1
|
Liao W, Huang Y, Wang X, Hu Z, Zhao C, Wang G. Multidimensional excavation of the current status and trends of mechanobiology in cardiovascular homeostasis and remodeling within 20 years. MECHANOBIOLOGY IN MEDICINE 2025; 3:100127. [PMID: 40395770 PMCID: PMC12067904 DOI: 10.1016/j.mbm.2025.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/12/2025] [Accepted: 03/09/2025] [Indexed: 05/22/2025]
Abstract
Mechanobiology is essential for cardiovascular structure and function and regulates the normal physiological and pathological processes of the cardiovascular system. Cells in the cardiovascular system are extremely sensitive to their mechanical environment, and once mechanical stimulation is abnormal, the homeostasis mechanism is damaged or lost, leading to the occurrence of pathological remodeling diseases. In the past 20 years, many articles concerning the mechanobiology of cardiovascular homeostasis and remodeling have been published. To better understand the current development status, research hotspots and future development trends in the field, this paper uses CiteSpace software for bibliometric analysis, quantifies and visualizes the articles published in this field in the past 20 years, and reviews the research hotspots and emerging trends. The regulatory effects of mechanical stimulation on the biological behavior of endothelial cells, smooth muscle cells and the extracellular matrix, as well as the mechanical-related remodeling mechanism in heart failure, have always been research hotspots in this field. This paper reviews the research advances of these research hotspots in detail. This paper also introduces the research status of emerging hotspots, such as those related to cardiac fibrosis, homeostasis, mechanosensitive transcription factors and mechanosensitive ion channels. We hope to provide a systematic framework and new ideas for follow-up research on mechanobiology in the field of cardiovascular homeostasis and remodeling and promote the discovery of more therapeutic targets and novel markers of mechanobiology in the cardiovascular system.
Collapse
Affiliation(s)
- Wei Liao
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Yuxi Huang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | | | - Ziqiu Hu
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Chuanrong Zhao
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
2
|
Russo I, Dun W, Mehta S, Ahmed S, Tzimas C, Fukuma N, Tsai EJ. Extracellular matrix instability and chronic inflammation underlie maladaptive right ventricular pressure overload remodeling and failure in male mice. Am J Physiol Heart Circ Physiol 2025; 328:H676-H692. [PMID: 39679492 DOI: 10.1152/ajpheart.00331.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Right ventricular dysfunction (RVD) portends increased death risk for heart failure (HF) and pulmonary arterial hypertension (PAH) patients, regardless of left ventricular function or disease etiology. In both, RVD arises from chronic RV pressure overload and represents advanced cardiopulmonary disease. RV remodeling responses and survival rates of patients, however, differ by sex. Men develop more severe RVD and die at younger ages than women do. Mechanistic details of this sexual dimorphism in RV pressure overload remodeling are incompletely understood. We sought to elucidate the cardiac histologic and molecular pathophysiology underlying the sex-specific RV remodeling phenotypes, maladaptive [decompensated RVD with RV failure (RVF)] versus adaptive (compensated RVD). We subjected male (M-) and female (F-) adult mice to moderate pulmonary artery banding (PAB) for 9 wk. Mice underwent serial echocardiography, cardiac MRI, RV pressure-volume loop recordings, and histologic and molecular analyses. M-PAB developed severe RVD with RV failure (RVF), increased RV collagen deposition and degradation, extracellular matrix (ECM) instability, and recruitment and activation of macrophages. Despite equal severity and chronicity of RV pressure overload, F-PAB had more stable ECM, lacked chronic inflammation, and developed mild RVD without RVF. ECM destabilization and chronic activation of recruited macrophages are associated with maladaptive RV remodeling and RVF in M-PAB. These two RV remodeling phenotypes suggest that adverse ECM remodeling and chronic inflammation are also sex-dependent, thereby contributing to the sexual dimorphism of RV pressure overload remodeling. Further mechanistic studies are needed to assess their pathogenic roles and potential as targets for RVD therapy and RVF prevention.NEW & NOTEWORTHY We compared pressure overload-induced RV remodeling in adult male versus female mice subjected to PAB. This study discovered an association between severe RVD, RVF, ECM instability, and chronic inflammation in pressure-overloaded RV of male PAB mice. These features distinguished maladaptive RV remodeling in male from adaptive RV remodeling in female PAB mice. In male patients with RV pressure overload due to HF or PAH, enhancing ECM stability and countering the recruitment of macrophages may help preserve RV function such that RVF could be prevented or delayed.
Collapse
Affiliation(s)
- Ilaria Russo
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Wen Dun
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Swasti Mehta
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Sowda Ahmed
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Christos Tzimas
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Nobuaki Fukuma
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Emily J Tsai
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
- Center for Advanced Cardiac Care, Division of Cardiology, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
3
|
Hu M, Deng Y, Bai Y, Zhang J, Shen X, Shen L, Zhou L. Identifying Key Biomarkers Related to Immune Response in the Progression of Diabetic Kidney Disease: Mendelian Randomization Combined With Comprehensive Transcriptomics and Single-Cell Sequencing Analysis. J Inflamm Res 2025; 18:949-972. [PMID: 39871959 PMCID: PMC11769850 DOI: 10.2147/jir.s482047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Background Renal failure related death caused by diabetic kidney disease (DKD) is an inevitable outcome for most patients. This study aimed to identify the critical genes involved in the onset and progression of DKD and to explore potential therapeutic targets of DKD. Methods We conducted a batch of protein quantitative trait loci (pQTL) Mendelian randomization analysis to obtain a group of proteins with causal relationships with DKD and then identified key proteins through colocalization analysis to determine correlations between variant proteins and disease outcomes. Subsequently, the specific mechanisms of key regulatory genes involved in disease progression were analyzed through transcriptome and single-cell analysis. Finally, we validated the mRNA expression of five key genes in the DKD mice model using reverse transcription quantitative PCR (RT-qPCR). Results Five characteristic genes, known as protein kinase B beta (AKT2), interleukin-2 receptor beta (IL2RB), neurexin 3(NRXN3), slit homolog 3(SLIT3), and TATA box binding protein like protein 1 (TBPL1), demonstrated causal relationships with DKD. These key genes are associated with the infiltration of immune cells, and they are related to the regulatory genes associated with immunity. In addition, we also conducted gene enrichment analysis to explore the complex network of potential signaling pathways that may regulate these key genes. Finally, we identified the effectiveness and reliability of these selected key genes through RT-qPCR in the DKD mice model. Conclusion Our results indicated that the AKT2, IL2RB, NRXN3, SLIT3, and TBPL1 genes are closely related to DKD, which may be useful in the diagnosis and therapy of DKD.
Collapse
Affiliation(s)
- Miao Hu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yi Deng
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yujie Bai
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Jiayan Zhang
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xiahong Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Lei Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
4
|
Kleinbongard P, Senyo SE, Lindsey ML, Garvin AM, Simpson JA, de Castro Braz LE. Cardiac fibroblasts: answering the call. Am J Physiol Heart Circ Physiol 2024; 327:H681-H686. [PMID: 39093000 PMCID: PMC11442096 DOI: 10.1152/ajpheart.00478.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Cardiac fibroblasts play a pivotal role in maintaining heart homeostasis by depositing extracellular matrix (ECM) to provide structural support for the myocardium, vasculature, and neuronal network and by contributing to essential physiological processes. In response to injury such as myocardial infarction or pressure overload, fibroblasts become activated, leading to increased ECM production that can ultimately drive left ventricular remodeling and progress to heart failure. Recently, the American Journal of Physiology-Heart and Circulatory Physiology issued a call for papers on cardiac fibroblasts that yielded articles with topics spanning fibroblast physiology, technical considerations, signaling pathways, and interactions with other cell types. This mini-review summarizes those articles and places the new findings in the context of what is currently known for cardiac fibroblasts and what future directions remain.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Essen, Germany
| | - Samuel E Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Alexandra M Garvin
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Guelph, Ontario, Canada
| | - Lisandra E de Castro Braz
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
5
|
Tong M, Bai Y, Han X, Kong L, Ren L, Zhang L, Li X, Yao J, Yan B. Single-cell profiling transcriptomic reveals cellular heterogeneity and cellular crosstalk in choroidal neovascularization model. Exp Eye Res 2024; 242:109877. [PMID: 38537669 DOI: 10.1016/j.exer.2024.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Choroidal neovascularization (CNV) is a hallmark of neovascular age-related macular degeneration (nAMD) and a major contributor to vision loss in nAMD cases. However, the identification of specific cell types associated with nAMD remains challenging. Herein, we performed single-cell sequencing to comprehensively explore the cellular diversity and understand the foundational components of the retinal pigment epithelium (RPE)/choroid complex. We unveiled 10 distinct cell types within the RPE/choroid complex. Notably, we observed significant heterogeneity within endothelial cells (ECs), fibroblasts, and macrophages, underscoring the intricate nature of the cellular composition in the RPE/choroid complex. Within the EC category, four distinct clusters were identified and EC cluster 0 was tightly associated with choroidal neovascularization. We identified five clusters of fibroblasts actively involved in the pathogenesis of nAMD, influencing fibrotic responses, angiogenic effects, and photoreceptor function. Additionally, three clusters of macrophages were identified, suggesting their potential roles in regulating the progression of nAMD through immunomodulation and inflammation regulation. Through CellChat analysis, we constructed a complex cell-cell communication network, revealing the role of EC clusters in interacting with fibroblasts and macrophages in the context of nAMD. These interactions were found to govern angiogenic effects, fibrotic responses, and inflammatory processes. In summary, this study reveals noteworthy cellular heterogeneity in the RPE/choroid complex and provides valuable insights into the pathogenesis of CNV. These findings will open up potential avenues for deep understanding and targeted therapeutic interventions in nAMD.
Collapse
Affiliation(s)
- Ming Tong
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yun Bai
- College of Information Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoyan Han
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Lingjie Kong
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Ling Ren
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Linyu Zhang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Jin Yao
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China.
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
6
|
Liu X, Li B, Wang S, Zhang E, Schultz M, Touma M, Monteiro Da Rocha A, Evans SM, Eichmann A, Herron T, Chen R, Xiong D, Jaworski A, Weiss S, Si MS. Stromal Cell-SLIT3/Cardiomyocyte-ROBO1 Axis Regulates Pressure Overload-Induced Cardiac Hypertrophy. Circ Res 2024; 134:913-930. [PMID: 38414132 PMCID: PMC10977056 DOI: 10.1161/circresaha.122.321292] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Recently shown to regulate cardiac development, the secreted axon guidance molecule SLIT3 maintains its expression in the postnatal heart. Despite its known expression in the cardiovascular system after birth, SLIT3's relevance to cardiovascular function in the postnatal state remains unknown. As such, the objectives of this study were to determine the postnatal myocardial sources of SLIT3 and to evaluate its functional role in regulating the cardiac response to pressure overload stress. METHODS We performed in vitro studies on cardiomyocytes and myocardial tissue samples from patients and performed in vivo investigation with SLIT3 and ROBO1 (roundabout homolog 1) mutant mice undergoing transverse aortic constriction to establish the role of SLIT3-ROBO1 in adverse cardiac remodeling. RESULTS We first found that SLIT3 transcription was increased in myocardial tissue obtained from patients with congenital heart defects that caused ventricular pressure overload. Immunostaining of hearts from WT (wild-type) and reporter mice revealed that SLIT3 is secreted by cardiac stromal cells, namely fibroblasts and vascular mural cells, within the heart. Conditioned media from cardiac fibroblasts and vascular mural cells both stimulated cardiomyocyte hypertrophy in vitro, an effect that was partially inhibited by an anti-SLIT3 antibody. Also, the N-terminal, but not the C-terminal, fragment of SLIT3 and the forced overexpression of SLIT3 stimulated cardiomyocyte hypertrophy and the transcription of hypertrophy-related genes. We next determined that ROBO1 was the most highly expressed roundabout receptor in cardiomyocytes and that ROBO1 mediated SLIT3's hypertrophic effects in vitro. In vivo, Tcf21+ fibroblast and Tbx18+ vascular mural cell-specific knockout of SLIT3 in mice resulted in decreased left ventricular hypertrophy and cardiac fibrosis after transverse aortic constriction. Furthermore, α-MHC+ cardiomyocyte-specific deletion of ROBO1 also preserved left ventricular function and abrogated hypertrophy, but not fibrosis, after transverse aortic constriction. CONCLUSIONS Collectively, these results indicate a novel role for the SLIT3-ROBO1-signaling axis in regulating postnatal cardiomyocyte hypertrophy induced by pressure overload.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Cardiac Surgery (X.L., B.L., S.W., D.X., M.-S.S.), Michigan Medicine, Ann Arbor
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, China (X.L., R.C.)
| | - Baolei Li
- Department of Cardiac Surgery (X.L., B.L., S.W., D.X., M.-S.S.), Michigan Medicine, Ann Arbor
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, China (B.L.)
| | - Shuyun Wang
- Department of Cardiac Surgery (X.L., B.L., S.W., D.X., M.-S.S.), Michigan Medicine, Ann Arbor
| | - Erge Zhang
- Division of Cardiac Surgery, Department of Surgery (E.Z., M.S., M.-S.S.), David Geffen School of Medicine University of California, Los Angeles
| | - Megan Schultz
- Division of Cardiac Surgery, Department of Surgery (E.Z., M.S., M.-S.S.), David Geffen School of Medicine University of California, Los Angeles
| | - Marlin Touma
- Department of Pediatrics (M.T.), David Geffen School of Medicine University of California, Los Angeles
| | - Andre Monteiro Da Rocha
- Division of Cardiovascular Medicine, Department of Internal Medicine (A.M.D.R., T.H.), Michigan Medicine, Ann Arbor
| | - Sylvia M. Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences (S.M.E.), University of California, San Diego, La Jolla
- Department of Medicine, School of Medicine (S.M.E.), University of California, San Diego, La Jolla
| | - Anne Eichmann
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.E.)
- INSERM, Paris Cardiovascular Research Center (PARCC), Université de Paris, France (A.E.)
| | - Todd Herron
- Division of Cardiovascular Medicine, Department of Internal Medicine (A.M.D.R., T.H.), Michigan Medicine, Ann Arbor
| | - Ruizhen Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, China (X.L., R.C.)
| | - Dingding Xiong
- Department of Cardiac Surgery (X.L., B.L., S.W., D.X., M.-S.S.), Michigan Medicine, Ann Arbor
| | - Alexander Jaworski
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI (A.J.)
| | - Stephen Weiss
- Life Sciences Institute, University of Michigan, Ann Arbor (S.W.)
| | - Ming-Sing Si
- Department of Cardiac Surgery (X.L., B.L., S.W., D.X., M.-S.S.), Michigan Medicine, Ann Arbor
- Division of Cardiac Surgery, Department of Surgery (E.Z., M.S., M.-S.S.), David Geffen School of Medicine University of California, Los Angeles
| |
Collapse
|
7
|
Delgado-Arija M, Genovés P, Pérez-Carrillo L, González-Torrent I, Giménez-Escamilla I, Martínez-Dolz L, Portolés M, Tarazón E, Roselló-Lletí E. Plasma fibroblast activation protein is decreased in acute heart failure despite cardiac tissue upregulation. J Transl Med 2024; 22:124. [PMID: 38297310 PMCID: PMC10832198 DOI: 10.1186/s12967-024-04900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Cardiac fibroblast activation protein (FAP) has an emerging role in heart failure (HF). A paradoxical reduction in its levels in pathological conditions associated with acute processes has been observed. We aimed to identify FAP cardiac tissue expression and its relationship with the main cardiac fibrosis-related signaling pathways, and to compare plasma FAP levels in acute and chronic HF patients. METHODS Transcriptomic changes were assessed via mRNA/ncRNA-seq in left ventricle tissue from HF patients (n = 57) and controls (n = 10). Western blotting and immunohistochemistry were used to explore FAP protein levels and localization in cardiac tissue. ELISA was performed to examine plasma FAP levels in acute HF (n = 48), chronic HF (n = 15) and control samples (n = 7). RESULTS FAP overexpression in cardiac tissue is related to the expression of molecules directly involved in cardiac fibrosis, such as POSTN, THBS4, MFAP5, COL1A2 and COL3A1 (P < 0.001), and is directly and inversely related to pro- and antifibrotic microRNAs, respectively. The observed FAP overexpression is not reflected in plasma. Circulating FAP levels were lower in acute HF patients than in controls (P < 0.05), while chronic HF patients did not show significant changes. The clinical variables analyzed, such as functional class or etiology, do not affect plasma FAP concentrations. CONCLUSIONS We determined that in HF cardiac tissue, FAP is related to the main cardiac fibrosis signaling pathways as well as to pro- and antifibrotic microRNAs. Additionally, an acute phase of HF decreases plasma FAP levels despite the upregulation observed in cardiac tissue and regardless of other clinical conditions.
Collapse
Affiliation(s)
- Marta Delgado-Arija
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Patricia Genovés
- Department of Physiology, Faculty of Medicine, Universitat de València, Avd. de Blasco Ibañez, 15, 46010, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Lorena Pérez-Carrillo
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Irene González-Torrent
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Isaac Giménez-Escamilla
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Luis Martínez-Dolz
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Manuel Portolés
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Estefanía Tarazón
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Esther Roselló-Lletí
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain.
| |
Collapse
|
8
|
Zhang X, Tian B, Cong X, Ning Z. SLIT3 promotes cardiac fibrosis and differentiation of cardiac fibroblasts by RhoA/ROCK1 signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:832-840. [PMID: 38800023 PMCID: PMC11127076 DOI: 10.22038/ijbms.2024.73812.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/08/2023] [Indexed: 05/29/2024]
Abstract
Objectives Slit guidance ligand 3 (SLIT3) has been identified as a potential therapeutic regulator against fibroblast activity and fibrillary collagen production in an autocrine manner. However, this research aims to investigate the potential role of SLIT3 in cardiac fibrosis and fibroblast differentiation and its underlying mechanism. Materials and Methods C57BL/6 mice (male, 8-10 weeks, n=47) were subcutaneously infused with Ang II (2.0 mg/kg/day) for 4 weeks. One to two-day-old Sprague-Dawley (SD) rats were anesthetized by intraperitoneal injection of 1% pentobarbital sodium (60 mg/kg) and ketamine (50 mg/kg) and the cardiac fibroblast was isolated aseptically. The mRNA and protein expression were analyzed using RT-qPCR and Western blotting. Results The SLIT3 expression level was increased in Ang II-induced mice models and cardiac fibroblasts. SLIT3 significantly increased migrated cells and α-smooth muscle actin (α-SMA) expression in cardiac fibroblasts. Ang II-induced increases in mRNA expression of collagen I (COL1A1), and collagen III (COL3A1) was attenuated by SLIT3 inhibition. SLIT3 knockdown attenuated the Ang II-induced increase in mRNA expression of ACTA2 (α-SMA), Fibronectin, and CTGF. SLIT3 suppression potentially reduced DHE expression and decreased malondialdehyde (MDA) content, and the superoxide dismutase (SOD) and catalase (CAT) levels were significantly increased in cardiac fibroblasts. Additionally, SLIT3 inhibition markedly decreased RhoA and ROCK1 protein expression, whereas ROCK inhibitor Y-27632 (10 μM) markedly attenuated the migration of cardiac fibroblasts stimulated by Ang II and SLIT3. Conclusion The results speculate that SLIT3 could significantly regulate cardiac fibrosis and fibroblast differentiation via the RhoA/ROCK1 signaling pathway.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), Pudong New District, Shanghai 201318, China
- These authors contributed equally to this work
| | - Bei Tian
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), Pudong New District, Shanghai 201318, China
- These authors contributed equally to this work
| | - Xinpeng Cong
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), Pudong New District, Shanghai 201318, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), Pudong New District, Shanghai 201318, China
| |
Collapse
|
9
|
Gong L, Si MS. SLIT3-mediated fibroblast signaling: a promising target for antifibrotic therapies. Am J Physiol Heart Circ Physiol 2023; 325:H1400-H1411. [PMID: 37830982 PMCID: PMC11932536 DOI: 10.1152/ajpheart.00216.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
The SLIT family (SLIT1-3) of highly conserved glycoproteins was originally identified as ligands for the Roundabout (ROBO) family of single-pass transmembrane receptors, serving to provide repulsive axon guidance cues in the nervous system. Intriguingly, studies involving SLIT3 mutant mice suggest that SLIT3 might have crucial biological functions outside the neural context. Although these mutant mice display no noticeable neurological abnormalities, they present pronounced connective tissue defects, including congenital central diaphragmatic hernia, membranous ventricular septal defect, and osteopenia. We recently hypothesized that the phenotype observed in SLIT3-deficient mice may be tied to abnormalities in fibrillar collagen-rich connective tissue. Further research by our group indicates that both SLIT3 and its primary receptor, ROBO1, are expressed in fibrillar collagen-producing cells across various nonneural tissues. Global and constitutive SLIT3 deficiency not only reduces the synthesis and content of fibrillar collagen in various organs but also alleviates pressure overload-induced fibrosis in both the left and right ventricles. This review delves into the known phenotypes of SLIT3 mutants and the debated role of SLIT3 in vasculature and bone. Present evidence hints at SLIT3 acting as an autocrine regulator of fibrillar collagen synthesis, suggesting it as a potential antifibrotic treatment. However, the precise pathway and mechanisms through which SLIT3 regulates fibrillar collagen synthesis remain uncertain, presenting an intriguing avenue for future research.
Collapse
Affiliation(s)
- Lianghui Gong
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Ming-Sing Si
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| |
Collapse
|
10
|
Yuan M, Yao L, Chen P, Wang Z, Liu P, Xiong Z, Hu X, Li L, Jiang Y. Human umbilical cord mesenchymal stem cells inhibit liver fibrosis via the microRNA-148a-5p/SLIT3 axis. Int Immunopharmacol 2023; 125:111134. [PMID: 37918086 DOI: 10.1016/j.intimp.2023.111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have garnered considerable attention as prospective modalities of treatment for liver fibrosis (LF). The inhibition of hepatic stellate cell (HSC) activation underlies the anti-fibrotic effects of hUC-MSCs. However, the precise mechanism by which hUC-MSCs impede HSC activation remains unclarified. We aimed to elucidate the intrinsic mechanisms underlying the therapeutic effects of hUC-MSCs in LF patients. METHODS Mice with liver cirrhosis induced by carbon tetrachloride (CCl4) were used as experimental models and administered hUC-MSCs via tail-vein injection. The alterations in inflammation and fibrosis were evaluated through histopathological examinations. RNA sequencing (RNA-seq) and bioinformatics analysis were then conducted to investigate the therapeutic mechanism of hUC-MSCs. Finally, an in-vitro experiment involving the co-cultivation of hUC-MSCs or hUC-MSC-derived exosomes (MSC-Exos) with LX2 cells was performed to validate the potential mechanism underlying the hepatoprotective effects of hUC-MSCs in LF patients. RESULTS hUC-MSC therapy significantly improved liver function and alleviated LF in CCl4-induced mice. High-throughput RNA-Seq analysis identified 1142 differentially expressed genes that were potentially involved in mediating the therapeutic effects of hUC-MSCs. These genes play an important role in regulating the extracellular matrix. miRNA expression data (GSE151098) indicated that the miR-148a-5p level was downregulated in LF samples, but restored following hUC-MSC treatment. miR-148a-5p was delivered to LX2 cells by hUC-MSCs via the exosome pathway, and the upregulated expression of miR-148a-5p significantly suppressed the expression of the activated phenotype of LX2 cells. SLIT3 was identified within the pool of potential target genes regulated by miR-148a-5p. Furthermore, hUC-MSC administration upregulated the expression of miR-148a-5p, which played a crucial role in suppressing the expression of SLIT3, thereby palliating fibrosis. CONCLUSIONS hUC-MSCs inhibit the activation of HSCs through the miR-148a-5p/SLIT3 pathway and are thus capable of alleviating LF.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiyu Xiong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310053, China.
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
11
|
Feng L, Shu HP, Sun LL, Tu YC, Liao QQ, Yao LJ. Role of the SLIT-ROBO signaling pathway in renal pathophysiology and various renal diseases. Front Physiol 2023; 14:1226341. [PMID: 37497439 PMCID: PMC10366692 DOI: 10.3389/fphys.2023.1226341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
SLIT ligand and its receptor ROBO were initially recognized for their role in axon guidance in central nervous system development. In recent years, as research has advanced, the role of the SLIT-ROBO signaling pathway has gradually expanded from axonal repulsion to cell migration, tumor development, angiogenesis, and bone metabolism. As a secreted protein, SLIT regulates various pathophysiological processes in the kidney, such as proinflammatory responses and fibrosis progression. Many studies have shown that SLIT-ROBO is extensively involved in various aspects of kidney development and maintenance of structure and function. The SLIT-ROBO signaling pathway also plays an important role in different types of kidney disease. This article reviews the advances in the study of the SLIT-ROBO pathway in various renal pathophysiological and kidney disorders and proposes new directions for further research in this field.
Collapse
|
12
|
Lin W, Chen X, Wang D, Lu R, Zhang C, Niu Z, Chen J, Ruan X, Wang X. Single-nucleus ribonucleic acid-sequencing and spatial transcriptomics reveal the cardioprotection of Shexiang Baoxin Pill (SBP) in mice with myocardial ischemia-reperfusion injury. Front Pharmacol 2023; 14:1173649. [PMID: 37229263 PMCID: PMC10203427 DOI: 10.3389/fphar.2023.1173649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Aim: The Shexiang Baoxin Pill (SBP) has been extensively used to treat cardiovascular diseases in China for four decades, and its clinical efficacy has been widely approved. However, the mechanism by which this is achieved remains largely unexplored. Research attempting to understand the underlying mechanism is ongoing, but the findings are controversial. Here, we aimed to explore the possible mechanism of SBP in myocardial ischemia-reperfusion (I/R) injury using heart single-nucleus and spatial ribonucleic acid (RNA) sequencing. Methods: We established a murine myocardial I/R injury model in C57BL/6 mice by ligating and recanalizing the left coronary artery anterior descending branch. Subsequently, single-nucleus RNA-seq and spatial transcriptomics were performed on mice cardiac tissue. We initially assessed the status of cell types and subsets in the model administered with or without SBP. Results: We used single-nucleus RNA sequencing to comprehensively analyze cell types in the cardiac tissue of sham, I/R, and SBP mice. Nine samples from nine individuals were analyzed, and 75,546 cells were obtained. We classified the cells into 28 clusters based on their expression characteristics and annotated them into seven cell types: cardiomyocytes, endothelial cells, fibroblasts, myeloid cells, smooth muscle cells, B cells, and T cells. The SBP group had distinct cellular compositions and features than the I/R group. Furthermore, SBP-induced cardioprotection against I/R was associated with enhanced cardiac contractility, reduced endocardial cell injury, increased endocardial-mediated angiogenesis, and inhibited fibroblast proliferation. In addition, macrophages had active properties. Conclusion: SBP improves the early LVEF of I/R mice and has a cardioprotective effect. Through sequencing analysis, we observed that SBP can increase the gene expression of Nppb and Npr3 in the infarct area of the heart. Npr3 is related to vascular generation mediated by endocardial cells and requires further research. In addition, SBP increases the number of fibroblasts, inhibits the expression of genes related to fibroblast activation and proliferation, and increases the transformation of endothelial cells into fibroblasts. These findings will help to indicate directions for further research.
Collapse
Affiliation(s)
- Wenyong Lin
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Chen
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyuan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruixia Lu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunling Zhang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenchao Niu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Chen
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofen Ruan
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Fu X, Chang J, Jiao D, Zhu M, Ma Y. SLIT3 knockdown inhibited TGF-β-induced hepatic stellate cells activation by down-regulating YAP signal. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Abstract
Objective
Liver fibrosis is a chronic liver disease caused by a variety of pathophysiological. However, there are no effective treatments to combat it. HSCs are a major source of fibrotic cells and exploring the mechanisms of HSC activation may provide new strategies for the treatment of liver fibrosis.
Objectives
To explore the role and underlying mechanism of SLIT3 in HSCs fibrosis.
Results
GSE163211 dataset analysis identified aberrant expression of SLIT3 in NASH F1-F4 tissues and SLIT3 expression level was positively correlated with fibrosis-related proteins. In vitro experiments showed that TGF-β induced upregulation of SLIT3 in LX-2 cells. Knockdown of SLIT3 significantly inhibited TGF-β-induced α-SMA, COL1A2, and COL1A1 expression, inhibited excessive cell proliferation and migration, and suppressed YAP activity.
Conclusion
Collectively, our findings suggest that SLIT3 deficiency alleviates TGF-β-induced HSCs activation by inhibiting YAP activity.
Collapse
|
14
|
Analysis of Copy Number Variation in the Whole Genome of Normal-Haired and Long-Haired Tianzhu White Yaks. Genes (Basel) 2022; 13:genes13122405. [PMID: 36553672 PMCID: PMC9777850 DOI: 10.3390/genes13122405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Long-haired individuals in the Tianzhu white yak population are a unique genetic resource, and have important landscape value. Copy number variation (CNV) is an important source of phenotypic variation in mammals. In this study, we used resequencing technology to detect the whole genome of 10 long-haired Tianzhu white yaks (LTWY) and 10 normal-haired Tianzhu white yaks (NTWY), and analyzed the differences of CNV in the genome of LTWYs and NTWYs. A total of 110268 CNVs were identified, 2006 CNVRs were defined, and the distribution map of these CNVRs on chromosomes was constructed. The comparison of LTWYs and NTWYs identified 80 differential CNVR-harbored genes, which were enriched in lipid metabolism, cell migration and other functions. Notably, some differential genes were identified as associated with hair growth and hair-follicle development (e.g., ASTN2, ATM, COL22A1, GK5, SLIT3, PM20D1, and SGCZ). In general, we present the first genome-wide analysis of CNV in LTWYs and NTWYs. Our results can provide new insights into the phenotypic variation of different hair lengths in Tianzhu white yaks.
Collapse
|
15
|
Chen S, Jin Q, Hou S, Li M, Zhang Y, Guan L, Pan W, Ge J, Zhou D. Identification of recurrent variants implicated in disease in bicuspid aortic valve patients through whole-exome sequencing. Hum Genomics 2022; 16:36. [PMID: 36071494 PMCID: PMC9450445 DOI: 10.1186/s40246-022-00405-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/06/2022] [Indexed: 11/10/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect in human beings, with an estimated prevalence in the general population of between 0.5 and 2%. Moreover, BAV is the most common cause of aortic stenosis in the pediatric population. Patients with BAV may have no symptoms for life, and some of them may progress to aortic stenosis. Genetic factors increase the susceptibility and development of BAV. However, the pathogenesis and BAV are still unclear, and more genetic variants are still needed for elucidating the molecular mechanism and stratification of patients. The present study carried out screening of variants implicated in disease in BAV patients. The whole-exome sequencing (WES) was performed in 20 BAV patients and identified 40 different heterozygous missense mutations in 36 genes (MIB2, FAAH, S100A1, RGS16, MAP3K19, NEB, TTN, TNS1, CAND2, CCK, KALRN, ATP10D, SLIT3, ROS1, FABP7, NUP205, IL11RA, NPR2, COL5A1, CUBN, JMJD1C, ANXA7, TRIM8, LGR4, TPCN2, APOA5, GPR84, LRP1, NCOR2, AKAP11, ESRRB, NGB, AKAP13, WWOX, KCNJ12, ARHGEF1). The mutations in these genes were identified as recurrent variants implicated in disease by in silico prediction tool analysis. Nine genes (MIB2, S100A1, TTN, CCK, NUP205, LGR4, NCOR2, ESRRB, and WWOX) among the 36 genes were identified as variants implicated in disease via unanimous agreement of in silico prediction tool analysis and sequenced in an independent cohort of 137 BAV patients to validate the results of WES. BAV patients carrying these variants demonstrated reduced left ventricular ejection fractions (LVEF) (63.8 ± 7.5% vs. 58.4 ± 5.2%, P < 0.001) and larger calcification volume [(1129.3 ± 154) mm3 vs. (1261.8 ± 123) mm3, P < 0.001]. The variants in TTN, NUP205 and NCOR2 genes are significantly associated with reduced LVEF, and the variants in S100A1, LGR4, ESRRB, and WWOX genes are significantly associated with larger calcification volume. We identified a panel of recurrent variants implicated in disease in genes related to the pathogenesis of BAV. Our data speculate that these variants are promising markers for risk stratification of BAV patients with increased susceptibility to aortic stenosis.
Collapse
Affiliation(s)
- Shasha Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, No. 180 of Road Fenglin, District Xuhui, Shanghai, 200032, China.,Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China.,National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Qinchun Jin
- Department of Cardiology, Zhongshan Hospital, Fudan University, No. 180 of Road Fenglin, District Xuhui, Shanghai, 200032, China.,Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China.,National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shiqiang Hou
- Department of Cardiology, Zhongshan Hospital, Fudan University, No. 180 of Road Fenglin, District Xuhui, Shanghai, 200032, China.,Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China.,National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Mingfei Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, No. 180 of Road Fenglin, District Xuhui, Shanghai, 200032, China.,Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China.,National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yuan Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, No. 180 of Road Fenglin, District Xuhui, Shanghai, 200032, China.,Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China.,National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lihua Guan
- Department of Cardiology, Zhongshan Hospital, Fudan University, No. 180 of Road Fenglin, District Xuhui, Shanghai, 200032, China.,Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China.,National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Wenzhi Pan
- Department of Cardiology, Zhongshan Hospital, Fudan University, No. 180 of Road Fenglin, District Xuhui, Shanghai, 200032, China.,Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China.,National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, No. 180 of Road Fenglin, District Xuhui, Shanghai, 200032, China.,Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China.,National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, No. 180 of Road Fenglin, District Xuhui, Shanghai, 200032, China. .,Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China. .,National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
16
|
Reichart D, Lindberg EL, Maatz H, Miranda AMA, Viveiros A, Shvetsov N, Gärtner A, Nadelmann ER, Lee M, Kanemaru K, Ruiz-Orera J, Strohmenger V, DeLaughter DM, Patone G, Zhang H, Woehler A, Lippert C, Kim Y, Adami E, Gorham JM, Barnett SN, Brown K, Buchan RJ, Chowdhury RA, Constantinou C, Cranley J, Felkin LE, Fox H, Ghauri A, Gummert J, Kanda M, Li R, Mach L, McDonough B, Samari S, Shahriaran F, Yapp C, Stanasiuk C, Theotokis PI, Theis FJ, van den Bogaerdt A, Wakimoto H, Ware JS, Worth CL, Barton PJR, Lee YA, Teichmann SA, Milting H, Noseda M, Oudit GY, Heinig M, Seidman JG, Hubner N, Seidman CE. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 2022; 377:eabo1984. [PMID: 35926050 PMCID: PMC9528698 DOI: 10.1126/science.abo1984] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.
Collapse
Affiliation(s)
- Daniel Reichart
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Medicine I, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Eric L Lindberg
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Antonio M A Miranda
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London WC2R 2LS, UK
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Nikolay Shvetsov
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Emily R Nadelmann
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kazumasa Kanemaru
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Viktoria Strohmenger
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Daniel M DeLaughter
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Hao Zhang
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Andrew Woehler
- Systems Biology Imaging Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Christoph Lippert
- Digital Health-Machine Learning group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, 14482 Potsdam, Germany.,Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuri Kim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sam N Barnett
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kemar Brown
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiac Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel J Buchan
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Rasheda A Chowdhury
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | - James Cranley
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Henrik Fox
- Heart and Diabetes Center NRW, Clinic for Thoracic and Cardiovascular Surgery, University Hospital of the Ruhr-University, 32545 Bad Oeynhausen, Germany
| | - Ahla Ghauri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Jan Gummert
- Heart and Diabetes Center NRW, Clinic for Thoracic and Cardiovascular Surgery, University Hospital of the Ruhr-University, 32545 Bad Oeynhausen, Germany
| | - Masatoshi Kanda
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ruoyan Li
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Barbara McDonough
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Sara Samari
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Farnoush Shahriaran
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Stanasiuk
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Pantazis I Theotokis
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Fabian J Theis
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Catherine L Worth
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Young-Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.,Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London WC2R 2LS, UK
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Matthias Heinig
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany.,Department of Informatics, Technische Universitaet Muenchen (TUM), 85748 Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner Site Munich, 10785 Berlin, Germany
| | | | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| |
Collapse
|
17
|
Aga H, Soultoukis G, Stadion M, Garcia-Carrizo F, Jähnert M, Gottmann P, Vogel H, Schulz TJ, Schürmann A. Distinct Adipogenic and Fibrogenic Differentiation Capacities of Mesenchymal Stromal Cells from Pancreas and White Adipose Tissue. Int J Mol Sci 2022; 23:ijms23042108. [PMID: 35216219 PMCID: PMC8876166 DOI: 10.3390/ijms23042108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic steatosis associates with β-cell failure and may participate in the development of type-2-diabetes. Our previous studies have shown that diabetes-susceptible mice accumulate more adipocytes in the pancreas than diabetes-resistant mice. In addition, we have demonstrated that the co-culture of pancreatic islets and adipocytes affect insulin secretion. The aim of this current study was to elucidate if and to what extent pancreas-resident mesenchymal stromal cells (MSCs) with adipogenic progenitor potential differ from the corresponding stromal-type cells of the inguinal white adipose tissue (iWAT). miRNA (miRNome) and mRNA expression (transcriptome) analyses of MSCs isolated by flow cytometry of both tissues revealed 121 differentially expressed miRNAs and 1227 differentially expressed genes (DEGs). Target prediction analysis estimated 510 DEGs to be regulated by 58 differentially expressed miRNAs. Pathway analyses of DEGs and miRNA target genes showed unique transcriptional and miRNA signatures in pancreas (pMSCs) and iWAT MSCs (iwatMSCs), for instance fibrogenic and adipogenic differentiation, respectively. Accordingly, iwatMSCs revealed a higher adipogenic lineage commitment, whereas pMSCs showed an elevated fibrogenesis. As a low degree of adipogenesis was also observed in pMSCs of diabetes-susceptible mice, we conclude that the development of pancreatic steatosis has to be induced by other factors not related to cell-autonomous transcriptomic changes and miRNA-based signals.
Collapse
Affiliation(s)
- Heja Aga
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
| | - George Soultoukis
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany;
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
| | - Francisco Garcia-Carrizo
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany;
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
- Research Group Genetics of Obesity, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, 14469 Potsdam, Germany
| | - Tim J. Schulz
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany;
- Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (H.A.); (M.S.); (M.J.); (P.G.); (H.V.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (G.S.); (T.J.S.)
- Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany
- Correspondence: ; Tel.: +49-33-200-88-2368
| |
Collapse
|
18
|
Zhao H, Zhu S, Guo T, Han M, Chen B, Qiao G, Wu Y, Yuan C, Liu J, Lu Z, Sun W, Wang T, Li F, Zhang Y, Hou F, Yue Y, Yang B. Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep. J Anim Sci 2021; 99:6319907. [PMID: 34255028 PMCID: PMC8418636 DOI: 10.1093/jas/skab210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/10/2021] [Indexed: 12/11/2022] Open
Abstract
To investigate single nucleotide polymorphism (SNP) loci associated with yearling wool traits of fine-wool sheep for optimizing marker-assisted selection and dissection of the genetic architecture of wool traits, we conducted a genome-wide association study (GWAS) based on the fixed and random model circulating probability unification (FarmCPU) for yearling staple length (YSL), yearling mean fiber diameter (YFD), yearling greasy fleece weight (YGFW), and yearling clean fleece rate (YCFR) by using the whole-genome re-sequenced data (totaling 577 sheep) from the following four fine-wool sheep breeds in China: Alpine Merino sheep (AMS), Chinese Merino sheep (CMS), Qinghai fine-wool sheep (QHS), and Aohan fine-wool sheep (AHS). A total of 16 SNPs were detected above the genome-wise significant threshold (P = 5.45E-09), and 79 SNPs were located above the suggestive significance threshold (P = 5.00E-07) from the GWAS results. For YFD and YGFW traits, 7 and 9 SNPs reached the genome-wise significance thresholds, whereas 10 and 12 SNPs reached the suggestive significance threshold, respectively. For YSL and YCFR traits, none of the SNPs reached the genome-wise significance thresholds, whereas 57 SNPs exceeded the suggestive significance threshold. We recorded 14 genes located at the region of ±50-kb near the genome-wise significant SNPs and 59 genes located at the region of ±50-kb near the suggestive significant SNPs. Meanwhile, we used the Average Information Restricted Maximum likelihood algorithm (AI-REML) in the “HIBLUP” package to estimate the heritability and variance components of the four desired yearling wool traits. The estimated heritability values (h2) of YSL, YFD, YGFW, and YCFR were 0.6208, 0.7460, 0.6758, and 0.5559, respectively. We noted that the genetic parameters in this study can be used for fine-wool sheep breeding. The newly detected significant SNPs and the newly identified candidate genes in this study would enhance our understanding of yearling wool formation, and significant SNPs can be applied to genome selection in fine-wool sheep breeding.
Collapse
Affiliation(s)
- Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Shaohua Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Mei Han
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Bowen Chen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Guoyan Qiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Yi Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Weibo Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Tianxiang Wang
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Fanwen Li
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Yajun Zhang
- Xinjiang Gongnaisi Breeding Sheep Farm, Xinyuan, 835808, China
| | - Fujun Hou
- Aohan Banner Breeding Sheep Farm, Chifeng, 024300, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
- Corresponding author:
| |
Collapse
|