1
|
Marra KV, Chen JS, Robles-Holmes HK, Ly KB, Miller J, Wei G, Aguilar E, Bucher F, Ideguchi Y, Kalaw FGP, Lin AC, Ferrara N, Campbell JP, Friedlander M, Nudleman E. Development of an Open-Source Dataset of Flat-Mounted Images for the Murine Oxygen-Induced Retinopathy Model of Ischemic Retinopathy. Transl Vis Sci Technol 2024; 13:4. [PMID: 39625436 PMCID: PMC11620014 DOI: 10.1167/tvst.13.12.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/02/2024] [Indexed: 12/08/2024] Open
Abstract
Purpose To describe an open-source dataset of flat-mounted retinal images and vessel segmentations from mice subject to the oxygen-induced retinopathy (OIR) model. Methods Flat-mounted retinal images from mice killed at postnatal days 12 (P12), P17, and P25 used in prior OIR studies were compiled. Mice subjected to normoxic conditions were killed at P12, P17, and P25, and their retinas were flat-mounted for imaging. Major blood vessels from the OIR images were manually segmented by four graders (JSC, HKR, KBL, JM), with cross-validation performed to ensure similar grading. Results Overall, 1170 images were included in this dataset. Of these images, 111 were of normoxic mice retina, and 1048 were mice subject to OIR. The majority of images from OIR mice were obtained at P17. The 50 images obtained from an external dataset, OIRSeg, did not have age labels. All images were manually segmented and used in the training or testing of a previously published deep learning algorithm. Conclusions This is the first open-source dataset of original and segmented flat-mounted retinal images. The dataset has potential applications for expanding the development of generalizable and larger-scale artificial intelligence and analyses for OIR. This dataset is published online and publicly available at dx.doi.org/10.6084/m9.figshare.23690973. Translational Relevance This open access dataset serves as a source of raw data for future research involving big data and artificial intelligence research concerning oxygen-induced retinopathy.
Collapse
Affiliation(s)
- Kyle V. Marra
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
- Molecular Medicine, The Scripps Research Institute, San Diego, CA, USA
| | - Jimmy S. Chen
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
| | - Hailey K. Robles-Holmes
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
| | - Kristine B. Ly
- College of Optometry, Pacific University, Forest Grove, OR, USA
| | - Joseph Miller
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
| | - Guoqin Wei
- Molecular Medicine, The Scripps Research Institute, San Diego, CA, USA
| | - Edith Aguilar
- Molecular Medicine, The Scripps Research Institute, San Diego, CA, USA
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yoichi Ideguchi
- Molecular Medicine, The Scripps Research Institute, San Diego, CA, USA
| | - Fritz Gerald P. Kalaw
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
| | - Andrew C. Lin
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
| | - Napoleone Ferrara
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
| | - J. Peter Campbell
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | | | - Eric Nudleman
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
2
|
Zhang Y, Yang Q, Cheng H, Zhang Y, Xie Y, Zhang Q. Extracellular vesicles derived from endothelial progenitor cells modified by Houshiheisan promote angiogenesis and attenuate cerebral ischemic injury via miR-126/PIK3R2. Sci Rep 2024; 14:28166. [PMID: 39548169 PMCID: PMC11568282 DOI: 10.1038/s41598-024-78717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Angiogenesis following cerebral ischemia is crucial for restoring blood supply to the ischemic region. Extracellular vesicles (EVs) derived from endothelial progenitor cells (EPCs) offer potential therapeutic benefits in the treatment of cerebral ischemia. Houshiheisan (HSHS) has been shown to improve clinical outcomes in ischemic stroke patients, reduce cerebral ischemic damage in rats, and protect endothelial cells. However, the potential effects of HSHS-modified EPC-derived EVs (EVsHSHS) for cerebral ischemia remain unexplored. This study investigated the impact of EVsHSHS on angiogenesis using rats with permanent middle cerebral artery occlusion (pMCAO) and brain microvascular endothelial cells (BMECs) subjected to oxygen-glucose deprivation (OGD). Results demonstrated that EVsHSHS promoted the proliferation, migration, and tube formation of BMECs in vitro. In vivo, high doses of EVsHSHS exhibited better performance than equivalent doses of unmodified EPC-derived EVs in reducing cerebral infarction volume, improving cortical blood perfusion, decreasing neurological deficit scores, and increasing cortical microvessel density at day 7 post-modeling. The pro-angiogenic effects of EVsHSHS following cerebral ischemia were associated with the regulation of miR-126 and the PIK3R2/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yawen Zhang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Qiuyue Yang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hongfa Cheng
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Yahui Xie
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Qiuxia Zhang
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Qiu J, Peng S, Qu R, Wu L, Xing L, Zhang L, Sun J. New evidence of vascular defects in neurodegenerative diseases revealed by single cell RNA sequencing. Clin Sci (Lond) 2024; 138:1377-1394. [PMID: 39469930 DOI: 10.1042/cs20241658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Neurodegenerative diseases (NDs) involve the progressive loss of neuronal structure or function in the brain and spinal cord. Despite their diverse etiologies, NDs manifest similar pathologies. Emerging research identifies vascular defects as a previously neglected hallmark of NDs. The development and popularization of single-cell RNA sequencing (scRNA-seq) technologies have significantly advanced our understanding of brain vascular cell types and their molecular characteristics, including gene expression changes at the single-cell level in NDs. These unprecedented insights deepen our understanding of the pathogenic mechanisms underlying NDs. However, the occurrence and role of vascular defects in disease progression remain largely unexplored. In this paper, we systematically summarize recent advances in the structure and organization of the central nervous system vasculature in mice, healthy individuals, and patients with NDs, focussing primarily on disease-specific alterations in vascular cell types or subtypes. Combining scRNA-seq with pathology evidence, we propose that vascular defects, characterized by disruptions in cell types and structural integrity, may serve as common early features of NDs. Finally, we discuss several pathways through which vascular defects in NDs lead to neuronal degeneration. A deeper understanding of the causes and contributions of vascular defects to NDs aids in elucidating the pathogenic mechanisms and developing meaningful therapeutic interventions.
Collapse
Affiliation(s)
- Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
4
|
Su Y, Chen M, Xu W, Gu P, Fan X. Advances in Extracellular-Vesicles-Based Diagnostic and Therapeutic Approaches for Ocular Diseases. ACS NANO 2024; 18:22793-22828. [PMID: 39141830 PMCID: PMC11363148 DOI: 10.1021/acsnano.4c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles of various sizes that can be secreted by most cells. EVs contain a diverse array of cargo, including RNAs, lipids, proteins, and other molecules with functions of intercellular communication, immune modulation, and regulation of physiological and pathological processes. The biofluids in the eye, including tears, aqueous humor, and vitreous humor, are important sources for EV-based diagnosis of ocular disease. Because the molecular cargos may reflect the biology of their parental cells, EVs in these biofluids, as well as in the blood, have been recognized as promising candidates as biomarkers for early diagnosis of ocular disease. Moreover, EVs have also been used as therapeutics and targeted drug delivery nanocarriers in many ocular disorders because of their low immunogenicity and superior biocompatibility in nature. In this review, we provide an overview of the recent advances in the field of EV-based studies on the diagnosis and therapeutics of ocular disease. We summarized the origins of EVs applied in ocular disease, assessed different methods for EV isolation from ocular biofluid samples, highlighted bioengineering strategies of EVs as drug delivery systems, introduced the latest applications in the diagnosis and treatment of ocular disease, and presented their potential in the current clinical trials. Finally, we briefly discussed the challenges of EV-based studies in ocular disease and some issues of concern for better focusing on clinical translational studies of EVs in the future.
Collapse
Affiliation(s)
- Yun Su
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Moxin Chen
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Wei Xu
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
5
|
Chen DX, Lu CH, Na N, Yin RX, Huang F. Endothelial progenitor cell-derived extracellular vesicles: the world of potential prospects for the treatment of cardiovascular diseases. Cell Biosci 2024; 14:72. [PMID: 38840175 DOI: 10.1186/s13578-024-01255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) have emerged as a predominant threat to human health, surpassing the incidence and mortality rates of neoplastic diseases. Extracellular vesicles (EVs) serve as vital mediators in intercellular communication and material exchange. Endothelial progenitor cells (EPCs), recognized as precursors of vascular endothelial cells (ECs), have garnered considerable attention in recent years due to the potential therapeutic value of their derived extracellular vesicles (EPC-EVs) in the context of CVDs. This comprehensive review systematically explores the origins, characteristics, and functions of EPCs, alongside the classification, properties, biogenesis, and extraction techniques of EVs, with particular emphasis on their protective roles in CVDs. Additionally, we delve into the essential bioactive components of EPC-EVs, including microRNAs, long non-coding RNAs, and proteins, analyzing their beneficial effects in promoting angiogenesis, anti-inflammatory and anti-oxidant activities, anti-fibrosis, anti-apoptosis, and myocardial regeneration. Furthermore, this review comprehensively investigates the therapeutic potential of EPC-EVs across various CVDs, encompassing acute myocardial infarction, myocardial ischemia-reperfusion injury, atherosclerosis, non-ischemic cardiomyopathies, and diabetic cardiovascular disease. Lastly, we summarize the potential challenges associated with the clinical application of EPC-EVs and outline future directions, aiming to offer a valuable resource for both theoretical insights and practical applications of EPC-EVs in managing CVDs.
Collapse
Affiliation(s)
- De-Xin Chen
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chuang-Hong Lu
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Na Na
- Department of Neuroscience, Scripps Research Institute, No.10550 North Torrey Pines Road, La Jolla, San Diego, CA, 92037, USA
| | - Rui-Xing Yin
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Feng Huang
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
6
|
Marra KV, Chen JS, Robles-Holmes HK, Miller J, Wei G, Aguilar E, Ideguchi Y, Ly KB, Prenner S, Erdogmus D, Ferrara N, Campbell JP, Friedlander M, Nudleman E. Development of a Semi-automated Computer-based Tool for the Quantification of Vascular Tortuosity in the Murine Retina. OPHTHALMOLOGY SCIENCE 2024; 4:100439. [PMID: 38361912 PMCID: PMC10867761 DOI: 10.1016/j.xops.2023.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 02/17/2024]
Abstract
Purpose The murine oxygen-induced retinopathy (OIR) model is one of the most widely used animal models of ischemic retinopathy, mimicking hallmark pathophysiology of initial vaso-obliteration (VO) resulting in ischemia that drives neovascularization (NV). In addition to NV and VO, human ischemic retinopathies, including retinopathy of prematurity (ROP), are characterized by increased vascular tortuosity. Vascular tortuosity is an indicator of disease severity, need to treat, and treatment response in ROP. Current literature investigating novel therapeutics in the OIR model often report their effects on NV and VO, and measurements of vascular tortuosity are less commonly performed. No standardized quantification of vascular tortuosity exists to date despite this metric's relevance to human disease. This proof-of-concept study aimed to apply a previously published semi-automated computer-based image analysis approach (iROP-Assist) to develop a new tool to quantify vascular tortuosity in mouse models. Design Experimental study. Subjects C57BL/6J mice subjected to the OIR model. Methods In a pilot study, vasculature was manually segmented on flat-mount images of OIR and normoxic (NOX) mice retinas and segmentations were analyzed with iROP-Assist to quantify vascular tortuosity metrics. In a large cohort of age-matched (postnatal day 12 [P12], P17, P25) NOX and OIR mice retinas, NV, VO, and vascular tortuosity were quantified and compared. In a third experiment, vascular tortuosity in OIR mice retinas was quantified on P17 following intravitreal injection with anti-VEGF (aflibercept) or Immunoglobulin G isotype control on P12. Main Outcome Measures Vascular tortuosity. Results Cumulative tortuosity index was the best metric produced by iROP-Assist for discriminating between OIR mice and NOX controls. Increased vascular tortuosity correlated with disease activity in OIR. Treatment of OIR mice with aflibercept rescued vascular tortuosity. Conclusions Vascular tortuosity is a quantifiable feature of the OIR model that correlates with disease severity and may be quickly and accurately quantified using the iROP-Assist algorithm. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Kyle V. Marra
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California
- School of Medicine, University of California San Diego, San Diego, California
| | - Jimmy S. Chen
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, California
| | - Hailey K. Robles-Holmes
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, California
| | - Joseph Miller
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, California
| | - Guoqin Wei
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California
| | - Edith Aguilar
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California
| | - Yoichiro Ideguchi
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California
| | - Kristine B. Ly
- College of Optometry, Pacific University, Forest Grove, Oregon
| | - Sofia Prenner
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, California
| | - Deniz Erdogmus
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts
| | - Napoleone Ferrara
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, California
| | - J. Peter Campbell
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Martin Friedlander
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California
| | - Eric Nudleman
- Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, San Diego, California
| |
Collapse
|
7
|
Chen JS, Marra KV, Robles-Holmes HK, Ly KB, Miller J, Wei G, Aguilar E, Bucher F, Ideguchi Y, Coyner AS, Ferrara N, Campbell JP, Friedlander M, Nudleman E. Applications of Deep Learning: Automated Assessment of Vascular Tortuosity in Mouse Models of Oxygen-Induced Retinopathy. OPHTHALMOLOGY SCIENCE 2024; 4:100338. [PMID: 37869029 PMCID: PMC10585474 DOI: 10.1016/j.xops.2023.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 10/24/2023]
Abstract
Objective To develop a generative adversarial network (GAN) to segment major blood vessels from retinal flat-mount images from oxygen-induced retinopathy (OIR) and demonstrate the utility of these GAN-generated vessel segmentations in quantifying vascular tortuosity. Design Development and validation of GAN. Subjects Three datasets containing 1084, 50, and 20 flat-mount mice retina images with various stains used and ages at sacrifice acquired from previously published manuscripts. Methods Four graders manually segmented major blood vessels from flat-mount images of retinas from OIR mice. Pix2Pix, a high-resolution GAN, was trained on 984 pairs of raw flat-mount images and manual vessel segmentations and then tested on 100 and 50 image pairs from a held-out and external test set, respectively. GAN-generated and manual vessel segmentations were then used as an input into a previously published algorithm (iROP-Assist) to generate a vascular cumulative tortuosity index (CTI) for 20 image pairs containing mouse eyes treated with aflibercept versus control. Main Outcome Measures Mean dice coefficients were used to compare segmentation accuracy between the GAN-generated and manually annotated segmentation maps. For the image pairs treated with aflibercept versus control, mean CTIs were also calculated for both GAN-generated and manual vessel maps. Statistical significance was evaluated using Wilcoxon signed-rank tests (P ≤ 0.05 threshold for significance). Results The dice coefficient for the GAN-generated versus manual vessel segmentations was 0.75 ± 0.27 and 0.77 ± 0.17 for the held-out test set and external test set, respectively. The mean CTI generated from the GAN-generated and manual vessel segmentations was 1.12 ± 0.07 versus 1.03 ± 0.02 (P = 0.003) and 1.06 ± 0.04 versus 1.01 ± 0.01 (P < 0.001), respectively, for eyes treated with aflibercept versus control, demonstrating that vascular tortuosity was rescued by aflibercept when quantified by GAN-generated and manual vessel segmentations. Conclusions GANs can be used to accurately generate vessel map segmentations from flat-mount images. These vessel maps may be used to evaluate novel metrics of vascular tortuosity in OIR, such as CTI, and have the potential to accelerate research in treatments for ischemic retinopathies. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Jimmy S. Chen
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, California
| | - Kyle V. Marra
- Molecular Medicine, the Scripps Research Institute, San Diego, California
- School of Medicine, University of California San Diego, San Diego, California
| | - Hailey K. Robles-Holmes
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, California
| | - Kristine B. Ly
- College of Optometry, Pacific University, Forest Grove, Oregon
| | - Joseph Miller
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, California
| | - Guoqin Wei
- Molecular Medicine, the Scripps Research Institute, San Diego, California
| | - Edith Aguilar
- Molecular Medicine, the Scripps Research Institute, San Diego, California
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yoichi Ideguchi
- Molecular Medicine, the Scripps Research Institute, San Diego, California
| | - Aaron S. Coyner
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon
| | - Napoleone Ferrara
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, California
| | - J. Peter Campbell
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon
| | - Martin Friedlander
- Molecular Medicine, the Scripps Research Institute, San Diego, California
| | - Eric Nudleman
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, California
| |
Collapse
|
8
|
Jing Jia, Ma B, Zhao X. Fetal endothelial colony-forming cells: Possible targets for prevention of the fetal origins of adult diseases. Placenta 2024; 145:80-88. [PMID: 38100962 DOI: 10.1016/j.placenta.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Endothelial colony-forming cells (ECFCs), a subset of circulating and resident endothelial progenitor cells, are capable of self-renewal and de novo vessel formation, and are known key regulators of vascular integrity and homeostasis. Numerous studies have found that exposure to hostile environment during the fetal development exerts a profound influence on the level and function of ECFCs, which may be the underlying factor linking endothelial dysfunction to cardiovascular disease of the offspring in later life. Herein, we focus on the latest findings regarding the effects of pregnancy-related disorders on the frequency and function of fetal ECFCs. Subsequently, we discuss about placental ECFCs and put forward some details that should be paid attention to in the process of ECFC isolation and culture. Overall, the information presented in this review highlight the potential of ECFCs as a future biomarker or even therapeutic targets for the pregnancy-related adverse maternal and fetal outcomes.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Baitao Ma
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Keep RF, Jones HC, Hamilton MG, Drewes LR. A year in review: brain barriers and brain fluids research in 2022. Fluids Barriers CNS 2023; 20:30. [PMID: 37085841 PMCID: PMC10120509 DOI: 10.1186/s12987-023-00429-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
This aim of this editorial is to highlight progress made in brain barrier and brain fluid research in 2022. It covers studies on the blood-brain, blood-retina and blood-CSF barriers (choroid plexus and meninges), signaling within the neurovascular unit and elements of the brain fluid systems. It further discusses how brain barriers and brain fluid systems are impacted in CNS diseases, their role in disease progression and progress being made in treating such diseases.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | | | - Mark G Hamilton
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Alberta, Canada
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|