1
|
Goto Y, Niihori T, Mizuno S, Okamoto N, Ogata T, Kurosawa K, Ohashi H, Matsubara Y, Abe T, Kikuchi A, Aoki Y. Missense and truncated variants in ERF in individuals with a Noonan-like phenotype without craniosynostosis. Sci Rep 2025; 15:15179. [PMID: 40307313 PMCID: PMC12044050 DOI: 10.1038/s41598-025-89719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/07/2025] [Indexed: 05/02/2025] Open
Abstract
ETS2 repressor factor (ERF) is a member of the ETS family of transcriptional repressors downstream of ERK. Although germline truncated variants in ERF have been identified in individuals with Noonan-like syndrome with or without craniosynostosis, the clinical spectrum of ERF variant-positive individuals and the functional characterization of ERF variants are currently not fully understood. In this study, we identified one missense variant (p.G53R) and two truncating variants in ERF using whole exome sequencing (WES) in three individuals and one truncating variant using Sanger sequencing in one of 81 individuals with suspected Noonan syndrome without any pathogenic variants by targeted analysis in the previous study. Four Individuals with pathogenic ERF variants were diagnosed with Noonan-like syndrome, where craniosynostosis was not evident. Our investigation revealed that wild-type ERF undergoes nuclear-cytoplasmic shift, whereas truncated mutant ERF are predominantly localized in the nucleus. Moreover, R183* and G299Rfs variants lost their ability to repress the proliferation of osteoblast-like cells (MC3T3-E1). A luciferase assay examining the transcriptional activity of RUNX2 binding motifs indicated that the truncated variants were defective in their suppressive function. Further experimentation demonstrated that MC3T3-E1 cells expressing the p.G53R and three truncating variants induced ossification compared to the wild-type. These results suggest that loss-of-function mutations in ERF, which result in reduced ossification suppressor activity in MC3T3-E1 cells, can lead to craniofacial abnormalities in individuals with Noonan syndrome-like symptoms.
Collapse
Affiliation(s)
- Yusuke Goto
- Department of Medical Genetics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Sendai, 980-8574, Japan
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Sendai, 980-8574, Japan.
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Aichi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Research Institute, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | | | - Taiki Abe
- Department of Medical Genetics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Sendai, 980-8574, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Sendai, 980-8574, Japan.
| |
Collapse
|
2
|
Fuentes-Mateos R, García-Navas R, Fernández-Infante C, Hernández-Cano L, Calzada-Nieto N, Juan AOS, Guerrero C, Santos E, Fernández-Medarde A. Combined HRAS and NRAS ablation induces a RASopathy phenotype in mice. Cell Commun Signal 2024; 22:332. [PMID: 38886790 PMCID: PMC11184836 DOI: 10.1186/s12964-024-01717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND HRASKO/NRASKO double knockout mice exhibit exceedingly high rates of perinatal lethality due to respiratory failure caused by a significant lung maturation delay. The few animals that reach adulthood have a normal lifespan, but present areas of atelectasis mixed with patches of emphysema and normal tissue in the lung. METHODS Eight double knockout and eight control mice were analyzed using micro-X-ray computerized tomography and a Small Animal Physiological Monitoring system. Tissues and samples from these mice were analyzed using standard histological and Molecular Biology methods and the significance of the results analyzed using a Student´s T-test. RESULTS The very few double knockout mice surviving up to adulthood display clear craniofacial abnormalities reminiscent of those seen in RASopathy mouse models, as well as thrombocytopenia, bleeding anomalies, and reduced platelet activation induced by thrombin. These surviving mice also present heart and spleen hyperplasia, and elevated numbers of myeloid-derived suppressor cells in the spleen. Mechanistically, we observed that these phenotypic alterations are accompanied by increased KRAS-GTP levels in heart, platelets and primary mouse embryonic fibroblasts from these animals. CONCLUSIONS Our data uncovers a new, previously unidentified mechanism capable of triggering a RASopathy phenotype in mice as a result of the combined removal of HRAS and NRAS.
Collapse
Affiliation(s)
- Rocío Fuentes-Mateos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
- Present address: Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Rósula García-Navas
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Present address: Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - Nuria Calzada-Nieto
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - Andrea Olarte-San Juan
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
3
|
Chaput D, Andelfinger G. MEK Inhibition for RASopathy-Associated Hypertrophic Cardiomyopathy: Clinical Application of a Basic Concept. Can J Cardiol 2024; 40:789-799. [PMID: 38432396 DOI: 10.1016/j.cjca.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
The term "RASopathies" designates a group of developmental syndromes that are caused by activating variants of the rat sarcoma virus protein (RAS)/mitogen-activated protein kinase (MAPK) cascade. The most prevalent clinical diagnosis is Noonan syndrome, and other, less prevalent conditions include Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, and others. Hypertrophic cardiomyopathy occurs in 10% of these patients and can be severe and life-threating. Recently, repurposing of medications inhibiting the RAS/MAPK on a compassionate use basis has emerged as a promising concept to improve the outcome of these patients. Herein, we specifically review the role of the RAS/MAPK pathway in RASopathy-associated cardiomyopathy, and discuss the role of small-molecule inhibition in the treatment of this condition. We describe how drug repurposing of trametinib (mitogen-activated protein/extracellular signal-regulated kinase inhibition) and sirolimus/everolimus (mammalian target of rapamycin inhibition) was performed, how genotype-specific therapies are chosen and followed, as well as initial outcomes from early case series. Finally, we lay out the challenges and opportunities for trials that aim to quantify the benefits of this approach.
Collapse
Affiliation(s)
- Dominic Chaput
- Cardiovascular Genetics Research Laboratory, CHU Sainte Justine Research Center, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
| | - Gregor Andelfinger
- Cardiovascular Genetics Research Laboratory, CHU Sainte Justine Research Center, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
4
|
Karra L, Finger AM, Shechtman L, Krush M, Huang RMY, Prinz M, Tennvooren I, Bahl K, Hysienaj L, Gonzalez PG, Combes AJ, Gonzalez H, Argüello RJ, Spitzer MH, Roose JP. Single cell proteomics characterization of bone marrow hematopoiesis with distinct Ras pathway lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572584. [PMID: 38187679 PMCID: PMC10769276 DOI: 10.1101/2023.12.20.572584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Normal hematopoiesis requires constant prolific production of different blood cell lineages by multipotent hematopoietic stem cells (HSC). Stem- and progenitor- cells need to balance dormancy with proliferation. How genetic alterations impact frequency, lineage potential, and metabolism of HSC is largely unknown. Here, we compared induced expression of KRAS G12D or RasGRP1 to normal hematopoiesis. At low-resolution, both Ras pathway lesions result in skewing towards myeloid lineages. Single-cell resolution CyTOF proteomics unmasked an expansion of HSC- and progenitor- compartments for RasGRP1, contrasted by a depletion for KRAS G12D . SCENITH™ quantitates protein synthesis with single-cell precision and corroborated that immature cells display low metabolic SCENITH™ rates. Both RasGRP1 and KRAS G12D elevated mean SCENITH™ signals in immature cells. However, RasGRP1-overexpressing stem cells retain a metabolically quiescent cell-fraction, whereas this fraction diminishes for KRAS G12D . Our temporal single cell proteomics and metabolomics datasets provide a resource of mechanistic insights into altered hematopoiesis at single cell resolution.
Collapse
|
5
|
Nelson ND, Xu F, Chandrasekaran P, Litzky LA, Peranteau WH, Frank DB, Li M, Pogoriler J. Defining the spatial landscape of KRAS mutated congenital pulmonary airway malformations: a distinct entity with a spectrum of histopathologic features. Mod Pathol 2022; 35:1870-1881. [PMID: 35794233 PMCID: PMC10462420 DOI: 10.1038/s41379-022-01129-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
Abstract
The potential pathogenetic mechanisms underlying the varied morphology of congenital pulmonary airway malformations (CPAMs) have not been molecularly determined, but a subset have been shown to contain clusters of mucinous cells (MCC). These clusters are believed to serve as precursors for potential invasive mucinous adenocarcinoma, and they are associated with KRAS codon 12 mutations. To assess the universality of KRAS mutations in MCCs, we sequenced exon 2 of KRAS in 61 MCCs from 18 patients, and we found a KRAS codon 12 mutation in all 61 MCCs. Furthermore, all MCCs from a single patient always had the same KRAS mutation, and the same KRAS mutation was also found in non-mucinous lesional tissue. Next generation sequencing of seven MCCs showed no other mutations or copy number variations. Sequencing of 46 additional CPAMs with MCCs revealed KRAS mutations in non-mucinous lesional tissue in all cases. RNA in situ hybridization confirmed widespread distribution of cells with mutant KRAS RNA, even extending outside of the bronchiolar type epithelium. We identified 25 additional CPAMs with overall histologic architecture similar to CPAMs with KRAS mutations but without identifiable MCCs, and we found KRAS mutations in 17 (68%). The histologic features of these KRAS mutated CPAMs included type 1 and type 3 morphology, as well as lesions with an intermediate histologic appearance, and analysis revealed a strong correlation between the specific amino acid substitution and histomorphology. These findings, together with previously published model organism data, suggests that the formation of type 1 and 3 CPAMs is driven by mosaic KRAS mutations arising in the lung epithelium early in development and places them within the growing field of mosaic RASopathies. The presence of widespread epithelial mutation explains late metastatic disease in incompletely resected patients and reinforces the recommendation for complete resection of these lesions.
Collapse
Affiliation(s)
- Nya D Nelson
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Feng Xu
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Prashant Chandrasekaran
- Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - William H Peranteau
- Department of Surgery, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David B Frank
- Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marilyn Li
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Pogoriler
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Maron BA, Wang RS, Carnethon MR, Rowin EJ, Loscalzo J, Maron BJ, Maron MS. What Causes Hypertrophic Cardiomyopathy? Am J Cardiol 2022; 179:74-82. [PMID: 35843734 DOI: 10.1016/j.amjcard.2022.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 01/11/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a global and relatively common cause of patient morbidity and mortality and is among the first reported monogenic cardiac diseases. For 30 years, the basic etiology of HCM has been attributed largely to variants in individual genes encoding cardiac sarcomere proteins, with the implication that HCM is fundamentally a genetic disease. However, data from clinical and network medicine analyses, as well as contemporary genetic studies show that single gene variants do not fully explain the broad and diverse HCM clinical spectrum. These transformative advances place a new focus on possible novel interactions between acquired disease determinants and genetic context to produce complex HCM phenotypes, also offering a measure of caution against overemphasizing monogenics as the principal cause of this disease. These new perspectives in which HCM is not a uniformly genetic disease but likely explained by multifactorial etiology will also unavoidably impact how HCM is viewed by patients and families in the clinical practicing community going forward, including relevance to genetic counseling and access to healthcare insurance and psychosocial wellness.
Collapse
Affiliation(s)
- Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine and Harvard Medical School, Boston, Massachusetts.
| | - Rui-Sheng Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mercedes R Carnethon
- Division of Pulmonology and Critical Care, Feinberg School of Medicine, Chicago, Illinois
| | - Ethan J Rowin
- HCM Center, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine and Harvard Medical School, Boston, Massachusetts
| | - Barry J Maron
- HCM Center, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Martin S Maron
- HCM Center, Lahey Hospital and Medical Center, Burlington, Massachusetts
| |
Collapse
|
7
|
Le Roux Ö, Pershing NLK, Kaltenbrun E, Newman NJ, Everitt JI, Baldelli E, Pierobon M, Petricoin EF, Counter CM. Genetically manipulating endogenous Kras levels and oncogenic mutations in vivo influences tissue patterning of murine tumorigenesis. eLife 2022; 11:e75715. [PMID: 36069770 PMCID: PMC9451540 DOI: 10.7554/elife.75715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
Despite multiple possible oncogenic mutations in the proto-oncogene KRAS, unique subsets of these mutations are detected in different cancer types. As KRAS mutations occur early, if not being the initiating event, these mutational biases are ostensibly a product of how normal cells respond to the encoded oncoprotein. Oncogenic mutations can impact not only the level of active oncoprotein, but also engagement with proteins. To attempt to separate these two effects, we generated four novel Cre-inducible (LSL) Kras alleles in mice with the biochemically distinct G12D or Q61R mutations and encoded by native (nat) rare or common (com) codons to produce low or high protein levels. While there were similarities, each allele also induced a distinct transcriptional response shortly after activation in vivo. At one end of the spectrum, activating the KrasLSL-natG12D allele induced transcriptional hallmarks suggestive of an expansion of multipotent cells, while at the other end, activating the KrasLSL-comQ61R allele led to hallmarks of hyperproliferation and oncogenic stress. Evidence suggests that these changes may be a product of signaling differences due to increased protein expression as well as the specific mutation. To determine the impact of these distinct responses on RAS mutational patterning in vivo, all four alleles were globally activated, revealing that hematolymphopoietic lesions were permissive to the level of active oncoprotein, squamous tumors were permissive to the G12D mutant, while carcinomas were permissive to both these features. We suggest that different KRAS mutations impart unique signaling properties that are preferentially capable of inducing tumor initiation in a distinct cell-specific manner.
Collapse
Affiliation(s)
- Özgün Le Roux
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Nicole LK Pershing
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Erin Kaltenbrun
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Nicole J Newman
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical CenterDurhamUnited States
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Christopher M Counter
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
8
|
Abstract
The RASopathies are a group of disorders caused by a germline mutation in one of the genes encoding a component of the RAS/MAPK pathway. These disorders, including neurofibromatosis type 1, Noonan syndrome, cardiofaciocutaneous syndrome, Costello syndrome and Legius syndrome, among others, have overlapping clinical features due to RAS/MAPK dysfunction. Although several of the RASopathies are very rare, collectively, these disorders are relatively common. In this Review, we discuss the pathogenesis of the RASopathy-associated genetic variants and the knowledge gained about RAS/MAPK signaling that resulted from studying RASopathies. We also describe the cell and animal models of the RASopathies and explore emerging RASopathy genes. Preclinical and clinical experiences with targeted agents as therapeutics for RASopathies are also discussed. Finally, we review how the recently developed drugs targeting RAS/MAPK-driven malignancies, such as inhibitors of RAS activation, direct RAS inhibitors and RAS/MAPK pathway inhibitors, might be leveraged for patients with RASopathies.
Collapse
Affiliation(s)
- Katie E Hebron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Edjay Ralph Hernandez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Fowlkes JL, Thrailkill KM, Bunn RC. RASopathies: The musculoskeletal consequences and their etiology and pathogenesis. Bone 2021; 152:116060. [PMID: 34144233 PMCID: PMC8316423 DOI: 10.1016/j.bone.2021.116060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023]
Abstract
The RASopathies comprise an ever-growing number of clinical syndromes resulting from germline mutations in components of the RAS/MAPK signaling pathway. While multiple organs and tissues may be affected by these mutations, this review will focus on how these mutations specifically impact the musculoskeletal system. Herein, we review the genetics and musculoskeletal phenotypes of these syndromes in humans. We discuss how mutations in the RASopathy syndromes have been studied in translational mouse models. Finally, we discuss how signaling molecules within the RAS/MAPK pathway are involved in normal and abnormal bone biology in the context of osteoblasts, osteoclasts and chondrocytes.
Collapse
Affiliation(s)
- John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - R Clay Bunn
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| |
Collapse
|