1
|
Hui J, Moon W, Dong PT, Dos Anjos C, Negri L, Yan H, Wang Y, Tam J, Dai T, Anderson RR, Goverman J, Gelfand JA, Yun SH. Low-Irradiance Antimicrobial Blue Light-Bathing Therapy for Wound Infection Control. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412493. [PMID: 40229974 DOI: 10.1002/advs.202412493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/14/2025] [Indexed: 04/16/2025]
Abstract
The prevalence of antibiotic resistance and tolerance in wound infection management poses a serious and growing health threat, necessitating the exploration of alternative approaches. Antimicrobial blue light therapy offers an appealing, non-pharmacological solution. However, its practical application has been hindered by the requirement for high irradiance levels (50-200 mW/cm2), which particularly raises safety concerns. Here, a light-bathing strategy is introduced that employs prolonged, continuous exposure to blue light at an irradiance range lower by more than an order of magnitude (5 mW/cm2). This method consistently applies bacteriostatic pressure, keeping wound bioburden low, all while minimizing photothermal risks. Leveraging tailor-made, wearable light-emitting patches, preclinical trials on rat models of wound infection are conducted, demonstrating its safety and efficacy for suppressing infections induced by methicillin-resistant Staphylococcus aureus (S. aureus) and multidrug-resistant Pseudomonas aeruginosa (P. aeruginosa). The results pave a new way for the application of blue light therapy in wound care.
Collapse
Affiliation(s)
- Jie Hui
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02139, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Wonjoon Moon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02139, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pu-Ting Dong
- Department of Microbiology, The ADA Forsyth Institute, Boston, MA, 02142, USA
| | - Carolina Dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02139, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Laisa Negri
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02139, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hao Yan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02139, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02139, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02139, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02139, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02139, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeremy Goverman
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Wound Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jeffrey A Gelfand
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02139, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02139, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Manstein D, Silebi V. Enhanced antibacterial effect of blue light in combination with an Amazonian tree sap (Croton lechleri). Photochem Photobiol 2025. [PMID: 40165767 DOI: 10.1111/php.14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 04/02/2025]
Abstract
In the United States, 8.2 million patients suffer from non-healing wounds which are often infected with antibiotic-resistant bacteria. Blue light (BL) and Sangre de Drago (Croton lechleri, SD) have potent mechanisms of antibacterial action through free radical formation and anti-biofilm effect, respectively. The aim of this pilot study was to evaluate the enhanced antibacterial effect of a novel combination treatment consisting of blue light and Sangre de Drago. Preliminary dosimetry measurements for effective SD concentration (5%) and 415-nm blue LED light fluence (125.3 J/cm2 with a standard variation of 5 mW) were performed. E. coli K-12 (volume 0.1-mL, concentration 2 × 105CFU/mL) was applied to each of 32 tryptic soy agar (TSA) plates. Inoculated TSA plates were separated into four groups: (1) no treatment (Control), (2) treatment with SD only, (3) treatment with blue light (BL) only, and (4) treatment with both SD and BL. Plates were incubated for 12 h at 37°C. Colony-forming units (CFUs) were analyzed using Image J software and count, size and overal TSA plate coverage were quantified. The median CFU count was highest in the Control group (157.9, interquartile range [IQR]: 112.0-157.9), followed by SD-only (60.5, IQR: 51.6-93.6), BL-only (33.7, IQR: 23.6-45.2), while no bacterial growth was observed in the combination treatment group (0, IQR: 0-0). The median CFU size was largest for control (0.44 mm2, IQR: 0.35-0.59 mm2), followed by BL-only (0.28 mm2, IQR: 0.19-0.43 mm2) and SD-only (0.16 mm2, IQR: 0.11-0.23 mm2). BL-only caused a marked reduction in total CFU count, while the median CFU size was only moderately decreased compared to Control. The significant reduction in CFU count may be due to the bactericidal action of BL on bacteria. Conversely, SD-only caused just a moderate decrease in CFU count but had the largest decrease in median CFU size, indicating a possible strong bacteriostatic mechanism of action by SD. The combination of BL and SD resulted in no bacterial growth. The Bliss independence model demonstrated a Bliss synergy value of 0.04 indicating low synergy between the two treatments, even though its presence was significant (p = 0.001). This initial investigation on the combination treatment using 5% SD and 415-nm BL demonstrates synergy resulting in an enhanced antibacterial effect compared to each treatment alone. Further investigation and validation of these results is required. If validated, this novel combination approach may be translated to clinical practice to help treat chronic wounds infected with antimicrobial-resistant bacteria, using non-traditional antimicrobial agents that bypass the most common bacterial mechanisms of antibiotic resistance.
Collapse
Affiliation(s)
| | - Vanessa Silebi
- Infectious Disease Clinic, Mercy Hospital, Miami, Florida, USA
| |
Collapse
|
3
|
Banstola A, Lin ZT, Li Y, Wu MX. PhotoChem Interplays: Lighting the Way for Drug Delivery and Diagnosis. Adv Drug Deliv Rev 2025; 219:115549. [PMID: 39986440 PMCID: PMC11903148 DOI: 10.1016/j.addr.2025.115549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/23/2024] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Light, a non-invasive tool integrated with cutting-edge nanotechnologies, has driven transformative advancements in imaging-based diagnosis and drug delivery for cancer and bacterial treatments. This review discusses recent progress in these areas, beginning with emerging imaging technologies. Unlike traditional photosensors activated by visible light, alternative energy sources such as near-infrared (NIR) light, X-rays, and ultrasound have been extensively investigated to activate various photosensors, achieving high sensitivity, wavelength versatility, and spatial resolution for deep-tissue imaging. Moreover, to address challenges like tissue autofluorescence in real-time fluorescence imaging, afterglow luminescent nanoparticles are being developed by integrating these alternative energy sources for real-time imaging and sensing in deep tissue for precise cancer diagnosis and treatment beyond superficial tissues. In addition to deep tissue imaging, light-responsive nanomedicines are revolutionizing anticancer and antimicrobial phototherapy by enabling spatially and temporally controlled drug release. These smart nanoparticles are engineered to release therapeutic cargo at target sites in response to microenvironmental cues specific to tumors or infections. In anticancer phototherapy, these nanoparticles facilitate controlled drug release via photoisomerization, photothermal, and photodynamic processes. To enhance circulation time and specific targeting, biomimetic nanoparticles, which mimic natural anti-tumor responses by our body, have attracted increasing attention. In antimicrobial phototherapy, research has been focused on the chemical modification of the photosensitizer to enable targeted drug delivery. An intriguing strategy has recently emerged involving the development of "pro-photosensitizers" that are specifically activated within bacterial cells upon light irradiation, offering a high margin of safety. These advancements leverage photochemical reactions and nanotechnology to enhance precision therapy and diagnosis in addressing critical health challenges.
Collapse
Affiliation(s)
- Asmita Banstola
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Zuan-Tao Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Yongli Li
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA.
| |
Collapse
|
4
|
Chambial P, Thakur N, Bhukya PL, Subbaiyan A, Kumar U. Frontiers in superbug management: innovating approaches to combat antimicrobial resistance. Arch Microbiol 2025; 207:60. [PMID: 39953143 DOI: 10.1007/s00203-025-04262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Anti-microbial resistance (AMR) is a global health issue causing significant mortality and economic burden. Pharmaceutical companies' discontinuation of research hinders new agents, while MDR pathogens or "superbugs" worsen the problem. Superbugs pose a threat to common infections and medical procedures, exacerbated by limited antibiotic development and rapid antibiotic resistance. The rising tide of antimicrobial resistance threatens to undermine progress in controlling infectious diseases. This review examines the global proliferation of AMR, its underlying mechanisms, and contributing factors. The study explores various methodologies, emphasizing the significance of precise and timely identification of resistant strains. We discuss recent advancements in CRISPR/Cas9, nanoparticle technology, light-based techniques, and AI-powered antibiogram analysis for combating AMR. Traditional methods often fail to effectively combat multidrug-resistant bacteria, as CRISPR-Cas9 technology offers a more effective approach by cutting specific DNA sequences, precision targeting and genome editing. AI-based smartphone applications for antibiogram analysis in resource-limited settings face challenges like internet connectivity, device compatibility, data quality, energy consumption, and algorithmic limitations. Additionally, light-based antimicrobial techniques are increasingly being used to effectively kill antibiotic-resistant microbial species and treat localized infections. This review provides an in-depth overview of AMR covering epidemiology, evolution, mechanisms, infection prevention, control measures, antibiotic access, stewardship, surveillance, challenges and emerging non-antibiotic therapeutic approaches.
Collapse
Affiliation(s)
- Priyanka Chambial
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab, 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College Campus, Paddal, Kartarpur, Mandi, Himachal Pradesh, 175001, India.
| | - Prudhvi Lal Bhukya
- Rodent Experimentation Facility, ICMR-National Animal Facility Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, Telangana, 500101, India
| | - Anbazhagan Subbaiyan
- Rodent Experimentation Facility, ICMR-National Animal Facility Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, Telangana, 500101, India
| | - Umesh Kumar
- Department of Biosciences, IMS Ghaziabad University Courses Campus, NH-09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India.
| |
Collapse
|
5
|
Li Y, Dong Y, Zhang Z, Lin Z, Liang C, Wu MX. Efficient Photolysis of Multidrug-Resistant Polymicrobial Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407898. [PMID: 39708333 PMCID: PMC11809414 DOI: 10.1002/advs.202407898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/04/2024] [Indexed: 12/23/2024]
Abstract
Chronic wounds are prone to infections with multidrug-resistant bacteria, forming polymicrobial biofilms that limit treatment options and increase the risk of severe complications. Current cleansing options are insufficient to disrupt and remove tenacious biofilms; antibiotic treatments, on the other hand, often fall short against these biofilm-embedded bacteria. This study explores an non-antibiotic approach that extends beyond conventional porphyrin-based phototherapy by using blue light (BL) in conjunction with ferric ions (Fe(III)) to disrupt and eradicate biofilms. The dual not only degraded biofilm extracellular polymeric substances (EPS) in mono-species and polymicrobial biofilms by specifically targeting carboxyl-containing polysaccharides within the matrix but also exhibited broad-spectrum antimicrobial activity by affecting key components of the outer membrane and cell wall. Bacteria, such as K. pneumoniae, with compromised EPS after photolysis, demonstrated increased susceptibility to macrophage phagocytosis. Disruption of the polymicrobial biofilm structure also enhanced the bacterial susceptibility to bactericidal drugs. Treating wounds infected by mixed-species biofilm in diabetic mice demonstrated a substantial reduction in bacterial colonization and improved tissue repair. The BL-Fe(III) modality offers a safe, efficient alternative for managing chronic wound infections, making it ideal for repeated, non-invasive use at home, especially in resource-limited areas.
Collapse
Affiliation(s)
- Yongli Li
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School50 Blossom StreetBostonMA02114USA
| | - Yan Dong
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School50 Blossom StreetBostonMA02114USA
| | - ZhengKun Zhang
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School50 Blossom StreetBostonMA02114USA
- Institute of Precision Medicinethe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Zuan‐tao Lin
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School50 Blossom StreetBostonMA02114USA
| | - Chen Liang
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School50 Blossom StreetBostonMA02114USA
- Department of StomatologyXuanwu HospitalCapital Medical UniversityNo. 45 Changchun Street, Xicheng DistrictBeijing100053P. R. China
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School50 Blossom StreetBostonMA02114USA
| |
Collapse
|
6
|
Pérez González LA, Martínez-Pascual MA, Toledano-Macías E, Jara-Laguna RC, Fernández-Guarino M, Hernández-Bule ML. Effect of Combination of Blue and Red Light with Terbinafine on Cell Viability and Reactive Oxygen Species in Human Keratinocytes: Potential Implications for Cutaneous Mycosis. Int J Mol Sci 2024; 25:12145. [PMID: 39596215 PMCID: PMC11594835 DOI: 10.3390/ijms252212145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Cutaneous mycoses are common infections whose treatment has become more complex due to increasing antifungal resistance and the need for prolonged therapies, hindering patient adherence and increasing the incidence of adverse effects. Consequently, the use of physical therapies, especially photodynamic therapy (PDT), has increased for the treatment of onychomycosis due to its antimicrobial capacity being mediated by the production of reactive oxygen species. This study investigates the in vitro effect of applying blue light (448 nm) or red light (645 nm), alone or together with terbinafine, on the viability of human keratinocytes and the production of reactive oxygen species. The combination of terbinafine and blue light significantly increases ROS production and caspase-3 expression, while red light together with terbinafine increases catalase, superoxide dismutase (SOD) and PPARγ expression, which reduces the amount of ROS in the cultures. The effect of both treatments could be useful in clinical practice to improve the response of cutaneous mycoses to pharmacological treatment, reduce their toxicity and shorten their duration.
Collapse
Affiliation(s)
- Luis Alfonso Pérez González
- Dermatology Service, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain;
| | - María Antonia Martínez-Pascual
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Hospital Ramón y Cajal, Ctra. Colmenar, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.); (R.C.J.-L.)
| | - Elena Toledano-Macías
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Hospital Ramón y Cajal, Ctra. Colmenar, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.); (R.C.J.-L.)
| | - Rosa Cristina Jara-Laguna
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Hospital Ramón y Cajal, Ctra. Colmenar, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.); (R.C.J.-L.)
| | - Montserrat Fernández-Guarino
- Dermatology Service, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain;
| | - María Luisa Hernández-Bule
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Hospital Ramón y Cajal, Ctra. Colmenar, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.); (R.C.J.-L.)
| |
Collapse
|
7
|
Glorieux C, Buc Calderon P. Targeting catalase in cancer. Redox Biol 2024; 77:103404. [PMID: 39447253 PMCID: PMC11539659 DOI: 10.1016/j.redox.2024.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Healthy cells have developed a sophisticated network of antioxidant molecules to prevent the toxic accumulation of reactive oxygen species (ROS) generated by diverse environmental stresses. On the opposite, cancer cells often exhibit high levels of ROS and an altered levels of antioxidant molecules compared to normal cells. Among them, the antioxidant enzyme catalase plays an essential role in cell defense against oxidative stress through the dismutation of hydrogen peroxide into water and molecular oxygen, and its expression is often decreased in cancer cells. The elevation of ROS in cancer cells provides them proliferative advantages, and leads to metabolic reprogramming, immune escape and metastasis. In this context, catalase is of critical importance to control these cellular processes in cancer through various mechanisms. In this review, we will discuss the major progresses and challenges in understanding the role of catalase in cancer for this last decade. This review also aims to provide important updates regarding the regulation of catalase expression, subcellular localization and discuss about the potential role of microbial catalases in tumor environment. Finally, we will describe the different catalase-based therapies and address the advantages, disadvantages, and limitations associated with modulating catalase therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060, Guangzhou, China.
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, 1100000, Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000, Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
8
|
Palma F, Acunzo M, Della Marca R, Dell'Annunziata F, Folliero V, Chianese A, Zannella C, Franci G, De Filippis A, Galdiero M. Evaluation of antifungal spectrum of Cupferron against Candida albicans. Microb Pathog 2024; 194:106835. [PMID: 39117014 DOI: 10.1016/j.micpath.2024.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Candida albicans is an opportunistic yeast accounting for about 50-90 % of all cases of candidiasis in humans, ranging from superficial to systemic potentially life-threatening infections. The presence of several virulence factors, including biofilm, hyphal transition, and proteolytic enzymes production, worsens the fungal infections burden on healthcare system resources. Hence, developing new bioactive compounds with antifungal activity is a pressing urgence for the scientific community. In this perspective, we evaluated the anti-Candida potential of the N-Nitroso-N-phenylhydroxylamine ammonium salt (cupferron) against standard and clinical C. albicans strains. Firstly, the in vitro cytotoxicity of cupferron was checked in the range 400-12.5 μg/mL against human microglial cells (HMC-3). Secondly, its antifungal spectrum was explored via disk diffusion test, broth-microdilution method, and time-killing curve analysis, validating the obtained results through scanning electron microscopy (SEM) observations. Additionally, we evaluated the cupferron impact on the main virulence determinants of Candida albicans. At non-toxic concentrations (100-12.5 μg/mL), the compound exerted interesting anti-Candida activity, registering a minimum inhibitory concentration (MIC) between 50 and 100 μg/mL against the tested strains, with a fungistatic effect until 100 μg/mL. Furthermore, cupferron was able to counteract fungal virulence at MIC and sub-MIC values (50-12.5 μg/mL). These findings may propose cupferron as a new potential antifungal option for the treatment of Candida albicans infections.
Collapse
Affiliation(s)
- Francesca Palma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Marina Acunzo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Federica Dell'Annunziata
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| |
Collapse
|
9
|
Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, Rahmani AH. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024; 14:697. [PMID: 38927099 PMCID: PMC11201554 DOI: 10.3390/biom14060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme's stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase's stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, Mohan Institute of Nursing and Paramedical Sciences, Mohan Group of Institutions, Bareilly 243302, India;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sitrarasu Vijaya Prabhu
- Department of Biotechnology, Microbiology and Bioinformatics, National College (Autonomous), Tiruchirapalli 620001, India;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
10
|
da Cruz Nizer WS, Adams ME, Allison KN, Montgomery MC, Mosher H, Cassol E, Overhage J. Oxidative stress responses in biofilms. Biofilm 2024; 7:100203. [PMID: 38827632 PMCID: PMC11139773 DOI: 10.1016/j.bioflm.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
Oxidizing agents are low-molecular-weight molecules that oxidize other substances by accepting electrons from them. They include reactive oxygen species (ROS), such as superoxide anions (O2-), hydrogen peroxide (H2O2), and hydroxyl radicals (HO-), and reactive chlorine species (RCS) including sodium hypochlorite (NaOCl) and its active ingredient hypochlorous acid (HOCl), and chloramines. Bacteria encounter oxidizing agents in many different environments and from diverse sources. Among them, they can be produced endogenously by aerobic respiration or exogenously by the use of disinfectants and cleaning agents, as well as by the mammalian immune system. Furthermore, human activities like industrial effluent pollution, agricultural runoff, and environmental activities like volcanic eruptions and photosynthesis are also sources of oxidants. Despite their antimicrobial effects, bacteria have developed many mechanisms to resist the damage caused by these toxic molecules. Previous research has demonstrated that growing as a biofilm particularly enhances bacterial survival against oxidizing agents. This review aims to summarize the current knowledge on the resistance mechanisms employed by bacterial biofilms against ROS and RCS, focussing on the most important mechanisms, including the formation of biofilms in response to oxidative stressors, the biofilm matrix as a protective barrier, the importance of detoxifying enzymes, and increased protection within multi-species biofilm communities. Understanding the complexity of bacterial responses against oxidative stress will provide valuable insights for potential therapeutic interventions and biofilm control strategies in diverse bacterial species.
Collapse
Affiliation(s)
| | - Madison Elisabeth Adams
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Kira Noelle Allison
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | | | - Hailey Mosher
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| |
Collapse
|
11
|
Wu Y, Gong X, Shen J, Zhu K. Postantibiotic leukocyte enhancement-mediated reduction of intracellular bacteria by macrophages. J Adv Res 2024; 58:117-128. [PMID: 37290606 PMCID: PMC10982861 DOI: 10.1016/j.jare.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION Potentiation of the bactericidal activities of leukocytes, including macrophages, upon antibacterial agent administration has been observed for several decades and is summarized as the postantibiotic leukocyte enhancement (PALE) theory. Antibiotics-induced bacterial sensitization to leukocytes is commonly recognized as the mechanism of PALE. However, the degree of sensitization drastically varies with antibiotic classes, and little is known about whether and how the potentiation of leukocytes contributes to PALE. OBJECTIVES In this study, we aim to develop a mechanistic understanding of PALE by investigating the immunoregulation of traditional antibiotics on macrophages. METHODS Interaction models between bacteria and macrophages were constructed to identify the effects of different antibiotics on the bactericidal activities of macrophages. Oxygen consumption rate, expression of oxidases, and antioxidants were then measured to evaluate the effects of fluoroquinolones (FQs) on the oxidative stress of macrophages. Furthermore, the modulation in endoplasmic reticulum stress and inflammation upon antibiotic treatment was detected to analyze the mechanisms. At last, the peritoneal infection model was utilized to verify the PALE in vivo. RESULTS Enrofloxacin significantly reduced the intracellular burden of diverse bacterial pathogens through promoting the accumulation of reactive oxygen species (ROS). The upregulated oxidative response accordingly reprograms the electron transport chain with decreased production of antioxidant enzymes to reduce internalized pathogens. Additionally, enrofloxacin modulated the expression and spatiotemporal localization of myeloperoxidase (MPO) to facilitate ROS accumulation to target invaded bacteria and downregulated inflammatory response to alleviate cellular injury. CONCLUSION Our findings demonstrate the crucial role of leukocytes in PALE, shedding light on the development of new host-directed antibacterial therapies and the design of rational dosage regimens.
Collapse
Affiliation(s)
- Yifan Wu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Gong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Li Y, Zou Z, An J, Liu X, Wu Q, Sun J, Liu X, Du J, Xiong Y, Wu C, Mei X, Tian H. Folic acid-functionalized chitosan nanoparticles with bioenzyme activity for the treatment of spinal cord injury. Eur J Pharm Sci 2024; 192:106667. [PMID: 38061663 DOI: 10.1016/j.ejps.2023.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/03/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Spinal cord injury (SCI) is a central system disease with a high rate of disability. Pathological changes such as ischemia and hypoxia of local tissues, oxidative stress and apoptosis could lead to limb pain, paralysis and even life-threatening. It was reported that catalase (CAT) was the main antioxidant in organisms, which could remove reactive oxygen species (ROS) and release oxygen (O2). However, the efficacy of the drug is largely limited due to its poor stability, low bioavailability and inability to cross the blood spinal cord barrier (BSCB). Therefore, in this study, we prepared folic acid-functionalized chitosan nanoparticles to deliver CAT (FA-CSNCAT) for solving this problem. In vivo small animal imaging results showed that FA-CSN could carry CAT across the BSCB and target to the inflammatory site. In addition, Immunofluorescence, ROS assay and JC-1 probe were used to detect the therapeutic effect of FA-CSNCAT in vitro and in vivo. The results showed that FA-CSNCAT could alleviate the hypoxic environment at the injured site and remove ROS, thereby inhibiting oxidative stress and protecting neurons, which may provide a new idea for clinical medication of SCI.
Collapse
Affiliation(s)
- Yingqiao Li
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Zhiru Zou
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xiaoyao Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Qian Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Junpeng Sun
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jiaqun Du
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Ying Xiong
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14050, Caen, France
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| | - Xifan Mei
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - He Tian
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China; School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| |
Collapse
|
13
|
Sun B, Zhou R, Zhu G, Xie X, Chai A, Li L, Fan T, Li B, Shi Y. Transcriptome Analysis Reveals the Involvement of Mitophagy and Peroxisome in the Resistance to QoIs in Corynespora cassiicola. Microorganisms 2023; 11:2849. [PMID: 38137993 PMCID: PMC10745780 DOI: 10.3390/microorganisms11122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Quinone outside inhibitor fungicides (QoIs) are crucial fungicides for controlling plant diseases, but resistance, mainly caused by G143A, has been widely reported with the high and widespread use of QoIs. However, two phenotypes of Corynespora casiicola (RI and RII) with the same G143A showed significantly different resistance to QoIs in our previous study, which did not match the reported mechanisms. Therefore, transcriptome analysis of RI and RII strains after trifloxystrobin treatment was used to explore the new resistance mechanism in this study. The results show that 332 differentially expressed genes (DEGs) were significantly up-regulated and 448 DEGs were significantly down-regulated. The results of GO and KEGG enrichment showed that DEGs were most enriched in ribosomes, while also having enrichment in peroxide, endocytosis, the lysosome, autophagy, and mitophagy. In particular, mitophagy and peroxisome have been reported in medicine as the main mechanisms of reactive oxygen species (ROS) scavenging, while the lysosome and endocytosis are an important organelle and physiological process, respectively, that assist mitophagy. The oxidative stress experiments showed that the oxidative stress resistance of the RII strains was significantly higher than that of the RI strains: specifically, it was more than 1.8-fold higher at a concentration of 0.12% H2O2. This indicates that there is indeed a significant difference in the scavenging capacity of ROS between the two phenotypic strains. Therefore, we suggest that QoIs' action caused a high production of ROS, and that scavenging mechanisms such as mitophagy and peroxisomes functioned in RII strains to prevent oxidative stress, whereas RI strains were less capable of resisting oxidative stress, resulting in different resistance to QoIs. In this study, it was first revealed that mitophagy and peroxisome mechanisms available for ROS scavenging are involved in the resistance of pathogens to fungicides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.S.); (R.Z.)
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.S.); (R.Z.)
| |
Collapse
|
14
|
Jusuf S, Dong PT. Chromophore-Targeting Precision Antimicrobial Phototherapy. Cells 2023; 12:2664. [PMID: 37998399 PMCID: PMC10670386 DOI: 10.3390/cells12222664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Phototherapy, encompassing the utilization of both natural and artificial light, has emerged as a dependable and non-invasive strategy for addressing a diverse range of illnesses, diseases, and infections. This therapeutic approach, primarily known for its efficacy in treating skin infections, such as herpes and acne lesions, involves the synergistic use of specific light wavelengths and photosensitizers, like methylene blue. Photodynamic therapy, as it is termed, relies on the generation of antimicrobial reactive oxygen species (ROS) through the interaction between light and externally applied photosensitizers. Recent research, however, has highlighted the intrinsic antimicrobial properties of light itself, marking a paradigm shift in focus from exogenous agents to the inherent photosensitivity of molecules found naturally within pathogens. Chemical analyses have identified specific organic molecular structures and systems, including protoporphyrins and conjugated C=C bonds, as pivotal components in molecular photosensitivity. Given the prevalence of these systems in organic life forms, there is an urgent need to investigate the potential impact of phototherapy on individual molecules expressed within pathogens and discern their contributions to the antimicrobial effects of light. This review delves into the recently unveiled key molecular targets of phototherapy, offering insights into their potential downstream implications and therapeutic applications. By shedding light on these fundamental molecular mechanisms, we aim to advance our understanding of phototherapy's broader therapeutic potential and contribute to the development of innovative treatments for a wide array of microbial infections and diseases.
Collapse
Affiliation(s)
- Sebastian Jusuf
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Pu-Ting Dong
- Department of Microbiology, The Forsyth Institute, Boston, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
15
|
Palma F, Dell'Annunziata F, Folliero V, Foglia F, Marca RD, Zannella C, De Filippis A, Franci G, Galdiero M. Cupferron impairs the growth and virulence of Escherichia coli clinical isolates. J Appl Microbiol 2023; 134:lxad222. [PMID: 37796875 DOI: 10.1093/jambio/lxad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
AIMS Multidrug resistance is a worrying problem worldwide. The lack of readily available drugs to counter nosocomial infections requires the need for new interventional strategies. Drug repurposing represents a valid alternative to using commercial molecules as antimicrobial agents in a short time and with low costs. Contextually, the present study focused on the antibacterial potential of the ammonium salt N-nitroso-N-phenylhydroxylamine (Cupferron), evaluating the ability to inhibit microbial growth and influence the main virulence factors. METHODS AND RESULTS Cupferron cytotoxicity was checked via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and hemolysis assays. The antimicrobial activity was assessed through the Kirby-Bauer disk diffusion test, broth microdilution method, and time-killing kinetics. Furthermore, the impact on different stages of the biofilm life cycle, catalase, swimming, and swarming motility was estimated via MTT and crystal violet (CV) assay, H2O2 sensitivity, and motility tests, respectively. Cupferron exhibited <15% cytotoxicity at 200 µg/mL concentration. The 90% bacterial growth inhibitory concentrations (MIC90) values recorded after 24 hours of exposure were 200 and 100 µg/mL for multidrug-resistant (MDR) and sensitive strains, respectively, exerting a bacteriostatic action. Cupferron-treated bacteria showed increased susceptibility to biofilm production, oxidative stress, and impaired bacterial motility in a dose-dependent manner. CONCLUSIONS In the new antimicrobial compounds active research scenario, the results indicated that Cupferron could be an interesting candidate for tackling Escherichia coli infections.
Collapse
Affiliation(s)
- Francesca Palma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Federica Dell'Annunziata
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Francesco Foglia
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
16
|
Cai Y, Fu X, Zhou Y, Lei L, Wang J, Zeng W, Yang Z. A hydrogel system for drug loading toward the synergistic application of reductive/heat-sensitive drugs. J Control Release 2023; 362:409-424. [PMID: 37666303 DOI: 10.1016/j.jconrel.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The preparation of hydrogels as drug carriers via radical-mediated polymerization has significant prospects, but the strong oxidizing ability of radicals and the high temperatures generated by the vigorous reactions limits the loading for reducing/heat-sensitive drugs. Herein, an applicable hydrogel synthesized by radical-mediated polymerization is reported for the loading and synergistic application of specific drugs. First, the desired sol is obtained by polymerizing functional monomers using a radical initiator, and then tannic-acid-assisted specific drug mediates sol-branched phenylboric acid group to form the required functional hydrogel (New-gel). Compared with the conventional single-step radical-mediated drug-loading hydrogel, the New-gel not only has better chemical/physical properties but also efficiently loads and releases drugs and maintains drug activity. Particularly, the New-gel has excellent loading capacity for oxygen, and exhibits significant practical therapeutic effects for diabetic wound repair. Furthermore, owing to its high light transmittance, the New-gel synergistically promotes the antibacterial effect of photosensitive drugs. This gelation strategy for loading drugs has further promising biomedical applications.
Collapse
Affiliation(s)
- Yucen Cai
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoxue Fu
- Department of Orthopedic Surgery and Orthopedic Research Institution, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yingjuan Zhou
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Lei
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jiajia Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Weinan Zeng
- Department of Orthopedic Surgery and Orthopedic Research Institution, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Zhangyou Yang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
17
|
Zhang H, Zuo L, Li J, Geng Z, Ge S, Song X, Wang Y, Zhang X, Wang L, Zhao T, Deng M, Chai D, Wang Q, Yang Z, Liu Q, Qiu Q, He X, Yang Y, Ge Y, Wu R, Zheng L, Li J, Chen R, Sun J, Hu J. Construction of a fecal immune-related protein-based biomarker panel for colorectal cancer diagnosis: a multicenter study. Front Immunol 2023; 14:1126217. [PMID: 37313408 PMCID: PMC10258350 DOI: 10.3389/fimmu.2023.1126217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
Purpose To explore fecal immune-related proteins that can be used for colorectal cancer (CRC) diagnosis. Patients and methods Three independent cohorts were used in present study. In the discovery cohort, which included 14 CRC patients and 6 healthy controls (HCs), label-free proteomics was applied to identify immune-related proteins in stool that could be used for CRC diagnosis. Exploring potential links between gut microbes and immune-related proteins by 16S rRNA sequencing. The abundance of fecal immune-associated proteins was verified by ELISA in two independent validation cohorts and a biomarker panel was constructed that could be used for CRC diagnosis. The validation cohort I included 192 CRC patients and 151 HCs from 6 different hospitals. The validation cohort II included 141 CRC patients, 82 colorectal adenoma (CRA) patients, and 87 HCs from another hospital. Finally, the expression of biomarkers in cancer tissues was verified by immunohistochemistry (IHC). Results In the discovery study, 436 plausible fecal proteins were identified. And among 67 differential fecal proteins (|log2 fold change| > 1, P< 0.01) that could be used for CRC diagnosis, 16 immune-related proteins with diagnostic value were identified. The 16S rRNA sequencing results showed a positive correlation between immune-related proteins and the abundance of oncogenic bacteria. In the validation cohort I, a biomarker panel consisting of five fecal immune-related proteins (CAT, LTF, MMP9, RBP4, and SERPINA3) was constructed based on the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression. The biomarker panel was found to be superior to hemoglobin in the diagnosis of CRC in both validation cohort I and validation cohort II. The IHC result showed that protein expression levels of these five immune-related proteins were significantly higher in CRC tissue than in normal colorectal tissue. Conclusion A novel biomarker panel consisting of fecal immune-related proteins can be used for the diagnosis of CRC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Li
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xue Song
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaofeng Zhang
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tianhao Zhao
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Min Deng
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Damin Chai
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qiusheng Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Quanli Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Quanwei Qiu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xuxu He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yiqun Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ge
- Department of Colorectal Surgery, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Wu
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lin Zheng
- Department of Clinical Laboratory, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Jianjun Li
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Runkai Chen
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Jialiang Sun
- Department of General Surgery, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Jianguo Hu
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
18
|
Raval YS, Fleming D, Mohamed A, Karau MJ, Mandrekar JN, Schuetz AN, Greenwood Quaintance KE, Beyenal H, Patel R. In Vivo Activity of Hydrogen-Peroxide Generating Electrochemical Bandage Against Murine Wound Infections. ADVANCED THERAPEUTICS 2023; 6:2300059. [PMID: 37485434 PMCID: PMC10361686 DOI: 10.1002/adtp.202300059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 03/06/2023]
Abstract
Biofilms formed by antibiotic-resistant bacteria in wound beds present unique challenges in terms of treating wound infections. In this work, the in vivo activity of a novel electrochemical bandage (e-bandage) composed of carbon fabric and controlled by a wearable potentiostat, designed to continuously deliver low amounts of hydrogen peroxide (H2O2) was evaluated against methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa (MDR-PA) and mixed-species (MRSA and MDR-PA) wound infections. Wounds created on Swiss Webster mice were infected with the above-named bacteria and biofilms allowed to establish on wound beds for 3 days. e-Bandages, which electrochemically reduce dissolved oxygen to H2O2 when polarized at -0.6 VAg/AgCl, were placed atop the infected wound bed and polarized continuously for 48 hours. Polarized e-bandage treatment resulted in significant reductions (p <0.001) of both mono-species and mixed-species wound infections. After e-bandage treatment, electron microscopy showed degradation of bacterial cells, and histopathology showed no obvious alteration to the inflammatory host response. Blood biochemistries showed no abnormalities. Taken all together, results of this work suggest that the described H2O2-producing e-bandage can effectively reduce in vivo MRSA, MDR-PA and mixed-species wound biofilms, and should be further developed as a potential antibiotic-free strategy for treatment of wound infections.
Collapse
Affiliation(s)
- Yash S. Raval
- Department of Laboratory Medicine and Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
| | - Derek Fleming
- Department of Laboratory Medicine and Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
| | - Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA
| | - Melissa J. Karau
- Department of Laboratory Medicine and Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
| | | | - Audrey N. Schuetz
- Department of Laboratory Medicine and Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
| | | | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA
| | - Robin Patel
- Department of Laboratory Medicine and Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
19
|
Jusuf S, Cheng JX. Blue Light Improves Antimicrobial Efficiency of Silver Sulfadiazine Via Catalase Inactivation. Photobiomodul Photomed Laser Surg 2023; 41:80-87. [PMID: 36780574 PMCID: PMC9963486 DOI: 10.1089/photob.2022.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023] Open
Abstract
Background: Blue light exhibits the ability to deactivate catalase present in pathogens, significantly improving the antimicrobial performance of compounds such as hydrogen peroxide (H2O2). However, H2O2 is not used within clinical settings due to its short half-life, limiting its potential applications. In this study, we explore the usage of Food and Drug Administration-approved and clinically used silver sulfadiazine (SSD) as a potential alternative to H2O2, acting as a reactive oxygen species (ROS)-producing agent capable of synergizing with blue light exposure. Materials and methods: For in vitro studies, bacterial strains were exposed to a continuous wave 405 nm light-emitting diode (LED) followed by treatment with SSD for varying incubation times. For in vivo studies, bacteria-infected murine abrasion wounds were treated with daily treatments of 405 nm LED light and 1% SSD cream for up to 4 days. The surviving bacterial population was quantified through agar plating and colony-forming unit quantification. Results: Through a checkerboard assay, blue light and SSD demonstrated synergistic interactions. Against both gram-negative and gram-positive pathogens, blue light significantly improved the antimicrobial response of SSD within both phosphate-buffered saline and nutrient-rich conditions. Examination into the mechanisms reveals that the neutralization of catalase significantly improves the ROS-producing capabilities of SSD at the exterior of the bacterial cell, producing greater amounts of toxic ROS capable of exerting antimicrobial activity against the pathogen. Additional experiments reveal that the incorporation of light improves the antimicrobial performance of SSD within methicillin-resistant Staphylococcus aureus (MRSA)- and Pseudomonas aeruginosa strain 1 (PAO-1)-infected murine abrasion wounds. Conclusions: As an established, clinically used antibiotic, SSD can act as a suitable alternative to H2O2 in synergizing with catalase-deactivating blue light, allowing for better translation of this technology to more clinical settings and further implementation of this treatment to more complex animal models.
Collapse
Affiliation(s)
- Sebastian Jusuf
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Photonics Center, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
20
|
dos Anjos C, Leanse LG, Liu X, Miranda HV, Anderson RR, Dai T. Antimicrobial Blue Light for Prevention and Treatment of Highly Invasive Vibrio vulnificus Burn Infection in Mice. Front Microbiol 2022; 13:932466. [PMID: 35903474 PMCID: PMC9315199 DOI: 10.3389/fmicb.2022.932466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
Vibrio vulnificus is an invasive marine bacterium that causes a variety of serious infectious diseases. With the increasing multidrug-resistant variants, treatment of V. vulnificus infections is becoming more difficult. In this study, we explored antimicrobial blue light (aBL; 405 nm wavelength) for the treatment of V. vulnificus infections. We first assessed the efficacy of aBL against five strains of V. vulnificus in vitro. Next, we identified and quantified intracellular porphyrins in V. vulnificus to provide mechanistic insights. Additionally, we measured intracellular reactive oxygen species (ROS) production and bacterial membrane permeabilization following aBL exposures. Lastly, we conducted a preclinical study to investigate the efficacy and safety of aBL for the prevention and treatment of burn infections caused by V. vulnificus in mice. We found that aBL effectively killed V. vulnificus in vitro in both planktonic and biofilm states, with up to a 5.17- and 4.57-log10 CFU reduction being achieved, respectively, following an aBL exposure of 216 J/cm2. Protoporphyrin IX and coproporphyrins were predominant in all the strains. Additionally, intracellular ROS was significantly increased following aBL exposures (P < 0.01), and there was evidence of aBL-induced permeabilization of the bacterial membrane (P < 0.0001). In the preclinical studies, we found that female mice treated with aBL 30 min after bacterial inoculation showed a survival rate of 81% following 7 days of observation, while only 28% survival was observed in untreated female mice (P < 0.001). At 6 h post-inoculation, an 86% survival was achieved in aBL-treated female mice (P = 0.0002). For male mice, 86 and 63% survival rates were achieved when aBL treatment was given 30 min and 6 h after bacterial inoculation, respectively, compared to 32% survival in the untreated mice (P = 0.0004 and P = 0.04). aBL did not reduce cellular proliferation or induce apoptosis. We found five cytokines were significantly upregulated in the males after aBL treatment, including MCSF (P < 0.001), MCP-5 (P < 0.01), TNF RII (P < 0.01), CXCL1 (P < 0.01), and TIMP-1 (P < 0.05), and one in the females (TIMP-1; P < 0.05), suggesting that aBL may induce certain inflammatory processes. In conclusion, aBL may potentially be applied to prevent and treat V. vulnificus infections.
Collapse
Affiliation(s)
- Carolina dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Leon G. Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaojing Liu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hugo V. Miranda
- Naval Medical Research Center, Silver Spring, MD, United States
| | - R. Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Tianhong Dai
| |
Collapse
|