1
|
Hu RC, Zhang Y, Nitschke L, Johnson SJ, Hurley AE, Lagor WR, Xia Z, Cooper TA. MBNL overexpression rescues cardiac phenotypes in a myotonic dystrophy type 1 heart mouse model. J Clin Invest 2025; 135:e186416. [PMID: 39932794 PMCID: PMC11957708 DOI: 10.1172/jci186416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the dystrophia myotonica protein kinase (DMPK) gene. The expanded CUG repeat RNA (CUGexp RNA) transcribed from the mutant allele sequesters the muscleblind-like (MBNL) family of RNA-binding proteins, causing their loss of function and disrupting regulated pre-mRNA processing. We used a DM1 heart mouse model that inducibly expresses CUGexp RNA to test the contribution of MBNL loss to DM1 cardiac abnormalities and explored MBNL restoration as a potential therapy. AAV9-mediated overexpression of MBNL1 and/or MBNL2 significantly rescued DM1 cardiac phenotypes including conduction delays, contractile dysfunction, hypertrophy, and misregulated alternative splicing and gene expression. While robust, the rescue was partial compared with reduced CUGexp RNA and plateaued with increased exogenous MBNL expression. These findings demonstrate that MBNL loss is a major contributor to DM1 cardiac manifestations and suggest that additional mechanisms play a role, highlighting the complex nature of DM1 pathogenesis.
Collapse
Affiliation(s)
- Rong-Chi Hu
- Department of Pathology and Immunology, and
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Yi Zhang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Sara J. Johnson
- Department of Pathology and Immunology, and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ayrea E. Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
- Center for Biomedical Data Science, Oregon Health and Science University, Portland, Oregon, USA
| | - Thomas A. Cooper
- Department of Pathology and Immunology, and
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Weeden T, Picariello T, Quinn B, Spring S, Shen PY, Qiu Q, Vieira BF, Schlaefke L, Russo RJ, Chang YA, Cui J, Yao M, Wen A, Hsia N, Evron T, Ovington K, Tsai PN, Yoder N, Lan B, Venkatesan R, Hall J, Desjardins CA, Qatanani M, Hilderbrand S, Najim J, Tang Z, Tanner MK, Subramanian R, Thornton CA, Ibraghimov-Beskrovnaya O, Zanotti S. FORCE platform overcomes barriers of oligonucleotide delivery to muscle and corrects myotonic dystrophy features in preclinical models. COMMUNICATIONS MEDICINE 2025; 5:22. [PMID: 39827287 PMCID: PMC11742727 DOI: 10.1038/s43856-025-00733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND We developed the FORCETM platform to overcome limitations of oligonucleotide delivery to muscle and enable their applicability to neuromuscular disorders. The platform consists of an antigen-binding fragment, highly specific for the human transferrin receptor 1 (TfR1), conjugated to an oligonucleotide via a cleavable valine-citrulline linker. Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by expanded CUG triplets in the DMPK RNA, which sequester splicing proteins in the nucleus, lead to spliceopathy, and drive disease progression. METHODS Multiple surrogate conjugates were generated to characterize the FORCE platform. DYNE-101 is the conjugate designed to target DMPK and correct spliceopathy for the treatment of DM1. HSALR and TfR1hu/mu;DMSXLTg/Tg mice were used as models of myotonic dystrophy, the latter expresses human TfR1 and a human DMPK RNA with >1,000 CUG repeats. Cynomolgus monkeys were used to determine translatability of DYNE-101 pharmacology to higher species. RESULTS In HSALR mice, a surrogate FORCE conjugate achieves durable correction of spliceopathy and improves myotonia to a greater extent than unconjugated ASO. In patient-derived myoblasts, DYNE-101 reduces DMPK RNA and nuclear foci, consequently improving spliceopathy. In TfR1hu/mu;DMSXLTg/Tg mice, DYNE-101 reduces mutant DMPK RNA in muscle, thereby correcting splicing. Reduction of DMPK foci in cardiomyocyte nuclei accompanies these effects. Low monthly dosing of DYNE-101 in TfR1hu/mu;DMSXLWT/Tg mice or cynomolgus monkeys leads to a profound reduction of DMPK expression in muscle. CONCLUSIONS These data validate FORCE as a drug delivery platform and support the notion that DM1 may be treatable with low and infrequent dosing of DYNE-101.
Collapse
Affiliation(s)
| | | | | | - Sean Spring
- Dyne Therapeutics Inc, Waltham, MA, USA
- Pheon Therapeutics, Cambridge, MA, USA
| | | | | | | | | | | | | | - Jin Cui
- Dyne Therapeutics Inc, Waltham, MA, USA
| | | | - Aiyun Wen
- Dyne Therapeutics Inc, Waltham, MA, USA
- Rona Therapeutics, Shanghai, China
| | | | | | - Katy Ovington
- Dyne Therapeutics Inc, Waltham, MA, USA
- 4:59 NewCo, a 5AM Ventures Company, Boston, MA, USA
| | - Pei-Ni Tsai
- Dyne Therapeutics Inc, Waltham, MA, USA
- Generation Bio, Cambridge, MA, USA
| | | | - Bo Lan
- Dyne Therapeutics Inc, Waltham, MA, USA
- Summation Bio, Cambridge, MA, USA
| | | | - John Hall
- Dyne Therapeutics Inc, Waltham, MA, USA
| | | | - Mo Qatanani
- Dyne Therapeutics Inc, Waltham, MA, USA
- Scholar Rock, Cambridge, MA, USA
| | | | | | - Zhenzhi Tang
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | |
Collapse
|
3
|
Li L, Xie S, Deng W. RNA binding proteins: Mechanistic considerations and perspectives in controlling cardiovascular diseases. Eur J Pharmacol 2025; 987:177101. [PMID: 39613174 DOI: 10.1016/j.ejphar.2024.177101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) are becoming serious disease that endangering human health due to the increasing morbidity and mortality, and many molecular targets are involved in this complex pathologic process. Recently, RNA-binding proteins (RBPs) have received potential attention as a promising targets for preventing CVDs, including myocardial hypertrophy, dilated cardiomyopathy (DCM), myocardial fibrosis, and pulmonary hypertension (PH). As important regulators of RNA metabolism, RBPs play important roles in all steps of the gene expression cascade,and affect the occurrence and development of various diseases. In this review, we discuss the regulatory role of RBPs on various CVDs at the post transcriptional modification level based on current research. We also highlight the existing and potential RNA-based therapeutics that could impact future CVD treatments.
Collapse
Affiliation(s)
- Lanlan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Aguilera MFG, Manterola C, García-Méndez N. Anesthetic challenges in Curschmann Steinert's disease (DM1): The importance of respiratory assessment. Am J Med Sci 2024; 368:679-680. [PMID: 39084521 DOI: 10.1016/j.amjms.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Affiliation(s)
- María Fernanda García Aguilera
- Doctorate in Medical Sciences, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Morphological and Surgical Studies, CEMyQ, Universidad de La Frontera, Chile.; Universidad de La Frontera, Temuco, Chile
| | - Carlos Manterola
- Doctorate in Medical Sciences, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Morphological and Surgical Studies, CEMyQ, Universidad de La Frontera, Chile.; Universidad de La Frontera, Temuco, Chile
| | - Nayely García-Méndez
- Doctorate in Medical Sciences, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Morphological and Surgical Studies, CEMyQ, Universidad de La Frontera, Chile.; Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
5
|
Nitschke L, Hu RC, Miller AN, Cooper TA. Rescue of Scn5a mis-splicing does not improve the structural and functional heart defects of a DM1 heart mouse model. Hum Mol Genet 2024; 33:1789-1799. [PMID: 39126705 PMCID: PMC11458005 DOI: 10.1093/hmg/ddae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Myotonic Dystrophy Type 1 (DM1) is an autosomal dominant multisystemic disorder for which cardiac features, including conduction delays and arrhythmias, are the second leading cause of disease mortality. DM1 is caused by expanded CTG repeats in the 3' untranslated region of the DMPK gene. Transcription of the expanded DMPK allele produces mRNAs containing long tracts of CUG repeats, which sequester the Muscleblind-Like family of RNA binding proteins, leading to their loss-of-function and the dysregulation of alternative splicing. A well-characterized mis-regulated splicing event in the DM1 heart is the increased inclusion of SCN5A exon 6A rather than the mutually exclusive exon 6B that normally predominates in adult heart. As previous work showed that forced inclusion of Scn5a exon 6A in mice recapitulates cardiac DM1 phenotypes, we tested whether rescue of Scn5a mis-splicing would improve the cardiac phenotypes in a DM1 heart mouse model. We generated mice lacking Scn5a exon 6A to force the expression of the adult SCN5A isoform including exon 6B and crossed these mice to our previously established CUG960 DM1 heart mouse model. We showed that correction Scn5a mis-splicing does not improve the DM1 heart conduction delays and structural changes induced by CUG repeat RNA expression. Interestingly, we found that in addition to Scn5a mis-splicing, Scn5a expression is reduced in heart tissues of CUG960 mice and DM1-affected individuals. These data indicate that Scn5a mis-splicing is not the sole driver of DM1 heart deficits and suggest a potential role for reduced Scn5a expression in DM1 cardiac disease.
Collapse
Affiliation(s)
- Larissa Nitschke
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Rong-Chi Hu
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Andrew N Miller
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
6
|
Nutter CA, Kidd BM, Carter HA, Hamel JI, Mackie PM, Kumbkarni N, Davenport ML, Tuyn DM, Gopinath A, Creigh PD, Sznajder ŁJ, Wang ET, Ranum LPW, Khoshbouei H, Day JW, Sampson JB, Prokop S, Swanson MS. Choroid plexus mis-splicing and altered cerebrospinal fluid composition in myotonic dystrophy type 1. Brain 2023; 146:4217-4232. [PMID: 37143315 PMCID: PMC10545633 DOI: 10.1093/brain/awad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.
Collapse
Affiliation(s)
- Curtis A Nutter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Benjamin M Kidd
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Helmut A Carter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Johanna I Hamel
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Philip M Mackie
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nayha Kumbkarni
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Mackenzie L Davenport
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Dana M Tuyn
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Adithya Gopinath
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peter D Creigh
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Laura P W Ranum
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, McKnight Brain Institute and the Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John W Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jacinda B Sampson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute and the Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Pierre M, Djemai M, Chapotte-Baldacci CA, Pouliot V, Puymirat J, Boutjdir M, Chahine M. Cardiac involvement in patient-specific induced pluripotent stem cells of myotonic dystrophy type 1: unveiling the impact of voltage-gated sodium channels. Front Physiol 2023; 14:1258318. [PMID: 37791351 PMCID: PMC10544896 DOI: 10.3389/fphys.2023.1258318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a genetic disorder that causes muscle weakness and myotonia. In DM1 patients, cardiac electrical manifestations include conduction defects and atrial fibrillation. DM1 results in the expansion of a CTG transcribed into CUG-containing transcripts that accumulate in the nucleus as RNA foci and alter the activity of several splicing regulators. The underlying pathological mechanism involves two key RNA-binding proteins (MBNL and CELF) with expanded CUG repeats that sequester MBNL and alter the activity of CELF resulting in spliceopathy and abnormal electrical activity. In the present study, we identified two DM1 patients with heart conduction abnormalities and characterized their hiPSC lines. Two differentiation protocols were used to investigate both the ventricular and the atrial electrophysiological aspects of DM1 and unveil the impact of the mutation on voltage-gated ion channels, electrical activity, and calcium homeostasis in DM1 cardiomyocytes derived from hiPSCs. Our analysis revealed the presence of molecular hallmarks of DM1, including the accumulation of RNA foci and sequestration of MBNL1 in DM1 hiPSC-CMs. We also observed mis-splicing of SCN5A and haploinsufficiency of DMPK. Furthermore, we conducted separate characterizations of atrial and ventricular electrical activity, conduction properties, and calcium homeostasis. Both DM1 cell lines exhibited reduced density of sodium and calcium currents, prolonged action potential duration, slower conduction velocity, and impaired calcium transient propagation in both ventricular and atrial cardiomyocytes. Notably, arrhythmogenic events were recorded, including both ventricular and atrial arrhythmias were observed in the two DM1 cell lines. These findings enhance our comprehension of the molecular mechanisms underlying DM1 and provide valuable insights into the pathophysiology of ventricular and atrial involvement.
Collapse
Affiliation(s)
| | | | | | | | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
- Departments of Cell Biology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Mohamed Chahine
- CERVO Research Center, Quebec City, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
8
|
Conte TC, Duran-Bishop G, Orfi Z, Mokhtari I, Deprez A, Côté I, Molina T, Kim TY, Tellier L, Roussel MP, Maggiorani D, Benabdallah B, Leclerc S, Feulner L, Pellerito O, Mathieu J, Andelfinger G, Gagnon C, Beauséjour C, McGraw S, Duchesne E, Dumont NA. Clearance of defective muscle stem cells by senolytics restores myogenesis in myotonic dystrophy type 1. Nat Commun 2023; 14:4033. [PMID: 37468473 PMCID: PMC10356779 DOI: 10.1038/s41467-023-39663-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Muscle stem cells, the engine of muscle repair, are affected in myotonic dystrophy type 1 (DM1); however, the underlying molecular mechanism and the impact on the disease severity are still elusive. Here, we show using patients' samples that muscle stem cells/myoblasts exhibit signs of cellular senescence in vitro and in situ. Single cell RNAseq uncovers a subset of senescent myoblasts expressing high levels of genes related to the senescence-associated secretory phenotype (SASP). We show that the levels of interleukin-6, a prominent SASP cytokine, in the serum of DM1 patients correlate with muscle weakness and functional capacity limitations. Drug screening revealed that the senolytic BCL-XL inhibitor (A1155463) can specifically remove senescent DM1 myoblasts by inducing their apoptosis. Clearance of senescent cells reduced the expression of SASP, which rescued the proliferation and differentiation capacity of DM1 myoblasts in vitro and enhanced their engraftment following transplantation in vivo. Altogether, this study identifies the pathogenic mechanism associated with muscle stem cell defects in DM1 and opens a therapeutic avenue that targets these defective cells to restore myogenesis.
Collapse
Affiliation(s)
- Talita C Conte
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Gilberto Duran-Bishop
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of obstetrics and gynecology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Inès Mokhtari
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Health Sciences, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Neuromuscular diseases interdisciplinary research group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada
| | - Alyson Deprez
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Côté
- Neuromuscular diseases interdisciplinary research group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Tae-Yeon Kim
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of microbiology, infectiology and immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Lydia Tellier
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- School of rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Marie-Pier Roussel
- Neuromuscular diseases interdisciplinary research group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada
- Department of Fundamental Sciences, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Damien Maggiorani
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | | | | | - Lara Feulner
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | | | - Jean Mathieu
- Neuromuscular diseases interdisciplinary research group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada
- CHU Sherbrooke Research Center, and Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gregor Andelfinger
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Gagnon
- Neuromuscular diseases interdisciplinary research group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada
- CHU Sherbrooke Research Center, and Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Beauséjour
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Serge McGraw
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
- Department of obstetrics and gynecology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Elise Duchesne
- Department of Health Sciences, Université du Québec à Chicoutimi, Saguenay, QC, Canada.
- Neuromuscular diseases interdisciplinary research group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada.
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, QC, Canada.
- School of rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
9
|
Thornton CA, Moxley RT, Eichinger K, Heatwole C, Mignon L, Arnold WD, Ashizawa T, Day JW, Dent G, Tanner MK, Duong T, Greene EP, Herbelin L, Johnson NE, King W, Kissel JT, Leung DG, Lott DJ, Norris DA, Pucillo EM, Schell W, Statland JM, Stinson N, Subramony SH, Xia S, Bishop KM, Bennett CF. Antisense oligonucleotide targeting DMPK in patients with myotonic dystrophy type 1: a multicentre, randomised, dose-escalation, placebo-controlled, phase 1/2a trial. Lancet Neurol 2023; 22:218-228. [PMID: 36804094 DOI: 10.1016/s1474-4422(23)00001-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND Myotonic dystrophy type 1 results from an RNA gain-of-function mutation, in which DM1 protein kinase (DMPK) transcripts carrying expanded trinucleotide repeats exert deleterious effects. Antisense oligonucleotides (ASOs) provide a promising approach to treatment of myotonic dystrophy type 1 because they reduce toxic RNA levels. We aimed to investigate the safety of baliforsen (ISIS 598769), an ASO targeting DMPK mRNA. METHODS In this dose-escalation phase 1/2a trial, adults aged 20-55 years with myotonic dystrophy type 1 were enrolled at seven tertiary referral centres in the USA and randomly assigned via an interactive web or phone response system to subcutaneous injections of baliforsen 100 mg, 200 mg, or 300 mg, or placebo (6:2 randomisation at each dose level), or to baliforsen 400 mg or 600 mg, or placebo (10:2 randomisation at each dose level), on days 1, 3, 5, 8, 15, 22, 29, and 36. Sponsor personnel directly involved with the trial, participants, and all study personnel were masked to treatment assignments. The primary outcome measure was safety in all participants who received at least one dose of study drug up to day 134. This trial is registered with ClinicalTrials.gov (NCT02312011), and is complete. FINDINGS Between Dec 12, 2014, and Feb 22, 2016, 49 participants were enrolled and randomly assigned to baliforsen 100 mg (n=7, one patient not dosed), 200 mg (n=6), 300 mg (n=6), 400 mg (n=10), 600 mg (n=10), or placebo (n=10). The safety population comprised 48 participants who received at least one dose of study drug. Treatment-emergent adverse events were reported for 36 (95%) of 38 participants assigned to baliforsen and nine (90%) of ten participants assigned to placebo. Aside from injection-site reactions, common treatment-emergent adverse events were headache (baliforsen: ten [26%] of 38 participants; placebo: four [40%] of ten participants), contusion (baliforsen: seven [18%] of 38; placebo: one [10%] of ten), and nausea (baliforsen: six [16%] of 38; placebo: two [20%] of ten). Most adverse events (baliforsen: 425 [86%] of 494; placebo: 62 [85%] of 73) were mild in severity. One participant (baliforsen 600 mg) developed transient thrombocytopenia considered potentially treatment related. Baliforsen concentrations in skeletal muscle increased with dose. INTERPRETATION Baliforsen was generally well tolerated. However, skeletal muscle drug concentrations were below levels predicted to achieve substantial target reduction. These results support the further investigation of ASOs as a therapeutic approach for myotonic dystrophy type 1, but suggest improved drug delivery to muscle is needed. FUNDING Ionis Pharmaceuticals, Biogen.
Collapse
Affiliation(s)
| | | | | | - Chad Heatwole
- Center for Health and Technology, University of Rochester, Rochester, NY, USA
| | - Laurence Mignon
- Translational Medicine, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - W David Arnold
- Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tetsuo Ashizawa
- Neuroscience Research Program, Houston Methodist Research Institute, Houston, TX, USA
| | - John W Day
- Neuromuscular Medicine, Stanford University, Palo Alto, CA, USA
| | - Gersham Dent
- Neurodegeneration Development Unit, Biogen, Cambridge, MA, USA
| | | | - Tina Duong
- Neuromuscular Medicine, Stanford University, Palo Alto, CA, USA
| | - Ericka P Greene
- Neuromuscular Clinic, Houston Methodist Research Institute, Houston, TX, USA
| | - Laura Herbelin
- Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Wendy King
- Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John T Kissel
- Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Doris G Leung
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Donovan J Lott
- Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Daniel A Norris
- Pharmacokinetics and Clinical Pharmacology, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Wendy Schell
- Neuromuscular Clinic, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Nikia Stinson
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Sub H Subramony
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Shuting Xia
- Biometrics, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Kathie M Bishop
- Clinical Development, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | |
Collapse
|
10
|
Nitschke L, Hu RC, Miller A, Lucas L, Cooper T. Alternative splicing mediates the compensatory upregulation of MBNL2 upon MBNL1 loss-of-function. Nucleic Acids Res 2023; 51:1245-1259. [PMID: 36617982 PMCID: PMC9943662 DOI: 10.1093/nar/gkac1219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Loss of gene function can be compensated by paralogs with redundant functions. An example of such compensation are the paralogs of the Muscleblind-Like (MBNL) family of RNA-binding proteins that are sequestered and lose their function in Myotonic Dystrophy Type 1 (DM1). Loss of MBNL1 increases the levels of its paralog MBNL2 in tissues where Mbnl2 expression is low, allowing MBNL2 to functionally compensate for MBNL1 loss. Here, we show that loss of MBNL1 increases the inclusion of Mbnl2 exon 6 and exon 9. We find that inclusion of Mbnl2 exon 6 increases the translocation of MBNL2 to the nucleus, while the inclusion of Mbnl2 exon 9 shifts the reading frame to an alternative C-terminus. We show that the C-terminus lacking exon 9 contains a PEST domain which causes proteasomal degradation. Loss of MBNL1 increases the inclusion of exon 9, resulting in an alternative C-terminus lacking the PEST domain and the increase of MBNL2. We further find that the compensatory mechanism is active in a mouse DM1 model. Together, this study uncovers the compensatory mechanism by which loss of MBNL1 upregulates its paralog MBNL2 and highlights a potential role of the compensatory mechanism in DM1.
Collapse
Affiliation(s)
- Larissa Nitschke
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rong-Chi Hu
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew N Miller
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lathan Lucas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Chemical, Physical & Structural Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Stoodley J, Vallejo-Bedia F, Seone-Miraz D, Debasa-Mouce M, Wood MJA, Varela MA. Application of Antisense Conjugates for the Treatment of Myotonic Dystrophy Type 1. Int J Mol Sci 2023; 24:2697. [PMID: 36769018 PMCID: PMC9916419 DOI: 10.3390/ijms24032697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is one of the most common muscular dystrophies and can be potentially treated with antisense therapy decreasing mutant DMPK, targeting miRNAs or their binding sites or via a blocking mechanism for MBNL1 displacement from the repeats. Unconjugated antisense molecules are able to correct the disease phenotype in mouse models, but they show poor muscle penetration upon systemic delivery in DM1 patients. In order to overcome this challenge, research has focused on the improvement of the therapeutic window and biodistribution of antisense therapy using bioconjugation to lipids, cell penetrating peptides or antibodies. Antisense conjugates are able to induce the long-lasting correction of DM1 pathology at both molecular and functional levels and also efficiently penetrate hard-to-reach tissues such as cardiac muscle. Delivery to the CNS at clinically relevant levels remains challenging and the use of alternative administration routes may be necessary to ameliorate some of the symptoms experienced by DM1 patients. With several antisense therapies currently in clinical trials, the outlook for achieving a clinically approved treatment for patients has never looked more promising.
Collapse
Affiliation(s)
- Jessica Stoodley
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, Oxford OX3 7TY, UK
| | - Francisco Vallejo-Bedia
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, Oxford OX3 7TY, UK
| | - David Seone-Miraz
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, Oxford OX3 7TY, UK
| | - Manuel Debasa-Mouce
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, Oxford OX3 7TY, UK
| | - Matthew J. A. Wood
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, Oxford OX3 7TY, UK
| | - Miguel A. Varela
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, Oxford OX3 7TY, UK
| |
Collapse
|
12
|
Lee KY, Seah C, Li C, Chen YF, Chen CY, Wu CI, Liao PC, Shyu YC, Olafson HR, McKee KK, Wang ET, Yeh CH, Wang CH. Mice lacking MBNL1 and MBNL2 exhibit sudden cardiac death and molecular signatures recapitulating myotonic dystrophy. Hum Mol Genet 2022; 31:3144-3160. [PMID: 35567413 PMCID: PMC9476621 DOI: 10.1093/hmg/ddac108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by expansions of C(C)TG repeats in the non-coding regions of the DMPK and CNBP genes, and DM patients often suffer from sudden cardiac death due to lethal conduction block or arrhythmia. Specific molecular changes that underlie DM cardiac pathology have been linked to repeat-associated depletion of Muscleblind-like (MBNL) 1 and 2 proteins and upregulation of CUGBP, Elav-like family member 1 (CELF1). Hypothesis solely targeting MBNL1 or CELF1 pathways that could address all the consequences of repeat expansion in heart remained inconclusive, particularly when the direct cause of mortality and results of transcriptome analyses remained undetermined in Mbnl compound knockout (KO) mice with cardiac phenotypes. Here, we develop Myh6-Cre double KO (DKO) (Mbnl1−/−; Mbnl2cond/cond; Myh6-Cre+/−) mice to eliminate Mbnl1/2 in cardiomyocytes and observe spontaneous lethal cardiac events under no anesthesia. RNA sequencing recapitulates DM heart spliceopathy and shows gene expression changes that were previously undescribed in DM heart studies. Notably, immunoblotting reveals a nearly 6-fold increase of Calsequestrin 1 and 50% reduction of epidermal growth factor proteins. Our findings demonstrate that complete ablation of MBNL1/2 in cardiomyocytes is essential for generating sudden death due to lethal cardiac rhythms and reveal potential mechanisms for DM heart pathogenesis.
Collapse
Affiliation(s)
- Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Carol Seah
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Ching Li
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Yu-Fu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Chwen-Yu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Ching-I Wu
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Po-Cheng Liao
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Hailey R Olafson
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Kendra K McKee
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linko Branch, Taoyuan, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
13
|
Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing. Int J Mol Sci 2022; 23:ijms23094622. [PMID: 35563013 PMCID: PMC9101876 DOI: 10.3390/ijms23094622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy affecting many different body tissues, predominantly skeletal and cardiac muscles and the central nervous system. The expansion of CTG repeats in the DM1 protein-kinase (DMPK) gene is the genetic cause of the disease. The pathogenetic mechanisms are mainly mediated by the production of a toxic expanded CUG transcript from the DMPK gene. With the availability of new knowledge, disease models, and technical tools, much progress has been made in the discovery of altered pathways and in the potential of therapeutic intervention, making the path to the clinic a closer reality. In this review, we describe and discuss the molecular therapeutic strategies for DM1, which are designed to directly target the CTG genomic tract, the expanded CUG transcript or downstream signaling molecules.
Collapse
|
14
|
Espinosa-Espinosa J, González-Barriga A, López-Castel A, Artero R. Deciphering the Complex Molecular Pathogenesis of Myotonic Dystrophy Type 1 through Omics Studies. Int J Mol Sci 2022; 23:ijms23031441. [PMID: 35163365 PMCID: PMC8836095 DOI: 10.3390/ijms23031441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Omics studies are crucial to improve our understanding of myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults. Employing tissue samples and cell lines derived from patients and animal models, omics approaches have revealed the myriad alterations in gene and microRNA expression, alternative splicing, 3′ polyadenylation, CpG methylation, and proteins levels, among others, that contribute to this complex multisystem disease. In addition, omics characterization of drug candidate treatment experiments provides crucial insight into the degree of therapeutic rescue and off-target effects that can be achieved. Finally, several innovative technologies such as single-cell sequencing and artificial intelligence will have a significant impact on future DM1 research.
Collapse
Affiliation(s)
- Jorge Espinosa-Espinosa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Anchel González-Barriga
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, 75013 Paris, France;
| | - Arturo López-Castel
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963543028
| | - Rubén Artero
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
15
|
Cardiac Pathology in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:ijms222111874. [PMID: 34769305 PMCID: PMC8584352 DOI: 10.3390/ijms222111874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children, is a multi-systemic disorder affecting skeletal, cardiac, and smooth muscles as well as neurologic, endocrine and other systems. This review is on the cardiac pathology associated with DM1. The heart is one of the primary organs affected in DM1. Cardiac conduction defects are seen in up to 75% of adult DM1 cases and sudden death due to cardiac arrhythmias is one of the most common causes of death in DM1. Unfortunately, the pathogenesis of cardiac manifestations in DM1 is ill defined. In this review, we provide an overview of the history of cardiac studies in DM1, clinical manifestations, and pathology of the heart in DM1. This is followed by a discussion of emerging data about the utility of cardiac magnetic resonance imaging (CMR) as a biomarker for cardiac disease in DM1, and ends with a discussion on models of cardiac RNA toxicity in DM1 and recent clinical guidelines for cardiologic management of individuals with DM1.
Collapse
|