs cluster was associated with the early onset of end-stage renal disease and acted synergistically with the apolipoprotein L1 (APOL1) G1/G2 allele to accelerate disease progression. The SNPs were also linked to multiple immune-related diseases in AA individuals. Last, on multiomics analysis of blood and biopsies, recipients with LILRB3-4SNPs showed enhanced inflammation and monocyte ferroptosis. While larger and prospective studies are needed, our data provide insights on the genetic variation underlying kidney transplant outcomes.
Collapse
Affiliation(s)
- Zeguo Sun
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengzi Yi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chengguo Wei
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenlin Wang
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tianyuan Ren
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fasika Tedla
- The Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen C Ward
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren Azeloglu
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Francesca Zanoni
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Jia Fu
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sumaria Ali
- Center for Immunotherapy Research, Houston Methodist Neal Cancer Center and Houston Methodist Research Institute, Houston, TX, USA
| | - Shun Liu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Deguang Liang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tong Liu
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, Newark, NJ, USA
| | - Hong Li
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, Newark, NJ, USA
| | - Caixia Xi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thi Ha Vy
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gohar Mosoyan
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Quan Sun
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ashwani Kumar
- Department of Medicine, Yale University, New Haven, CT, USA
| | - Zhongyang Zhang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samira Farouk
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk Campell
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyung Lee
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steve Coca
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenny Xiang
- Department of Microbiology and Immunology, Weil Cornell Medicine, New York, NY, USA
| | | | - Lorenzo Gallon
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Robert Colvin
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Madhav C Menon
- Department of Medicine, Yale University, New Haven, CT, USA
| | - Girish Nadkarni
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica Kraft
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Aravind Cherukuri
- Departments of Surgery, Immunology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fadi G Lakkis
- Departments of Surgery, Immunology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weiguo Zhang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Shu-Hsia Chen
- Center for Immunotherapy Research, Houston Methodist Neal Cancer Center and Houston Methodist Research Institute, Houston, TX, USA
| | - Peter S Heeger
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Weijia Zhang
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Ettenger RB, Seifert ME, Blydt-Hansen T, Briscoe DM, Holman J, Weng PL, Srivastava R, Fleming J, Malekzadeh M, Pearl M. Detection of Subclinical Rejection in Pediatric Kidney Transplantation: Current and Future Practices. Pediatr Transplant 2024; 28:e14836. [PMID: 39147695 DOI: 10.1111/petr.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION The successes in the field of pediatric kidney transplantation over the past 60 years have been extraordinary. Year over year, there have been significant improvements in short-term graft survival. However, improvements in longer-term outcomes have been much less apparent. One important contributor has been the phenomenon of low-level rejection in the absence of clinical manifestations-so-called subclinical rejection (SCR). METHODS Traditionally, rejection has been diagnosed by changes in clinical parameters, including but not limited to serum creatinine and proteinuria. This review examines the shortcomings of this approach, the effects of SCR on kidney allograft outcome, the benefits and drawbacks of surveillance biopsies to identify SCR, and new urine and blood biomarkers that define the presence or absence of SCR. RESULTS Serum creatinine is an unreliable index of SCR. Surveillance biopsies are the method most utilized to detect SCR. However, these have significant drawbacks. New biomarkers show promise. These biomarkers include blood gene expression profiles and donor derived-cell free DNA; urine gene expression profiles; urinary cytokines, chemokines, and metabolomics; and other promising blood and urine tests. CONCLUSION Specific emphasis is placed on studies carried out in pediatric kidney transplant recipients. TRIAL REGISTRATION ClinicalTrials.gov: NCT03719339.
Collapse
Affiliation(s)
- Robert B Ettenger
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michael E Seifert
- Division of Pediatric Nephrology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tom Blydt-Hansen
- Multi-Organ Transplant Program, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - David M Briscoe
- Division of Nephrology, Department of Pediatrics Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John Holman
- Transplant Genomics Inc., Framingham, Massachusetts, USA
| | - Patricia L Weng
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rachana Srivastava
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - James Fleming
- Transplant Genomics Inc., Framingham, Massachusetts, USA
| | - Mohammed Malekzadeh
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Meghan Pearl
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Wang J, Lu C, Wang J, Wang Y, Bi H, Zheng J, Ding X. Necroptosis-related genes allow novel insights into predicting graft loss and diagnosing delayed graft function in renal transplantation. Genomics 2024; 116:110778. [PMID: 38163575 DOI: 10.1016/j.ygeno.2023.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable pathophysiological phenomenon in kidney transplantation. Necroptosis is an undoubtedly important contributing mechanism in renal IRI. We first screened differentially expressed necroptosis-related genes (DENRGs) from public databases. Eight DENRGs were validated by independent datasets and verified by qRT-PCR in a rat IRI model. We used univariate and multivariate Cox regression analyses to establish a prognostic signature, and graft survival analysis was performed. Immune infiltrating landscape analysis and gene set enrichment analysis (GSEA) were performed to understand the underlying mechanisms of graft loss, which suggested that necroptosis may aggravate the immune response, resulting in graft loss. Subsequently, a delayed graft function (DGF) diagnostic signature was constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) and exhibited robust efficacy in validation datasets. After comprehensively analyzing DENRGs during IRI, we successfully constructed a prognostic signature and DGF predictive signature, which may provide clinical insights for kidney transplant.
Collapse
Affiliation(s)
- Jiale Wang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cuinan Lu
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingwen Wang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huanjing Bi
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoming Ding
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Bestard O, Augustine J, Wee A, Poggio E, Mannon RB, Ansari MJ, Bhati C, Maluf D, Benken S, Leca N, La Manna G, Samaniego-Picota M, Shawar S, Concepcion BP, Rostaing L, Alberici F, O'Connell P, Chang A, Salem F, Kattan MW, Gallon L, Donovan MJ. Prospective observational study to validate a next-generation sequencing blood RNA signature to predict early kidney transplant rejection. Am J Transplant 2024; 24:436-447. [PMID: 38152017 DOI: 10.1016/j.ajt.2023.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 12/29/2023]
Abstract
The objective of this study was to validate the performance of Tutivia, a peripheral blood gene expression signature, in predicting early acute rejection (AR) post-kidney transplant. Recipients of living or deceased donor kidney transplants were enrolled in a nonrandomized, prospective, global, and observational study (NCT04727788). The main outcome was validation of the area under the curve (AUC) of Tutivia vs serum creatinine at biopsy alone, or Tutivia + serum creatinine at biopsy. Of the 151 kidney transplant recipients, the mean cohort age was 53 years old, and 64% were male. There were 71% (107/151) surveillance/protocol biopsies and 29% (44/151) for-cause biopsies, with a 31% (47/151) overall rejection rate. Tutivia (AUC 0.69 [95% CI: 0.59-0.77]) and AUC of Tutivia + creatinine at biopsy (0.68 [95% CI: 0.59-0.77]) were greater than the AUC of creatinine at biopsy alone (0.51.4 [95% CI: 0.43-0.60]). Applying a model cut-off of 50 (scale 0-100) generated a high- and low-risk category for AR with a negative predictive value of 0.79 (95% CI: 0.71-0.86), a positive predictive value of 0.60 (95% CI: 0.45-0.74), and an odds ratio of 5.74 (95% CI: 2.63-12.54). Tutivia represents a validated noninvasive approach for clinicians to accurately predict early AR, beyond the current standard of care.
Collapse
Affiliation(s)
- Oriol Bestard
- Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Alvin Wee
- Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | - Daniel Maluf
- University of Maryland, Baltimore, Maryland, USA
| | - Scott Benken
- University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nicolae Leca
- University of Washington, Seattle, Washington, USA
| | - Gaetano La Manna
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | | | - Saed Shawar
- Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | - Fadi Salem
- Mayo Medical, Jacksonville, Florida, USA
| | | | - Lorenzo Gallon
- Northwestern University, Evanston, Illinois, USA; Verici Dx, Franklin, Tennessee, USA.
| | - Michael J Donovan
- Verici Dx, Franklin, Tennessee, USA; Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
5
|
Zhang H, Zhang D, Xu Y, Zhang H, Zhang Z, Hu X. Interferon-γ and its response are determinants of antibody-mediated rejection and clinical outcomes in patients after renal transplantation. Genes Immun 2024; 25:66-81. [PMID: 38246974 DOI: 10.1038/s41435-024-00254-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Interferon-γ (IFN-γ) is an important cytokine in tissue homeostasis and immune response, while studies about it in antibody-mediated rejection (ABMR) are very limited. This study aims to comprehensively elucidate the role of IFN-γ in ABMR after renal transplantation. In six renal transplantation cohorts, the IFN-γ responses (IFNGR) biological process was consistently top up-regulated in ABMR compared to stable renal function or even T cell-mediated rejection in both allografts and peripheral blood. According to single-cell analysis, IFNGR levels were found to be broadly elevated in most cell types in allografts and peripheral blood with ABMR. In allografts with ABMR, M1 macrophages had the highest IFNGR levels and were heavily infiltrated, while kidney resident M2 macrophages were nearly absent. In peripheral blood, CD14+ monocytes had the top IFNGR level and were significantly increased in ABMR. Immunofluorescence assay showed that levels of IFN-γ and M1 macrophages were sharply elevated in allografts with ABMR than non-rejection. Importantly, the IFNGR level in allografts was identified as a strong risk factor for long-term renal graft survival. Together, this study systematically analyzed multi-omics from thirteen independent cohorts and identified IFN-γ and IFNGR as determinants of ABMR and clinical outcomes in patients after renal transplantation.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Di Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Yue Xu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - He Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Zijian Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
- Institute of Urology, Capital Medical University, Beijing, China.
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
- Institute of Urology, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Park S, Sellares J, Tinel C, Anglicheau D, Bestard O, Friedewald JJ. European Society of Organ Transplantation Consensus Statement on Testing for Non-Invasive Diagnosis of Kidney Allograft Rejection. Transpl Int 2024; 36:12115. [PMID: 38239762 PMCID: PMC10794444 DOI: 10.3389/ti.2023.12115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024]
Abstract
To address the need for improved biomarkers for kidney transplant rejection, European Society of Organ Transplantation (ESOT) convened a dedicated working group comprised of experts in kidney transplant biomarkers to review literature pertaining to clinical and subclinical acute rejection to develop guidelines in the screening and diagnosis of acute rejection that were subsequently discussed and voted on during the Consensus Conference that took place in person in Prague. The findings and recommendations of the Working Group on Molecular Biomarkers of Kidney Transplant Rejection are presented in this article.
Collapse
Affiliation(s)
- Sookhyeon Park
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Claire Tinel
- Dijon University Hospital, INSERM UMR 1098 Right, UBFC, Dijon, France
| | - Dany Anglicheau
- Necker Hospital, Assistance Publique-Hopitaux de Paris, INSERM U1151, Université Paris-Cité, Paris, France
| | | | - John J. Friedewald
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
7
|
Sun Z, Zhang Z, Banu K, Gibson IW, Colvin RB, Yi Z, Zhang W, De Kumar B, Reghuvaran A, Pell J, Manes TD, Djamali A, Gallon L, O’Connell PJ, He JC, Pober JS, Heeger PS, Menon MC. Multiscale genetic architecture of donor-recipient differences reveals intronic LIMS1 mismatches associated with kidney transplant survival. J Clin Invest 2023; 133:e170420. [PMID: 37676733 PMCID: PMC10617779 DOI: 10.1172/jci170420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023] Open
Abstract
Donor-recipient (D-R) mismatches outside of human leukocyte antigens (HLAs) contribute to kidney allograft loss, but the mechanisms remain unclear, specifically for intronic mismatches. We quantified non-HLA mismatches at variant-, gene-, and genome-wide scales from single nucleotide polymorphism (SNP) data of D-Rs from 2 well-phenotyped transplant cohorts: Genomics of Chronic Allograft Rejection (GoCAR; n = 385) and Clinical Trials in Organ Transplantation-01/17 (CTOT-01/17; n = 146). Unbiased gene-level screening in GoCAR uncovered the LIMS1 locus as the top-ranked gene where D-R mismatches associated with death-censored graft loss (DCGL). A previously unreported, intronic, LIMS1 haplotype of 30 SNPs independently associated with DCGL in both cohorts. Haplotype mismatches showed a dosage effect, and minor-allele introduction to major-allele-carrying recipients showed greater hazard of DCGL. The LIMS1 haplotype and the previously reported LIMS1 SNP rs893403 are expression quantitative trait loci (eQTL) in immune cells for GCC2 (not LIMS1), which encodes a protein involved in mannose-6-phosphase receptor (M6PR) recycling. Peripheral blood and T cell transcriptome analyses associated the GCC2 gene and LIMS1 SNPs with the TGF-β1/SMAD pathway, suggesting a regulatory effect. In vitro GCC2 modulation impacted M6PR-dependent regulation of active TGF-β1 and downstream signaling in T cells. Together, our data link LIMS1 locus D-R mismatches to DCGL via GCC2 eQTLs that modulate TGF-β1-dependent effects on T cells.
Collapse
Affiliation(s)
- Zeguo Sun
- Division of Nephrology, Department of Medicine
| | - Zhongyang Zhang
- Department of Genetics and Genomic Science, and
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Khadija Banu
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ian W. Gibson
- Max Rady college of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Zhengzi Yi
- Division of Nephrology, Department of Medicine
| | | | - Bony De Kumar
- Yale Center for Genomics, New Haven, Connecticut, USA
| | - Anand Reghuvaran
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John Pell
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas D. Manes
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Lorenzo Gallon
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Philip J. O’Connell
- The Westmead Institute for Medical Research, University of Sydney, New South Wales, Australia
| | | | - Jordan S. Pober
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Madhav C. Menon
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Rogers NM, Zammit N, Nguyen-Ngo D, Souilmi Y, Minhas N, Meijles DN, Self E, Walters SN, Warren J, Cultrone D, El-Rashid M, Li J, Chtanova T, O'Connell PJ, Grey ST. The impact of the cytoplasmic ubiquitin ligase TNFAIP3 gene variation on transcription factor NF-κB activation in acute kidney injury. Kidney Int 2023; 103:1105-1119. [PMID: 37097268 DOI: 10.1016/j.kint.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 04/26/2023]
Abstract
Nuclear factor κB (NF-κB) activation is a deleterious molecular mechanism that drives acute kidney injury (AKI) and manifests in transplanted kidneys as delayed graft function. The TNFAIP3 gene encodes A20, a cytoplasmic ubiquitin ligase and a master negative regulator of the NF- κB signaling pathway. Common population-specific TNFAIP3 coding variants that reduce A20's enzyme function and increase NF- κB activation have been linked to heightened protective immunity and autoimmune disease, but have not been investigated in AKI. Here, we functionally identified a series of unique human TNFAIP3 coding variants linked to the autoimmune genome-wide association studies single nucleotide polymorphisms of F127C; namely F127C;R22Q, F127C;G281E, F127C;W448C and F127C;N449K that reduce A20's anti-inflammatory function in an NF- κB reporter assay. To investigate the impact of TNFAIP3 hypomorphic coding variants in AKI we tested a mouse Tnfaip3 hypomorph in a model of ischemia reperfusion injury (IRI). The mouse Tnfaip3 coding variant I325N increases NF- κB activation without overt inflammatory disease, providing an immune boost as I325N mice exhibit enhanced innate immunity to a bacterial challenge. Surprisingly, despite exhibiting increased intra-kidney NF- κB activation with inflammation in IRI, the kidney of I325N mice was protected. The I325N variant influenced the outcome of IRI by changing the dynamic expression of multiple cytoprotective mechanisms, particularly by increasing NF- κB-dependent anti-apoptotic factors BCL-2, BCL-XL, c-FLIP and A20, altering the active redox state of the kidney with a reduction of superoxide levels and the enzyme super oxide dismutase-1, and enhancing cellular protective mechanisms including increased Foxp3+ T cells. Thus, TNFAIP3 gene variants represent a kidney and population-specific molecular factor that can dictate the course of IRI.
Collapse
Affiliation(s)
- Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, New South Wales, Australia; Westmead Clinical School, University of Sydney, New South Wales, Australia
| | - Nathan Zammit
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Danny Nguyen-Ngo
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, South Australia, Australia; Environment Institute, Faculty of Sciences, University of Adelaide, South Australia, Australia
| | - Nikita Minhas
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Daniel N Meijles
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Eleanor Self
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Stacey N Walters
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Joanna Warren
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Daniele Cultrone
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Maryam El-Rashid
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Tatyana Chtanova
- Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Innate and Tumour Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, New South Wales, Australia; Westmead Clinical School, University of Sydney, New South Wales, Australia
| | - Shane T Grey
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; Translational Research Pillar, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
Benincasa G, Viglietti M, Coscioni E, Napoli C. "Transplantomics" for predicting allograft rejection: real-life applications and new strategies from Network Medicine. Hum Immunol 2023; 84:89-97. [PMID: 36424231 DOI: 10.1016/j.humimm.2022.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Although decades of the reductionist approach achieved great milestones in optimizing the immunosuppression therapy, traditional clinical parameters still fail in predicting both acute and chronic (mainly) rejection events leading to higher rates across all solid organ transplants. To clarify the underlying immune-related cellular and molecular mechanisms, current biomedical research is increasingly focusing on "transplantomics" which relies on a huge quantity of big data deriving from genomics, transcriptomics, epigenomics, proteomics, and metabolomics platforms. The AlloMap (gene expression) and the AlloSure (donor-derived cell-free DNA) tests represent two successful examples of how omics and liquid biopsy can really improve the precision medicine of heart and kidney transplantation. One of the major challenges in translating big data in clinically useful biomarkers is the integration and interpretation of the different layers of omics datasets. Network Medicine offers advanced bioinformatic-molecular strategies which were widely used to integrate large omics datasets and clinical information in end-stage patients to prioritize potential biomarkers and drug targets. The application of network-oriented approaches to clarify the complex nature of graft rejection is still in its infancy. Here, we briefly discuss the real-life clinical applications derived from omics datasets as well as novel opportunities for establishing predictive tests in solid organ transplantation. Also, we provide an original "graft rejection interactome" and propose network-oriented strategies which can be useful to improve precision medicine of solid organ transplantation.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Mario Viglietti
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Enrico Coscioni
- Division of Cardiac Surgery, AOU San Giovanni di Dio e Ruggi d'Aragona, 84131, Salerno, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy; U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
10
|
Zhang Z, Qin Y, Wang Y, Li S, Hu X. Integrated analysis of cell-specific gene expression in peripheral blood using ISG15 as a marker of rejection in kidney transplantation. Front Immunol 2023; 14:1153940. [PMID: 36969159 PMCID: PMC10030514 DOI: 10.3389/fimmu.2023.1153940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Background Allograft kidney rejection can lead to graft dysfunction and graft loss. Protocol biopsy poses additional risk for recipients with normal renal function. The transcriptome of peripheral blood mononuclear cells (PBMCs) contains tremendous information and has potential application value for non-invasive diagnosis. Methods From the Gene Expression Omnibus database, we collected three datasets containing 109 rejected samples and 215 normal controls. After data filter and normalization, we performed deconvolution of bulk RNA sequencing data to predict cell type and cell-type specific gene expression. Subsequently, we calculated cell communication analysis by Tensor-cell2cell and conducted the least absolute shrinkage and selection operator (LASSO) logistic regression to screen the robust differentially expressed genes (DEGs). These gene expression levels were validated in mice kidney transplantation acute rejection model. The function of the novel gene ISG15 in monocytes was further confirmed by gene knockdown and lymphocyte-stimulated assay. Results The bulk RNA-seq hardly predicted kidney transplant rejection accurately. Seven types of immune cells and transcriptomic characteristics were predicted from the gene expression data. The monocytes showed significant differences in amount and gene expression of rejection. The cell-to-cell communication indicated the enrichment of antigen presentation and T cell activation ligand-receptor pairs. Then 10 robust genes were found by Lasso regression and a novel gene ISG15 remained differential expression in monocytes between rejection samples and normal control both in public data and animal model. Furthermore, ISG15 also showed a critical role in promoting the proliferation of T cells. Conclusion This study identified and validated a novel gene ISG15 associated with rejection in peripheral blood after kidney transplantation, which is a significant non-invasive diagnosis and a potential therapeutic target.
Collapse
Affiliation(s)
- Zijian Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Yan Qin
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Yicun Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Shuai Li
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
- *Correspondence: Xiaopeng Hu,
| |
Collapse
|
11
|
Population Characteristics and Clinical Outcomes from the Renal Transplant Outcome Prediction Validation Study (TOPVAS). J Clin Med 2022; 11:jcm11247421. [PMID: 36556037 PMCID: PMC9781432 DOI: 10.3390/jcm11247421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Kidney transplantation is the preferred method for selected patients with kidney failure. Despite major improvements over the last decades, a significant proportion of organs are still lost every year. Causes of graft loss and impaired graft function are incompletely understood and prognostic tools are lacking. Here, we describe baseline characteristics and outcomes of the non-interventional Transplant Outcome Prediction Validation Study (TOPVAS). A total of 241 patients receiving a non-living kidney transplant were recruited in three Austrian transplantation centres and treated according to local practices. Clinical information as well as blood and urine samples were obtained at baseline and consecutive follow-ups up to 24 months. Out of the overall 16 graft losses, 11 occurred in the first year. The patient survival rate was 96.7% (95% CI: 94.3-99.1%) in the first year and 94.3% (95% CI: 91.1-97.7%) in the second year. Estimated glomerular filtration rate (eGFR) improved from 37.1 ± 14.0 mL/min/1.73 m2 at hospital discharge to 45.0 ± 14.5 mL/min/1.73 m2 at 24 months. The TOPVAS study provides information on current kidney graft and patient survival, eGFR trajectories, and rejection rates, as well as infectious and surgical complication rates under different immunosuppressive drug regimens. More importantly, it provides an extensive and well-characterized biobank for the future discovery and validation of prognostic methods.
Collapse
|
12
|
Liu X, Liu D, Zhou S, Jiang W, Zhang J, Hu J, Liao G, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Zhao M, Liu Y. CARARIME: Interactive web server for comprehensive analysis of renal allograft rejection in immune microenvironment. Front Immunol 2022; 13:1026280. [DOI: 10.3389/fimmu.2022.1026280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
BackgroundRenal transplantation is a very effective treatment for renal failure patients following kidney transplant. However, the clinical benefit is restricted by the high incidence of organ rejection. Therefore, there exists a wealth of literature regarding the mechanism of renal transplant rejection, including a large library of expression data. In recent years, research has shown the immune microenvironment to play an important role in renal transplant rejection. Nephrology web analysis tools currently exist to address chronic nephropathy, renal tumors and children’s kidneys, but no such tool exists that analyses the impact of immune microenvironment in renal transplantation rejection.MethodsTo fill this gap, we have developed a web page analysis tool called Comprehensive Analysis of Renal Allograft Rerejction in Immune Microenvironment (CARARIME).ResultsCARARIME analyzes the gene expression and immune microenvironment of published renal transplant rejection cohorts, including differential analysis (gene expression and immune cells), prognosis analysis (logistics regression, Univariable Cox Regression and Kaplan Meier), correlation analysis, enrichment analysis (GSEA and ssGSEA), and ROC analysis.ConclusionsUsing this tool, researchers can easily analyze the immune microenvironment in the context of renal transplant rejection by clicking on the available options, helping to further the development of approaches to renal transplant rejection in the immune microenvironment field. CARARIME can be found in http://www.cararime.com.
Collapse
|
13
|
Tepel M, Nagarajah S, Saleh Q, Thaunat O, Bakker SJL, van den Born J, Karsdal MA, Genovese F, Rasmussen DGK. Pretransplant characteristics of kidney transplant recipients that predict posttransplant outcome. Front Immunol 2022; 13:945288. [PMID: 35958571 PMCID: PMC9357871 DOI: 10.3389/fimmu.2022.945288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Better characterization of the potential kidney transplant recipient using novel biomarkers, for example, pretransplant plasma endotrophin, will lead to improved outcome after transplantation. This mini-review will focus on current knowledge about pretransplant recipients’ characteristics, biomarkers, and immunology. Clinical characteristics of recipients including age, obesity, blood pressure, comorbidities, and estimated survival scores have been introduced for prediction of recipient and allograft survival. The pretransplant immunologic risk assessment include histocompatibility leukocyte antigens (HLAs), anti-HLA donor-specific antibodies, HLA-DQ mismatch, and non-HLA antibodies. Recently, there has been the hope that pretransplant determination of markers can further improve the prediction of posttransplant complications, both short-term and long-term outcomes including rejections, allograft loss, and mortality. Higher pretransplant plasma endotrophin levels were independently associated with posttransplant acute allograft injury in three prospective European cohorts. Elevated numbers of non-synonymous single-nucleotide polymorphism mismatch have been associated with increased allograft loss in a multivariable analysis. It is concluded that there is a need for integration of clinical characteristics and novel molecular and immunological markers to improve future transplant medicine to reach better diagnostic decisions tailored to the individual patient.
Collapse
Affiliation(s)
- Martin Tepel
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Cardiovascular and Renal Research, Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, Odense, Denmark
- *Correspondence: Martin Tepel,
| | - Subagini Nagarajah
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Cardiovascular and Renal Research, Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Qais Saleh
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Cardiovascular and Renal Research, Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Olivier Thaunat
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique, Lyon, France
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | | | | |
Collapse
|
14
|
Molecular Markers of Kidney Transplantation Outcome: Current Omics Tools and Future Developments. Int J Mol Sci 2022; 23:ijms23116318. [PMID: 35682996 PMCID: PMC9181061 DOI: 10.3390/ijms23116318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Purpose of review: The emerging field of molecular predictive medicine is aiming to change the traditional medical approach in renal transplantation. Many studies have explored potential biomarker molecules with predictive properties in renal transplantation, issued from omics research. Herein, we review the biomarker molecules of four technologies (i.e., Genomics, Transcriptomics, Proteomics, and Metabolomics) associated with favorable kidney transplant outcomes. Recent findings: Several panels of molecules have been associated with the outcome that the majority of markers are related to inflammation and immune response; although. other molecular ontologies are also represented, such as proteasome, growth, regeneration, and drug metabolism. Throughout this review, we highlight the lack of properly validated statistical demonstration. Indeed, the most preeminent molecular panels either remain at the limited size study stage or are not confirmed during large-scale studies. At the core of this problem, we identify the methodological shortcomings and propose a comprehensive workflow for discovery and validation of molecular biomarkers that aims to improve the relevance of these tools in the future. Summary: Overall, adopting a patient management through omics approach could bring remarkable improvement to transplantation success. An increased effort and investment between scientists, medical biologists, and clinicians seem to be the path toward a proper solution.
Collapse
|
15
|
Kotecha S, Ivulich S, Snell G. Review: immunosuppression for the lung transplant patient. J Thorac Dis 2022; 13:6628-6644. [PMID: 34992841 PMCID: PMC8662512 DOI: 10.21037/jtd-2021-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Lung transplantation (LTx) has evolved significantly since its inception and the improvement in LTx outcomes over the last three decades has predominantly been driven by advances in immunosuppression management. Despite the lack of new classes of immunosuppression medications, immunosuppressive strategies have evolved significantly from a universal method to a more targeted approach, reflecting a greater understanding of the need for individualized therapy and careful consideration of all factors that are influenced by immunosuppression choice. This has become increasingly important as the demographics of lung transplant recipients have changed over time, with older and more medically complex candidates being accepted and undergoing LTx. Furthermore, improved survival post lung transplant has translated into more immunosuppression related comorbidities long-term, predominantly chronic kidney disease (CKD) and malignancy, which has required further nuanced management approaches. This review provides an update on current traditional lung transplant immunosuppression strategies, with modifications based on pre-existing recipient factors and comorbidities, peri-operative challenges and long term complications, balanced against the perpetual challenge of chronic lung allograft dysfunction (CLAD). As we continue to explore and understand the complexity of LTx immunology and the interplay of different factors, immunosuppression strategies will require ongoing critical evaluation and personalization in order to continue to improve lung transplant outcomes.
Collapse
Affiliation(s)
- Sakhee Kotecha
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Australia
| | - Steven Ivulich
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Australia
| | - Gregory Snell
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Australia
| |
Collapse
|
16
|
Zhang Z, Sun Z, Fu J, Lin Q, Banu K, Chauhan K, Planoutene M, Wei C, Salem F, Yi Z, Liu R, Cravedi P, Cheng H, Hao K, O'Connell PJ, Ishibe S, Zhang W, Coca SG, Gibson IW, Colvin RB, He JC, Heeger PS, Murphy BT, Menon MC. Recipient APOL1 risk alleles associate with death-censored renal allograft survival and rejection episodes. J Clin Invest 2021; 131:e146643. [PMID: 34499625 DOI: 10.1172/jci146643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein L1 (APOL1) risk-alleles in donor kidneys associate with graft loss but whether recipient risk-allele expression impacts transplant outcomes is unclear. To test whether recipient APOL1 risk-alleles independently correlate with transplant outcomes, we analyzed genome-wide SNP genotyping data of donors and recipients from two kidney transplant cohorts, Genomics of Chronic Allograft Rejection (GOCAR) and Clinical Trials in Organ Transplantation (CTOT1/17). We estimated genetic ancestry (quantified as proportion of African ancestry or pAFR) by ADMIXTURE and correlated APOL1 genotypes and pAFR with outcomes. In the GOCAR discovery set, we observed that the number of recipient APOL1 G1/G2 alleles (R-nAPOL1) associated with increased risk of death-censored allograft loss (DCAL), independent of ancestry (HR = 2.14; P = 0.006), and within the subgroup of African American and Hispanic (AA/H) recipients (HR = 2.36; P = 0.003). R-nAPOL1 also associated with increased risk of any T cell-mediated rejection (TCMR) event. These associations were validated in CTOT1/17. Ex vivo studies of peripheral blood mononuclear cells revealed unanticipated high APOL1 expression in activated CD4+/CD8+ T cells and natural killer cells. We detected enriched immune response gene pathways in risk-allele carriers vs. non-carriers on the kidney transplant waitlist and among healthy controls. Our findings demonstrate an immunomodulatory role for recipient APOL1 risk-alleles associating with TCMR and DCAL. This finding has broader implications for immune mediated injury to native kidneys.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Zeguo Sun
- Division of Nephrology, Department of Medicine, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Qisheng Lin
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Khadija Banu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Marina Planoutene
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Ruijie Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Paolo Cravedi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Millennium Institute for Medical Research, Sydney University, Westmead, Australia
| | - Shuta Ishibe
- Department of Medicine, Yale University School of Medicine, New Haven, United States of America
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Ian W Gibson
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | - Robert B Colvin
- Department of Pathology, Massachusetts General Hospital, Boston, United States of America
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Peter S Heeger
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Barbara T Murphy
- Division of Nephrology, Department of Medicine, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
17
|
Coca SG. Tribute to Barbara Murphy. KIDNEY360 2021; 2:1499-1500. [PMID: 35373101 PMCID: PMC8786130 DOI: 10.34067/kid.0005002021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 02/04/2023]
Affiliation(s)
- Steven G. Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
18
|
Bloom RD, Augustine JJ. Beyond the Biopsy: Monitoring Immune Status in Kidney Recipients. Clin J Am Soc Nephrol 2021; 16:1413-1422. [PMID: 34362810 PMCID: PMC8729582 DOI: 10.2215/cjn.14840920] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Improved long-term kidney allograft survival is largely related to better outcomes at 12 months, in association with declining acute rejection rates and more efficacious immunosuppression. Finding the right balance between under- and overimmunosuppression or rejection versus immunosuppression toxicity remains one of transplant's holy grails. In the absence of precise measures of immunosuppression burden, transplant clinicians rely on nonspecific, noninvasive tests and kidney allograft biopsy generally performed for cause. This review appraises recent advances of conventional monitoring strategies and critically examines the plethora of emerging tests utilizing tissue, urine, and blood samples to improve upon the diagnostic precision of allograft surveillance.
Collapse
Affiliation(s)
- Roy D Bloom
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua J Augustine
- Department of Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| |
Collapse
|
19
|
Integrative Analysis of Prognostic Biomarkers for Acute Rejection in Kidney Transplant Recipients. Transplantation 2021; 105:1225-1237. [PMID: 33148975 DOI: 10.1097/tp.0000000000003516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Noninvasive biomarkers may predict adverse events such as acute rejection after kidney transplantation and may be preferable to existing methods because of superior accuracy and convenience. It is uncertain how these biomarkers, often derived from a single study, perform across different cohorts of recipients. METHODS Using a cross-validation framework that evaluates the performance of biomarkers, the aim of this study was to devise an integrated gene signature set that predicts acute rejection in kidney transplant recipients. Inclusion criteria were publicly available datasets of gene signatures that reported acute rejection episodes after kidney transplantation. We tested the predictive probability for acute rejection using gene signatures within individual datasets and validated the set using other datasets. Eight eligible studies of 1454 participants, with a total of 512 acute rejections episodes were included. RESULTS All sets of gene signatures had good positive and negative predictive values (79%-96%) for acute rejection within their own cohorts, but the predictability reduced to <50% when tested in other independent datasets. By integrating signature sets with high specificity scores across all studies, a set of 150 genes (included CXCL6, CXCL11, OLFM4, and PSG9) which are known to be associated with immune responses, had reasonable predictive values (varied between 69% and 90%). CONCLUSIONS A set of gene signatures for acute rejection derived from a specific cohort of kidney transplant recipients do not appear to provide adequate prediction in an independent cohort of transplant recipients. However, the integration of gene signature sets with high specificity scores may improve the prediction performance of these markers.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The clinical significance and treatment of borderline changes are controversial. The lowest detectable margin for rejection on histology is unclear. We review recent evidence about borderline changes and related biomarkers. RECENT FINDINGS Borderline change (Banff ≥ t1i1) is associated with progressive fibrosis, a greater propensity to form de-novo DSA, and reduced graft survival. Isolated tubulitis appears to have similar kidney allograft outcomes with normal controls, but this finding should be validated in a larger, diverse population. When borderline change was treated, a higher chance of kidney function recovery and better clinical outcomes were observed. However, spontaneous borderline changes resolution without treatment was also observed. Various noninvasive diagnostic biomarkers have been developed to diagnose subclinical acute rejection, including borderline changes and ≥ Banff 1A TCMR. Biomarkers using gene expression and donor-derived cell-free DNA, and HLA DR/DQ eplet mismatch show potential to diagnose subclinical acute rejection (borderline change and ≥Banff 1A TCMR), to avoid surveillance biopsy, or to predict poor kidney allograft outcomes. SUMMARY Borderline changes are associated with poor kidney allograft outcomes, but it remains unclear if all cases of borderline changes should be treated. Novel biomarkers may inform physicians to aid in the diagnosis and treatment.
Collapse
|
21
|
Cherukuri A, Salama AD, Mehta R, Mohib K, Zheng L, Magee C, Harber M, Stauss H, Baker RJ, Tevar A, Landsittel D, Lakkis FG, Hariharan S, Rothstein DM. Transitional B cell cytokines predict renal allograft outcomes. Sci Transl Med 2021; 13:13/582/eabe4929. [PMID: 33627487 DOI: 10.1126/scitranslmed.abe4929] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Early immunological biomarkers that predict rejection and chronic allograft loss are needed to inform preemptive therapy and improve long-term outcomes. Here, we prospectively examined the ratio of interleukin-10 (IL-10) to tumor necrosis factor-α (TNFα) produced by transitional-1 B cells (T1B) 3 months after transplantation as a predictive biomarker for clinical and subclinical renal allograft rejection and subsequent clinical course. In both Training (n = 162) and Internal Validation (n = 82) Sets, the T1B IL-10/TNFα ratio 3 months after transplantation predicted both clinical and subclinical rejection anytime in the first year. The biomarker also predicted subsequent late rejection with a lead time averaging 8 months. Among biomarker high-risk patients, 60% had early rejection, of which 48% recurred later in the first posttransplant year. Among high-risk patients without early rejection, 74% developed rejection later in the first year. In contrast, only 5% of low-risk patients had early and 5% late rejection. The biomarker also predicted rejection in an External Validation Set (n = 95) and in key patient subgroups, confirming generalizability. Biomarker high-risk patients exhibited progressively worse renal function and decreased 5-year graft survival compared to low-risk patients. Treatment of B cells with anti-TNFα in vitro augmented the IL-10/TNFα ratio, restored regulatory activity, and inhibited plasmablast differentiation. To conclude, the T1B IL-10/TNFα ratio was validated as a strong predictive biomarker of renal allograft outcomes and provides a rationale for preemptive therapeutic intervention with TNF blockade.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alan D Salama
- University College of London Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Rajil Mehta
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leting Zheng
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Rheumatology and Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ciara Magee
- University College of London Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Mark Harber
- University College of London Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Hans Stauss
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London NW3 2QG, UK
| | - Richard J Baker
- Renal Unit, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Amit Tevar
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas Landsittel
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sundaram Hariharan
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA. .,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
A Practical Guide to the Clinical Implementation of Biomarkers for Subclinical Rejection Following Kidney Transplantation. Transplantation 2020; 104:700-707. [PMID: 31815910 DOI: 10.1097/tp.0000000000003064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Noninvasive biomarkers are needed to monitor stable patients following kidney transplantation (KT), as subclinical rejection, currently detectable only with invasive surveillance biopsies, can lead to chronic rejection and graft loss. Several biomarkers have recently been developed to detect rejection in KT recipients, using different technologies as well as varying clinical monitoring strategies defined as "context of use (COU)." The various metrics utilized to evaluate the performance of each biomarker can also vary, depending on their intended COU. As the use of molecular biomarkers in transplantation represents a new era in patient management, it is important for clinicians to better understand the process by which the incremental value of each biomarkers is evaluated to determine its potential role in clinical practice. This process includes but is not limited to an assessment of clinical validity and utility, but to define these, the clinician must first appreciate the trajectory of a biomarker from bench to bedside as well as the regulatory and other requirements needed to navigate this course successfully. This overview summarizes this process, providing a framework that can be used by clinicians as a practical guide in general, and more specifically in the context of subclinical rejection following KT. In addition, we have reviewed available as well as promising biomarkers for this purpose in terms of the clinical need, COU, assessment of biomarker performance relevant to both the need and COU, assessment of biomarker benefits and risks relevant to the COU, and the evidentiary criteria of the biomarker relevant to the COU compared with the current standard of care. We also provide an insight into the path required to make biomarkers commercially available once they have been developed and validated so that they used by clinicians outside the research context in every day clinical practice.
Collapse
|
23
|
Lee DM, Abecassis MM, Friedewald JJ, Rose S, First MR. Kidney Graft Surveillance Biopsy Utilization and Trends: Results From a Survey of High-Volume Transplant Centers. Transplant Proc 2020; 52:3085-3089. [PMID: 32576474 DOI: 10.1016/j.transproceed.2020.04.1816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/13/2020] [Accepted: 04/25/2020] [Indexed: 12/22/2022]
Abstract
An e-mail-based market research survey focused on high-volume US adult transplant centers was developed and implemented to assess surveillance based on United Network for Organ Sharing/Scientific Registry of Transplant Recipients data: 51 to 100 transplants, 101 to 200 transplants, and more than 200 transplants. Eighty-three centers responded to the survey. Respondent centers represented 13,837/21,167 (65%) of the total kidney transplants in 2018. In total, 38/83 (46%) centers reported the use of surveillance biopsies-20 centers in all patients and 18 in select patients. Surveillance biopsies were performed in 37% (7/19) of centers performing 51 to 100 transplants annually, in 44% (15/34) doing 101 to 200 transplants, and in 53% (16/30) of centers doing more than 200 transplants. Of the 20 centers doing surveillance biopsies in all patients, 17/20 (85%) perform more than 100 annual transplants, and 3/20 (15%) perform less than 100 annual transplants. Of the 45 centers not currently doing surveillance biopsies, 13 (29%) used surveillance biopsies in the past; discontinuation was primarily due to patient inconvenience, adverse events, and cost. Using survey percentages, it is estimated that surveillance biopsies are performed in approximately 34% of kidney transplant recipients and that 74% of all surveillance biopsies occur in centers performing more than 100 kidney transplants per year.
Collapse
Affiliation(s)
| | | | - John J Friedewald
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - M Roy First
- Transplant Genomics, Inc., Mansfield, MA; Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
24
|
Diagnostic, Prognostic, and Therapeutic Value of Non-Coding RNA Expression Profiles in Renal Transplantation. Diagnostics (Basel) 2020; 10:diagnostics10020060. [PMID: 31978997 PMCID: PMC7168890 DOI: 10.3390/diagnostics10020060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
End-stage renal disease is a public health problem responsible for millions of deaths worldwide each year. Although transplantation is the preferred treatment for patients in need of renal replacement therapy, long-term allograft survival remains challenging. Advances in high-throughput methods for large-scale molecular data generation and computational analysis are promising to overcome the current limitations posed by conventional diagnostic and disease classifications post-transplantation. Non-coding RNAs (ncRNAs) are RNA molecules that, despite lacking protein-coding potential, are essential in the regulation of epigenetic, transcriptional, and post-translational mechanisms involved in both health and disease. A large body of evidence suggests that ncRNAs can act as biomarkers of renal injury and graft loss after transplantation. Hence, the focus of this review is to discuss the existing molecular signatures of non-coding transcripts and their value to improve diagnosis, predict the risk of rejection, and guide therapeutic choices post-transplantation.
Collapse
|
25
|
Mota-Zamorano S, González LM, Luna E, Fernández JJ, Gómez Á, Nieto-Fernández A, Robles NR, Gervasini G. Polymorphisms in vasoactive eicosanoid genes of kidney donors affect biopsy scores and clinical outcomes in renal transplantation. PLoS One 2019; 14:e0224129. [PMID: 31622444 PMCID: PMC6797116 DOI: 10.1371/journal.pone.0224129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/07/2019] [Indexed: 01/30/2023] Open
Abstract
Cytochrome P450 (CYP) enzymes metabolize arachidonic acid to vasoactive eicosanoids such as epoxyeicosatrienoic acids (EETs) and 20-Hydroxyeicosatetraenoic acid (20-HETE), whilst soluble epoxide hydrolase, encoded by the EPHX2 gene, is in charge of EETs degradation. We aimed to analyze the influence of common, functional polymorphisms in four genes of the donor on the renal biopsy scores independently assigned by pathologists. Additionally, we examined whether this score or the presence of these SNPs were independent risk factors of clinical outcomes in the first year after grafting. A cohort of 119 recipients and their corresponding 85 deceased donors were included in the study. Donors were genotyped for the CYP4F2 V433M, CYP2C8*3, CYP2J2*7, EPHX2 3'UTR A>G, EPHX2 K55R and EPHX2 R287Q polymorphisms. The association of the donors' SNPs with the biopsy scores and clinical outcomes was retrospectively evaluated by multivariate regression analysis. The CYP2C8*3 polymorphism in the donor was significantly associated with higher scores assigned to pretransplant biopsies [OR = 3.35 (1.03-10.93), p = 0.045]. In turn, higher scores were related to an increased risk of acute rejection [OR = 5.28 (1.32-21.13), p = 0.019] and worse glomerular filtration rate (eGFR) (45.68±16.05 vs. 53.04±16.93 ml/min in patients whose grafts had lower scores, p = 0.010) one year after transplant. Patients whose donors carried the CYP4F2 433M variant showed lower eGFR values (48.96±16.89 vs. 55.94±18.62 ml/min in non-carriers, p = 0.038) and higher risk of acute rejection [OR = 6.18 (1.03-37.21), p = 0.047]. The CYP2J2*7 SNP in the donor was associated with elevated risk of delayed graft function [OR = 25.68 (1.52-43.53), p = 0.025]. Our results taken together suggest that donor genetic variability may be used as a predictor of tissue damage in the graft as well as to predict clinical outcomes and graft function in the recipient.
Collapse
Affiliation(s)
- Sonia Mota-Zamorano
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Badajoz, Spain
| | - Luz M. González
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Badajoz, Spain
| | - Enrique Luna
- Service of Nephrology, Badajoz University Hospital, Badajoz, Spain
| | - José J. Fernández
- Service of Anatomical Pathology, Infanta Cristina University Hospital, Badajoz, Spain
| | - Áurea Gómez
- Service of Anatomical Pathology, Infanta Cristina University Hospital, Badajoz, Spain
| | | | | | - Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Badajoz, Spain
| |
Collapse
|