1
|
Little I, Bersie S, Redente EF, McCubbrey AL, Tarling EJ. Alveolar macrophages: guardians of the alveolar lipid galaxy. Curr Opin Lipidol 2025; 36:153-162. [PMID: 40183504 PMCID: PMC12043416 DOI: 10.1097/mol.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
PURPOSE OF REVIEW As the primary guardians at the air-surface interface, the functional profile of alveolar macrophages (AM) is wide-ranging from establishment of the alveolar niche, homeostatic maintenance of surfactant levels, to pathogen clearance and resolution and repair processes. Alveolar lipid homeostasis is disturbed in chronic lung diseases and contributes to disease pathogenesis through extracellular localization in the alveolar lumen or intracellular accumulation in AM. This review aims to provide a focused overview of the state of knowledge of AM, their ontogeny and development during health and disease, and how dysregulated AM lipids play a key role in disease processes, from initiation to resolution. RECENT FINDINGS While lipid-laden macrophages are observed across a broad spectrum of lung diseases, their occurrence has largely been considered consequential. Recent advances in lipidomic profiling of single cell types has revealed that disturbances to lipid homeostasis occur early in disease in tissue-resident cells. Comparisons between inflammatory and fibrotic injury models reveal specific alveolar macrophage subsets with different lipid utilization that contribute to the disease process. SUMMARY Understanding the intricate web of AM population seeding and development and how this niche is perturbed by lipid disturbances may help provide leverage for new interventions.
Collapse
Affiliation(s)
- Isaiah Little
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Stephanie Bersie
- Toxicology Graduate Program, Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Elizabeth F. Redente
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics
| | - Alexandra L. McCubbrey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Elizabeth J. Tarling
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
- Molecular Biology Institute
- Johnsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
2
|
Zhang S, Liu J, Ouyang X, Lyu P, Wang Y, Zhong J. Modulation of lectin-like oxidized low-density lipoprotein receptor-1 by Porphyromonas gingivalis promoting progression of atherosclerosis in apolipoprotein E -/- mice. J Dent Sci 2025; 20:754-763. [PMID: 40224117 PMCID: PMC11993065 DOI: 10.1016/j.jds.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/13/2024] [Indexed: 04/15/2025] Open
Abstract
Background/Purpose Porphyromonas gingivalis (P. gingivalis), the primary pathogenic bacterium in periodontitis, can infiltrate the cardiovascular system via the bloodstream and actively contribute to various pathological processes associated with atherosclerosis. The scavenger receptor lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays a crucial role in atherosclerosis pathogenesis. Previous studies have shown that LOX-1 is involved in endothelial cell activation injury, monocyte migration, and adhesion to endothelial cells induced by P. gingivalis. The objective of this study was to further investigate the potential role of LOX-1 in promoting P. gingivalis-induced atherosclerosis in mice. Materials and methods Using apolipoprotein E (APOE)-/- mice fed with high-fat diet for an established model. Intravenous injection of P. gingivalis was performed to create P. gingivalis blood model while intraperitoneal injection of Polyinosinic-polycytidylic acid (Poly (I:C)) served as an inhibitor for LOX-1. After 12 weeks, plaques and blood lipids were examined. Results Results showed that induction with P. gingivalis led to increased expression of LOX-1 in both the aortic root and blood samples, increased plaque area, reduced plaque stability, elevated expression levels of vascular adhesion molecule-1(VCAM-1), Interleukin-6(IL-6) and M1 macrophages. However, pretreatment with Poly (I:C) resulted in decreased plaque area improved plaque stability and reduced expression levels of VCAM-1 and IL-6. Conclusion These findings suggest that LOX-1 may serve as an intermediary factor promoting atherosclerosis associated with periodontitis.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jianru Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Peiying Lyu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yuanbo Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jinsheng Zhong
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
3
|
Deniau B, Ludes PO, Khalifeh-Ballan P, Fenninger L, Kindo M, Collange O, Geny B, Noll E, Azibani F, Mebazaa A, Pottecher J. Transpulmonary LOX-1 Levels Are Predictive of Acute Respiratory Distress Syndrome After Cardiac Surgery: A Proof-of-Concept Study. Biomedicines 2025; 13:800. [PMID: 40299349 PMCID: PMC12024757 DOI: 10.3390/biomedicines13040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Acute respiratory distress syndrome (ARDS) is a life-threatening condition that frequently complicates high-risk cardiac surgery. We evaluated the circulating levels and transpulmonary gradient of intracellular proteins in patients at risk of developing ARDS after cardiac surgery using large scale-proteomics. Methods: We enrolled sixteen patients undergoing high-risk cardiac surgery, followed by planned ICU admission. Circulating levels of intracellular proteins were measured at the onset of the surgical procedure, at ICU admission (H0), and 24 h (H24) after surgery in blood samples simultaneously drawn from both the pulmonary artery and the left atrium. The primary endpoint was the occurrence of ARDS between ICU admission and the subsequent 48 h. Results: Among the studied proteins, the levels of intracellular lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) were higher at H24 in the pulmonary artery in patients who developed ARDS (6.96; 95% CI [6.83-7.23]) compared to patients who did not (6.48; 95% CI [6.27-6.66]), p-value = 0.016. The transpulmonary gradient of intracellular LOX-1 levels was not significantly different between ARDS and non-ARDS patients at H0 but it was more negative at H24 in ARDS (-0.23; 95% CI [-0.27, -0.14]) than in non-ARDS patients (0.03; 95% CI [-0.14, 0.32]; p-value= 0.031), with a hazard ratio HR = 0.39 (95% CI [0.18-0.86]); p-value= 0.035. The area under the ROC curve of H24 LOX-1 transpulmonary gradient to predict ARDS occurrence was 0.83 (95% CI [0.62-1.00]). Conclusions: The transpulmonary gradient of intracellular LOX-1 levels was negatively associated with the occurrence of ARDS within the first 48 h after high-risk cardiac surgery, suggesting that lung trapping of LOX-1 may be linked to postoperative ARDS.
Collapse
Affiliation(s)
- Benjamin Deniau
- Department of Anaesthesia, Burn and Critical Care, University Hospitals Saint-Louis-Lariboisière, AP-HP, 75010 Paris, France; (B.D.); (A.M.)
- UMR-S 942, INSERM, MASCOT, Paris University, 75018 Paris, France;
- Department of Medicine, Paris Cité University, 75006 Paris, France
- FHU PROMICE, Hôpital Lariboisière 2, rue Ambroise Paré, 75475 Paris, CEDEX 10, France
- INI CRCT, CHRU Brabois, 54500 Vandoeuvre les Nancy, France
| | - Pierre-Olivier Ludes
- Department of Anaesthesiology Critical Care and Perioperative Medicine, Hautepierre Hospital, Strasbourg University Hospital, 67000 Strasbourg, France (P.K.-B.); (L.F.); (E.N.)
| | - Pamela Khalifeh-Ballan
- Department of Anaesthesiology Critical Care and Perioperative Medicine, Hautepierre Hospital, Strasbourg University Hospital, 67000 Strasbourg, France (P.K.-B.); (L.F.); (E.N.)
| | - Luc Fenninger
- Department of Anaesthesiology Critical Care and Perioperative Medicine, Hautepierre Hospital, Strasbourg University Hospital, 67000 Strasbourg, France (P.K.-B.); (L.F.); (E.N.)
| | - Michel Kindo
- Department of CardioVascular Surgery, Nouvel Hôpital Civil, Strasbourg University Hospital, 67000 Strasbourg, France;
- UR 3072, « Mitochondrie, Stress Oxydant et Protection Musculaire », FMTS, FHU Omicare, Faculty of Medicine, Midwifery and Health Sciences, Strasbourg University, 67081 Strasbourg, France; (O.C.); (B.G.)
| | - Olivier Collange
- UR 3072, « Mitochondrie, Stress Oxydant et Protection Musculaire », FMTS, FHU Omicare, Faculty of Medicine, Midwifery and Health Sciences, Strasbourg University, 67081 Strasbourg, France; (O.C.); (B.G.)
- Department of Anaesthesiology Critical Care and Perioperative Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Bernard Geny
- UR 3072, « Mitochondrie, Stress Oxydant et Protection Musculaire », FMTS, FHU Omicare, Faculty of Medicine, Midwifery and Health Sciences, Strasbourg University, 67081 Strasbourg, France; (O.C.); (B.G.)
- Service de Physiologie et d’Explorations Fonctionnelles, Nouvel Hôpital Civil, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Eric Noll
- Department of Anaesthesiology Critical Care and Perioperative Medicine, Hautepierre Hospital, Strasbourg University Hospital, 67000 Strasbourg, France (P.K.-B.); (L.F.); (E.N.)
- UR 3072, « Mitochondrie, Stress Oxydant et Protection Musculaire », FMTS, FHU Omicare, Faculty of Medicine, Midwifery and Health Sciences, Strasbourg University, 67081 Strasbourg, France; (O.C.); (B.G.)
| | - Fériel Azibani
- UMR-S 942, INSERM, MASCOT, Paris University, 75018 Paris, France;
| | - Alexandre Mebazaa
- Department of Anaesthesia, Burn and Critical Care, University Hospitals Saint-Louis-Lariboisière, AP-HP, 75010 Paris, France; (B.D.); (A.M.)
- UMR-S 942, INSERM, MASCOT, Paris University, 75018 Paris, France;
- Department of Medicine, Paris Cité University, 75006 Paris, France
- FHU PROMICE, Hôpital Lariboisière 2, rue Ambroise Paré, 75475 Paris, CEDEX 10, France
- INI CRCT, CHRU Brabois, 54500 Vandoeuvre les Nancy, France
| | - Julien Pottecher
- Department of Anaesthesiology Critical Care and Perioperative Medicine, Hautepierre Hospital, Strasbourg University Hospital, 67000 Strasbourg, France (P.K.-B.); (L.F.); (E.N.)
- UR 3072, « Mitochondrie, Stress Oxydant et Protection Musculaire », FMTS, FHU Omicare, Faculty of Medicine, Midwifery and Health Sciences, Strasbourg University, 67081 Strasbourg, France; (O.C.); (B.G.)
| |
Collapse
|
4
|
Leonard J, Kepplinger D, Torres E, Hu CH, Veneziano R, Hoemann CD. Comparative analysis of Lox-1 and CD36 expression in human platelets and on circulating microparticles during ARDS-induced coagulopathy. Thromb Res 2024; 244:109202. [PMID: 39546984 DOI: 10.1016/j.thromres.2024.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) patients are at risk of thrombosis through mechanisms implicating oxidized low-density lipoprotein (oxLDL). Endothelial cells, immune cells and platelets were reported to express scavenger receptors for oxLDL: Lox-1 and CD36. We hypothesized that platelets shed a soluble Lox-1 ectodomain (sLox-1) and release CD36-bearing procoagulant microparticles (MPs), that both become elevated in subjects with ARDS-induced coagulopathy. METHODS Using anti-extracellular and anti-intracellular Lox-1 antibodies, we first tested by western blot whether platelets express Lox-1 and shed sLox-1 upon activation. Next, we measured sLox-1 in blood plasma of 23 healthy donors and 48 ARDS Omega patients with and without coagulopathy, and assessed the corresponding MP fraction for Lox-1/sLox-1 and CD36. We evaluated mechanisms of sLox-1-MP association. Recombinant proteins were used as controls. RESULTS Resting platelets expressed abundant CD36 (7.8 ng/μg protein extract) which was released upon oxLDL stimulation, but undetectable levels of full-length 37 kDa Lox-1 receptor or 24 kDa sLox-1 (below 10 pg/μg). In an RNAseq meta-analysis, platelets expressed negligible OLR1, the mRNA encoding Lox-1, compared to CD36. A subset of ARDS patients showed elevated plasma sLox-1 and MP-associated sLox-1 compared to healthy controls that was positively associated with 90-day survival and low coagulopathy. MP-associated CD36 was reduced in ARDS plasma compared to healthy donors and did not correlate with survival, coagulopathy, or sLox-1. oxLDL promoted sLox-1 binding to CD36-deficient MPs. CONCLUSION sLox-1 arising from a non-platelet cell source associates with circulating MPs which could serve a protective role in ARDS.
Collapse
Affiliation(s)
- Julia Leonard
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America
| | - David Kepplinger
- Department of Statistics, College of Engineering and Computing, George Mason University, Fairfax, VA 22030, United States of America
| | - Elmer Torres
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America
| | - Chih-Hsiang Hu
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America
| | - Remi Veneziano
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America
| | - Caroline D Hoemann
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America.
| |
Collapse
|
5
|
Kraus RF, Ott L, Utpatel K, Kees MG, Gruber MA, Bitzinger D. Neutrophils in the Spotlight-An Analysis of Neutrophil Function and Phenotype in ARDS. Int J Mol Sci 2024; 25:12547. [PMID: 39684262 DOI: 10.3390/ijms252312547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a complex disease pattern in which pathogenesis polymorphonuclear neutrophil granulocytes (PMN) play a key role. In previous experiments, we could show that interaction with collagen III (an important component of pulmonary tissue) is a possible trigger of neutrophil reactive oxygen species (ROS) production. To investigate possible correlations, further elucidate ARDS pathophysiology, and maybe find pharmacological targets, we evaluated PMNs from blood (circulating PMNs: cPMNs) and tracheal secretion (tPMNs) from patients with and without ARDS with regard to function and phenotype. Blood samples and tracheal secretions were obtained from intensive care patients with and without ARDS. Isolation of cPMN was performed by density-gradient gravity sedimentation without centrifugation. For tPMN isolation, endotracheal aspirate was filtered, and tPMNs were separated from the remaining aspirate using a particle filter. Specific surface epitopes (CD66b, CD62L, fMLP-receptor, LOX-1, CD49d, CD29, CD11b) of the isolated PMN cells were labeled with antibody-coupled dyes and analyzed by flow cytometry. Neutrophil ROS production before and after activation with N-formyl-methyl-leucyl-phenylalanine (fMLP) and tumor necrosis factor α (TNFα) was quantified using rhodamine-123. In addition, a qualitative cytological hematoxylin-eosin (HE) staining was performed with a portion of the secretion. tPMNs were observed in both bloody and mucosal tracheal secretions from ARDS patients. The epitope distribution on cPMNs and tPMNs differed significantly in patients with and without ARDS: tPMNs generally showed increased expression of CD66b, LOX-1 and fMLP-receptor compared to cPMNs, and decreased expression of CD62L. The CD49d levels of all cPMNs were at the same level as tPMNs in ARDS, whereas CD49d expression was increased on tPMNs without ARDS. ROS production was significantly stimulated by fMLP/TNFα in cPMNs regardless of the patient group, while it was similarly increased in tPMNs with and without stimulation. Increased expression of CD66b, LOX-1 and fMLP-receptor on tPMNs indicated a higher activity status compared to cPMNs. Increased CD49d expression on tPMNs without ARDS marks different PMN surface changes in lung disease. PMNs appear to be in a more activated state in lung secretions than in blood, as indicated by higher CD66b and lower CD62L expression, higher constitutive ROS production and lower excitability with fMLP and TNFα. In the context of possible CD49d-triggered ROS production, it is noteworthy that CD49d is downregulated in secretion from patients with ARDS compared to patients without. This phenotypic and functional PMN characterization can provide valuable diagnostic and therapeutic information for the intensive care treatment of ARDS patients.
Collapse
Affiliation(s)
- Richard F Kraus
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Lisa Ott
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Martin G Kees
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Michael A Gruber
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Diane Bitzinger
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Wang X, Liu X, AGA EB, Tse WM, Tse KWG, Ye B. Protective effect of the total alkaloid extract from Bulbus Fritillariae Pallidiflorae on cigarette smoke-induced Beas-2B cell injury model and transcriptomic analysis. Food Nutr Res 2024; 68:10689. [PMID: 38974914 PMCID: PMC11227262 DOI: 10.29219/fnr.v68.10689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 07/09/2024] Open
Abstract
Background Bulbus Fritillariae Pallidiflorae (BFP) is a traditional Chinese medicine that has long been used to treat lung diseases, but the active components and mechanism are still unclear. Objective This study aimed to investigate the effect and mechanism of the total alkaloid extract from BFP (BFP-TA) on cigarette smoke extract (CSE)-induced Beas-2B cells injury. Design The Beas-2B cells injury model was induced by 2% CSE, then the effect of BFP-TA on the levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and malondialdehyde (MDA) was detected according to the instructions of the T-AOC assay kit, the SOD detection kit and the MDA detection kit, and the production of ROS was detected by fluorescence microscopy. The effect of BFP-TA on Beas-2B cells apoptosis was detected by flow cytometry, and the effect of BFP-TA on related protein expression was detected by western blot. Subsequently, the effect of BFP-TA on differentially expressed genes (DEGs) in CSE-induced Beas-2B cells was studied by transcriptomic sequencing, and the expression of DEGs was verified by quantitative real-time polymerase chain reaction (qPCR). Results The results showed that BFP-TA could attenuate CSE-induced oxidative damage in Beas-2B cells by elevating T-AOC and SOD levels while inhibiting ROS and MDA levels, and the mechanism was potentially related to the SIRT1/Nrf2/Keap1 signaling pathway. Furthermore, BFP-TA could inhibit CSE-induced apoptosis by inhibiting the protein expression of Bax, MST1 and FOXO3a, and exert anti-inflammatory effect by inhibiting the activation of MAPK signaling pathway. Subsequently, transcriptome analysis and qPCR validation showed that BFP-TA could alleviate inflammation, oxidative stress, apoptosis and lipid metabolism disorders by regulating the expression of DEGs in PPAR and PI3K-Akt signaling pathways, thereby exerting a protective effect against CSE-induced Beas-2B cell injury. Conclusion This study is the first to demonstrate that BFP-TA could exert a protective effect on CSE-induced Beas-2B cell injury by exerting anti-inflammatory, antioxidant, anti-apoptotic and regulate lipid metabolism disorders.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Er-Bu AGA
- Medical College of Tibet University, Lasa, Tibet, China
| | - Wai Ming Tse
- Nin Jiom Medicine Manufactory (H.K.) Limited, Hong Kong, China
| | | | - Bengui Ye
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
- Medical College of Tibet University, Lasa, Tibet, China
| |
Collapse
|
7
|
Leonard J, Kepplinger D, Espina V, Gillevet P, Ke Y, Birukov KG, Doctor A, Hoemann CD. Whole blood coagulation in an ex vivo thrombus is sufficient to induce clot neutrophils to adopt a myeloid-derived suppressor cell signature and shed soluble Lox-1. J Thromb Haemost 2024; 22:1031-1045. [PMID: 38135253 PMCID: PMC11584067 DOI: 10.1016/j.jtha.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Blood clots are living tissues that release inflammatory mediators including IL-8/CXCL8 and MCP-1/CCL2. A deeper understanding of blood clots is needed to develop new therapies for prothrombotic disease states and regenerative medicine. OBJECTIVES To identify a common transcriptional shift in cultured blood clot leukocytes. METHODS Differential gene expression of whole blood and cultured clots (4 hours at 37 °C) was assessed by RNA sequencing (RNAseq), reverse transcriptase-polymerase chain reaction, proteomics, and histology (23 diverse healthy human donors). Cultured clot serum bioactivity was tested in endothelial barrier functional assays. RESULTS All cultured clots developed a polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) signature, including up-regulation of OLR1 (mRNA encoding lectin-like oxidized low-density lipoprotein receptor 1 [Lox-1]), IL-8/CXCL8, CXCL2, CCL2, IL10, IL1A, SPP1, TREM1, and DUSP4/MKP. Lipopolysaccharide enhanced PMN-MDSC gene expression and specifically induced a type II interferon response with IL-6 production. Lox-1 was specifically expressed by cultured clot CD15+ neutrophils. Cultured clot neutrophils, but not activated platelets, shed copious amounts of soluble Lox-1 (sLox-1) with a donor-dependent amplitude. sLox-1 shedding was enhanced by phorbol ester and suppressed by heparin and by beta-glycerol phosphate, a phosphatase inhibitor. Cultured clot serum significantly enhanced endothelial cell monolayer barrier function, consistent with a proresolving bioactivity. CONCLUSION This study suggests that PMN-MDSC activation is part of the innate immune response to coagulation which may have a protective role in inflammation. The cultured blood clot is an innovative thrombus model that can be used to study both sterile and nonsterile inflammatory states and could be used as a personalized medicine tool for drug screening.
Collapse
Affiliation(s)
- Julia Leonard
- Department of Bioengineering, Institute of Biomedical Engineering, George Mason University, Manassas, Virginia, USA
| | - David Kepplinger
- Department of Statistics, George Mason University, Fairfax, Virginia, USA
| | - Virginia Espina
- Department of Systems Biology, George Mason University, Fairfax, Virginia, USA
| | - Pat Gillevet
- Department of Biology, George Mason University, Fairfax, Virginia, USA
| | - Yunbo Ke
- Department of Anesthesiology, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Allan Doctor
- Departments of Pediatrics & Bioengineering and Center for Blood Oxygen Transport and Hemostasis, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Caroline D Hoemann
- Department of Bioengineering, Institute of Biomedical Engineering, George Mason University, Manassas, Virginia, USA.
| |
Collapse
|
8
|
Truthe S, Klassert TE, Schmelz S, Jonigk D, Blankenfeldt W, Slevogt H. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun 2024; 16:105-132. [PMID: 38232720 PMCID: PMC10866614 DOI: 10.1159/000535793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is known as a major receptor for oxidized low-density lipoproteins (oxLDL) and plays a significant role in the genesis of atherosclerosis. Recent research has shown its involvement in cancer, ischemic stroke, and diabetes. LOX-1 is a C-type lectin receptor and is involved in the activation of immune cells and inflammatory processes. It may further interact with pathogens, suggesting a role in infections or the host's response. SUMMARY This review compiles the current knowledge of potential implications of LOX-1 in inflammatory processes and in host-pathogen interactions with a particular emphasis on its regulatory role in immune responses. Also discussed are genomic and structural variations found in LOX-1 homologs across different species as well as potential involvements of LOX-1 in inflammatory processes from the angle of different cell types and organ-specific interactions. KEY MESSAGES The results presented reveal both similar and different structures in human and murine LOX-1 and provide clues as to the possible origins of different modes of interaction. These descriptions raise concerns about the suitability, particularly of mouse models, that are often used in the analysis of its functionality in humans. Further research should also aim to better understand the mostly unknown binding and interaction mechanisms between LOX-1 and different pathogens. This pursuit will not only enhance our understanding of LOX-1 involvement in inflammatory processes but also identify potential targets for immunomodulatory approaches.
Collapse
Affiliation(s)
- Sarah Truthe
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany,
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,
- Hannover Biomedical Research School (HRBS) and ZIB (Centre of Infection Biology), Braunschweig, Germany,
| | - Tilman E Klassert
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Schmelz
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Danny Jonigk
- Institute of Pathology, RWTH Medical University Aachen, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
9
|
Chakraborty S, Singh A, Wang L, Wang X, Sanborn MA, Ye Z, Maienschein-Cline M, Mukhopadhyay A, Ganesh BB, Malik AB, Rehman J. Trained immunity of alveolar macrophages enhances injury resolution via KLF4-MERTK-mediated efferocytosis. J Exp Med 2023; 220:e20221388. [PMID: 37615937 PMCID: PMC10450795 DOI: 10.1084/jem.20221388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/19/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Recent studies suggest that training of innate immune cells such as tissue-resident macrophages by repeated noxious stimuli can heighten host defense responses. However, it remains unclear whether trained immunity of tissue-resident macrophages also enhances injury resolution to counterbalance the heightened inflammatory responses. Here, we studied lung-resident alveolar macrophages (AMs) prechallenged with either the bacterial endotoxin or with Pseudomonas aeruginosa and observed that these trained AMs showed greater resilience to pathogen-induced cell death. Transcriptomic analysis and functional assays showed greater capacity of trained AMs for efferocytosis of cellular debris and injury resolution. Single-cell high-dimensional mass cytometry analysis and lineage tracing demonstrated that training induces an expansion of a MERTKhiMarcohiCD163+F4/80low lung-resident AM subset with a proresolving phenotype. Reprogrammed AMs upregulated expression of the efferocytosis receptor MERTK mediated by the transcription factor KLF4. Adoptive transfer of these trained AMs restricted inflammatory lung injury in recipient mice exposed to lethal P. aeruginosa. Thus, our study has identified a subset of tissue-resident trained macrophages that prevent hyperinflammation and restore tissue homeostasis following repeated pathogen challenges.
Collapse
Affiliation(s)
- Sreeparna Chakraborty
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Abhalaxmi Singh
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Li Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Xinge Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, USA
| | - Mark A. Sanborn
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Zijing Ye
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | | | - Amitabha Mukhopadhyay
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Balaji B. Ganesh
- Research Resources Center, University of Illinois Chicago, Chicago, Illinois, USA
| | - Asrar B. Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|