1
|
Liyanarachi KV, Flatby H, Hallan S, Åsvold BO, Damås JK, Rogne T. Uromodulin and Risk of Upper Urinary Tract Infections: A Mendelian Randomization Study. Am J Kidney Dis 2025; 85:570-576.e1. [PMID: 39805364 DOI: 10.1053/j.ajkd.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025]
Abstract
RATIONALE & OBJECTIVE Observational studies suggest that uromodulin, produced by the kidneys, is associated with a reduced risk of upper urinary tract infections (UTIs), but inferences are limited by potential confounding factors. This study sought to explore further the validity of this association using Mendelian randomization (MR). STUDY DESIGN Two-sample MR study. SETTING & PARTICIPANTS The study included 29,315 and 13,956 participants from 18 cohorts of mainly European ancestry with measured urinary and serum uromodulin levels, respectively, and 3,873 and 512,608 participants from the UK Biobank, the Trøndelag Health Study, or the Michigan Genomic Initiative with and without upper UTIs. EXPOSURES We identified uncorrelated (r2 < 0.01) single nucleotide variations that were strongly associated (P < 5 × 10-6) with urinary and serum uromodulin levels from the aforementioned two genome-wide association studies. Both studies accounted for kidney function. OUTCOMES Genetic associations for the risk of upper UTIs extracted from the aforementioned independent genome-wide association study. ANALYTICAL APPROACH Inverse variance-weighted and sensitivity analyses were performed. The strength of each genetic instrument was estimated using the F statistic. RESULTS A 1-standard deviation increase in genetically predicted urinary uromodulin level was associated with an odds ratio (OR) for upper UTIs of 0.80 (95% CI, 0.67-0.95; P = 0.01). A 1-standard deviation increase in serum uromodulin was not statistically associated with elevated odds of upper UTIs, OR = 0.95 (95% CI, 0.89-1.01; P = 0.12). These findings were consistent across the sensitivity analyses. LIMITATIONS Analyses could be performed on only participants of predominantly European ancestry, potentially decreasing the generalizability of our findings. CONCLUSIONS This two-sample MR study found that increased levels of genetically predicted urinary uromodulin were associated with a reduced risk of upper UTIs. These findings support the hypothesis that uromodulin may have a protective role against upper UTIs. PLAIN-LANGUAGE SUMMARY Traditional studies have suggested that uromodulin, a protein produced by the kidneys, may reduce the risk of urinary tract infections (UTIs). The certainty of these findings is limited by the potential influence of unmeasured confounding factors. Therefore, we decided to address this concern by using genetic data to perform a two-sample Mendelian randomization analysis, a technique known to limit the influence of such factors. Our findings support the hypothesis that uromodulin in urine may have a protective role against upper UTIs. The findings were consistent across sensitivity and sex-specific analyses. Further research into the implications of these findings for the treatment of UTIs as well as the possible utility of urinary uromodulin as a diagnostic marker is warranted.
Collapse
Affiliation(s)
- Kristin Vardheim Liyanarachi
- Mid-Norway Center for Sepsis Research, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Infectious Diseases, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Helene Flatby
- Mid-Norway Center for Sepsis Research, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stein Hallan
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjørn Olav Åsvold
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway; HUNT Research Center, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway; Department of Endocrinology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan Kristian Damås
- Mid-Norway Center for Sepsis Research, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Infectious Diseases, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tormod Rogne
- Mid-Norway Center for Sepsis Research, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Yale Department of Chronic Disease Epidemiology and Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut
| |
Collapse
|
2
|
Lanktree MB, Robinson-Cohen C. Ancestral Variability in the Genetic Architecture of Urine Uromodulin. Kidney Int Rep 2025; 10:10-11. [PMID: 39810791 PMCID: PMC11725962 DOI: 10.1016/j.ekir.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Affiliation(s)
- Matthew B. Lanktree
- Departments of Medicine and Health Research Methodology, Evidence & Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
- Division of Nephrology, St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
| | | |
Collapse
|
3
|
Nanamatsu A, de Araújo L, LaFavers KA, El-Achkar TM. Advances in uromodulin biology and potential clinical applications. Nat Rev Nephrol 2024; 20:806-821. [PMID: 39160319 PMCID: PMC11568936 DOI: 10.1038/s41581-024-00881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is a kidney-specific glycoprotein secreted bidirectionally into urine and into the circulation, and it is the most abundant protein in normal urine. Although the discovery of uromodulin predates modern medicine, its significance in health and disease has been rather enigmatic. Research studies have gradually revealed that uromodulin exists in multiple forms and has important roles in urinary and systemic homeostasis. Most uromodulin in urine is polymerized into highly organized filaments, whereas non-polymeric uromodulin is detected both in urine and in the circulation, and can have distinct roles. The interactions of uromodulin with the immune system, which were initially reported to be a key role of this protein, are now better understood. Moreover, the discovery that uromodulin is associated with a spectrum of kidney diseases, including acute kidney injury, chronic kidney disease and autosomal-dominant tubulointerstitial kidney disease, has further accelerated investigations into the role of this protein. These discoveries have prompted new questions and ushered in a new era in uromodulin research. Here, we delineate the latest discoveries in uromodulin biology and its emerging roles in modulating kidney and systemic diseases, and consider future directions, including its potential clinical applications.
Collapse
Affiliation(s)
- Azuma Nanamatsu
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Larissa de Araújo
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaice A LaFavers
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Karagiannidis AG, Theodorakopoulou MP, Pella E, Sarafidis PA, Ortiz A. Uromodulin biology. Nephrol Dial Transplant 2024; 39:1073-1087. [PMID: 38211973 PMCID: PMC11210992 DOI: 10.1093/ndt/gfae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 01/13/2024] Open
Abstract
Uromodulin is a kidney-specific glycoprotein which is exclusively produced by the epithelial cells lining the thick ascending limb and early distal convoluted tubule. It is currently recognized as a multifaceted player in kidney physiology and disease, with discrete roles for intracellular, urinary, interstitial and serum uromodulin. Among these, uromodulin modulates renal sodium handling through the regulation of tubular sodium transporters that reabsorb sodium and are targeted by diuretics, such as the loop diuretic-sensitive Na+-K+-2Cl- cotransporter type 2 (NKCC2) and the thiazide-sensitive Na+/Cl- cotransporter (NCC). Given these roles, the contribution of uromodulin to sodium-sensitive hypertension has been proposed. However, recent studies in humans suggest a more complex interaction between dietary sodium intake, uromodulin and blood pressure. This review presents an updated overview of the uromodulin's biology and its various roles, and focuses on the interaction between uromodulin and sodium-sensitive hypertension.
Collapse
Affiliation(s)
- Artemios G Karagiannidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta P Theodorakopoulou
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eva Pella
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis A Sarafidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| |
Collapse
|
5
|
Haug S, Muthusamy S, Li Y, Stewart G, Li X, Treppner M, Köttgen A, Akilesh S. Multi-omic analysis of human kidney tissue identified medulla-specific gene expression patterns. Kidney Int 2024; 105:293-311. [PMID: 37995909 PMCID: PMC10843743 DOI: 10.1016/j.kint.2023.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 09/21/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
The kidney medulla is a specialized region with important homeostatic functions. It has been implicated in genetic and developmental disorders along with ischemic and drug-induced injuries. Despite its role in kidney function and disease, the medulla's baseline gene expression and epigenomic signatures have not been well described in the adult human kidney. Here we generated and analyzed gene expression (RNA-seq), chromatin accessibility (ATAC-seq), chromatin conformation (Hi-C) and spatial transcriptomic data from the adult human kidney cortex and medulla. Tissue samples were obtained from macroscopically dissected cortex and medulla of tumor-adjacent normal material in nephrectomy specimens from five male patients. We used these carefully annotated specimens to reassign incorrectly labeled samples in the larger public Genotype-Tissue Expression (GTEx) Project, and to extract meaningful medullary gene expression signatures. Using integrated analysis of gene expression, chromatin accessibility and conformation profiles, we found insights into medulla development and function and then validated this by spatial transcriptomics and immunohistochemistry. Thus, our datasets provide a valuable resource for functional annotation of variants from genome-wide association studies and are freely accessible through an epigenome browser portal.
Collapse
Affiliation(s)
- Stefan Haug
- Institute of Genetic Epidemiology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Selvaraj Muthusamy
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yong Li
- Institute of Genetic Epidemiology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Galen Stewart
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Xianwu Li
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Martin Treppner
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Center-University of Freiburg, Freiburg, Germany.
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
6
|
Lanktree MB, Perrot N, Smyth A, Chong M, Narula S, Shanmuganathan M, Kroezen Z, Britz-Mckibbin P, Berger M, Krepinsky JC, Pigeyre M, Yusuf S, Paré G. A novel multi-ancestry proteome-wide Mendelian randomization study implicates extracellular proteins, tubular cells, and fibroblasts in estimated glomerular filtration rate regulation. Kidney Int 2023; 104:1170-1184. [PMID: 37774922 DOI: 10.1016/j.kint.2023.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Estimated glomerular filtration rate (eGFR) impacts the concentration of plasma biomarkers confounding biomarker association studies of eGFR with reverse causation. To identify biomarkers causally associated with eGFR, we performed a proteome-wide Mendelian randomization study. Genetic variants nearby biomarker coding genes were tested for association with plasma concentration of 1,161 biomarkers in a multi-ancestry sample of 12,066 participants from the Prospective Urban and Rural Epidemiological (PURE) study. Using two-sample Mendelian randomization, individual variants' effects on biomarker concentration were correlated with their effects on eGFR and kidney traits from published genome-wide association studies (GWAS). Genetically altered concentrations of 22 biomarkers were associated with eGFR above a Bonferroni-corrected significance threshold. Five biomarkers were previously identified by GWAS (UMOD, FGF5, LGALS7, NINJ1, COL18A1). Nine biomarkers were within 1 Mb of the lead GWAS variant but the gene for the biomarker was unidentified as the candidate for the GWAS signal (INHBC, TNFRSF11A, TCN2, PXN1, PRTN3, PSMD9, TFPI, ITGB6, CA3). Single-cell transcriptomic data indicated the 22 biomarkers are expressed in kidney tubules, collecting duct, fibroblasts, and immune cells. Pathway analysis showed significant enrichment of identified biomarkers in the extracellular kidney parenchyma. Thus, using genetic regulators of biomarker concentration via proteome-wide Mendelian randomization, we identified 22 biomarkers that appear to causally impact eGFR in either a beneficial or adverse manner. The current study provides rationale for novel therapeutic targets for eGFR and emphasized a role for extracellular proteins produced by tubular cells and fibroblasts for impacting eGFR.
Collapse
Affiliation(s)
- Matthew B Lanktree
- Population Health Research Institute, Hamilton, Ontario, Canada; Division of Nephrology, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Nicolas Perrot
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Andrew Smyth
- Population Health Research Institute, Hamilton, Ontario, Canada; HRB Clinical Research Facility Galway, University of Galway, Galway, Ireland
| | - Michael Chong
- Population Health Research Institute, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sukrit Narula
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Kroezen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Philip Britz-Mckibbin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Mario Berger
- Bayer AG, Pharmaceuticals Research & Development, Pharma Research Center, Wuppertal, Germany
| | - Joan C Krepinsky
- Division of Nephrology, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Marie Pigeyre
- Population Health Research Institute, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Salim Yusuf
- Population Health Research Institute, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Population Health Research Institute, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Schlosser P. Advancing proteomics in nephrology: unraveling causal pathways and therapeutic targets. Kidney Int 2023; 104:1059-1061. [PMID: 37981427 DOI: 10.1016/j.kint.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 11/21/2023]
Abstract
Proteomics has illuminated disease pathophysiology, unearthed novel biomarkers, and bolstered risk assessment strategies. In nephrology, observational analyses unveil biomarkers associated with adverse outcomes, whereas genetics offer insights into causal pathways. Mendelian randomization offers the potential to link the two, uncovering causal relationships between biomarkers and kidney function. Lanktree et al. demonstrate Mendelian randomization's utility in identifying additional proteins affecting kidney function and kidney disease progression.
Collapse
Affiliation(s)
- Pascal Schlosser
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Tin A, Fohner AE, Yang Q, Brody JA, Davies G, Yao J, Liu D, Caro I, Lindbohm JV, Duggan MR, Meirelles O, Harris SE, Gudmundsdottir V, Taylor AM, Henry A, Beiser AS, Shojaie A, Coors A, Fitzpatrick AL, Langenberg C, Satizabal CL, Sitlani CM, Wheeler E, Tucker-Drob EM, Bressler J, Coresh J, Bis JC, Candia J, Jennings LL, Pietzner M, Lathrop M, Lopez OL, Redmond P, Gerszten RE, Rich SS, Heckbert SR, Austin TR, Hughes TM, Tanaka T, Emilsson V, Vasan RS, Guo X, Zhu Y, Tzourio C, Rotter JI, Walker KA, Ferrucci L, Kivimäki M, Breteler MMB, Cox SR, Debette S, Mosley TH, Gudnason VG, Launer LJ, Psaty BM, Seshadri S, Fornage M. Identification of circulating proteins associated with general cognitive function among middle-aged and older adults. Commun Biol 2023; 6:1117. [PMID: 37923804 PMCID: PMC10624811 DOI: 10.1038/s42003-023-05454-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p < 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer's disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p < 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets.
Collapse
Grants
- N01 HC095163 NHLBI NIH HHS
- RC2 HL102419 NHLBI NIH HHS
- HHSN268201500003C NHLBI NIH HHS
- UH3 NS100605 NINDS NIH HHS
- R01 HL103612 NHLBI NIH HHS
- 75N92020D00002 NHLBI NIH HHS
- U01 HL096812 NHLBI NIH HHS
- MC_UU_00006/1 Medical Research Council
- UF1 NS125513 NINDS NIH HHS
- 75N92020D00005 NHLBI NIH HHS
- N01AG12100 NIA NIH HHS
- N01HC95160 NHLBI NIH HHS
- R01 AG054076 NIA NIH HHS
- R01 HL120393 NHLBI NIH HHS
- BB/F019394/1 Biotechnology and Biological Sciences Research Council
- RF1 AG059421 NIA NIH HHS
- R01 HL131136 NHLBI NIH HHS
- N01 HC095168 NHLBI NIH HHS
- UL1 RR025005 NCRR NIH HHS
- R01 AG015928 NIA NIH HHS
- HHSN268201800004I NHLBI NIH HHS
- U01 HL080295 NHLBI NIH HHS
- N01HC95163 NHLBI NIH HHS
- N01 AG012100 NIA NIH HHS
- HHSN268201500001C NHLBI NIH HHS
- UL1 TR001079 NCATS NIH HHS
- N01 HC085082 NHLBI NIH HHS
- U01 HL096917 NHLBI NIH HHS
- R01 HL059367 NHLBI NIH HHS
- U01 HL130114 NHLBI NIH HHS
- HHSN268200800007C NHLBI NIH HHS
- R01 HL085251 NHLBI NIH HHS
- N01HC95169 NHLBI NIH HHS
- R01 NS087541 NINDS NIH HHS
- 75N92020D00001 NHLBI NIH HHS
- R01 HL086694 NHLBI NIH HHS
- R01 AG054628 NIA NIH HHS
- U01 HL096902 NHLBI NIH HHS
- R01 HL087652 NHLBI NIH HHS
- N01 HC095162 NHLBI NIH HHS
- U01 HG004402 NHGRI NIH HHS
- N01HC95164 NHLBI NIH HHS
- N01 HC085086 NHLBI NIH HHS
- N01HC55222 NHLBI NIH HHS
- R01 AG049607 NIA NIH HHS
- R01 AG065596 NIA NIH HHS
- N01 HC095165 NHLBI NIH HHS
- N01HC95162 NHLBI NIH HHS
- MR/R024227/1 Medical Research Council
- N01HC85086 NHLBI NIH HHS
- 75N92020D00003 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- N01HC95168 NHLBI NIH HHS
- N01 HC095169 NHLBI NIH HHS
- HHSN268201800003I NHLBI NIH HHS
- P30 DK063491 NIDDK NIH HHS
- HHSN268201800007I NHLBI NIH HHS
- HHSN268201700002C NHLBI NIH HHS
- R01 AG066524 NIA NIH HHS
- RF1 AG063507 NIA NIH HHS
- HHSN268201200036C NHLBI NIH HHS
- R01 HL144483 NHLBI NIH HHS
- HHSN268201800001C NHLBI NIH HHS
- HHSN268201700001I NHLBI NIH HHS
- R01 AG056477 NIA NIH HHS
- HHSN268201700004I NHLBI NIH HHS
- N01HC95165 NHLBI NIH HHS
- N01 HC095159 NHLBI NIH HHS
- U01 AG058589 NIA NIH HHS
- N01HC95159 NHLBI NIH HHS
- N01 HC095161 NHLBI NIH HHS
- HHSN268201500001I NHLBI NIH HHS
- R01 AG058969 NIA NIH HHS
- HHSN271201200022C NIDA NIH HHS
- N01 HC025195 NHLBI NIH HHS
- N01HC95161 NHLBI NIH HHS
- UL1 TR001420 NCATS NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- U01 HL096814 NHLBI NIH HHS
- P30 AG066509 NIA NIH HHS
- R01 HL132320 NHLBI NIH HHS
- 75N92020D00007 NHLBI NIH HHS
- P30 AG066546 NIA NIH HHS
- R01 AG033040 NIA NIH HHS
- MR/S011676/1 Medical Research Council
- U01 AG052409 NIA NIH HHS
- HHSN268201500003I NHLBI NIH HHS
- K01 AG071689 NIA NIH HHS
- 75N92021D00006 NHLBI NIH HHS
- R01 AG026307 NIA NIH HHS
- R01 AG020098 NIA NIH HHS
- HHSN268201700005C NHLBI NIH HHS
- HHSN268201700001C NHLBI NIH HHS
- N01HC85082 NHLBI NIH HHS
- HHSN268201700003C NHLBI NIH HHS
- N01 HC095166 NHLBI NIH HHS
- N01HC95167 NHLBI NIH HHS
- N01HC85083 NHLBI NIH HHS
- UH2 NS100605 NINDS NIH HHS
- N01HC25195 NHLBI NIH HHS
- 75N92019D00031 NHLBI NIH HHS
- U01 HL096899 NHLBI NIH HHS
- HHSN268201700004C NHLBI NIH HHS
- UL1 TR000040 NCATS NIH HHS
- HHSN268201700002I NHLBI NIH HHS
- HHSN268201700005I NHLBI NIH HHS
- P30 AG072947 NIA NIH HHS
- R01 AG025941 NIA NIH HHS
- Chief Scientist Office
- 75N92020D00006 NHLBI NIH HHS
- N01HC95166 NHLBI NIH HHS
- R01 AG023629 NIA NIH HHS
- R01 HL087641 NHLBI NIH HHS
- N01HC85079 NHLBI NIH HHS
- N01 HC085080 NHLBI NIH HHS
- UL1 TR001881 NCATS NIH HHS
- N01 HC095167 NHLBI NIH HHS
- HHSN268201800005I NHLBI NIH HHS
- N01HC85080 NHLBI NIH HHS
- HHSN268201700003I NHLBI NIH HHS
- HHSN268201800006I NHLBI NIH HHS
- N01 HC095164 NHLBI NIH HHS
- N01HC85081 NHLBI NIH HHS
- N01 HC095160 NHLBI NIH HHS
- The ARIC study has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services (contract numbers HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and HHSN268201700005I), R01HL087641, R01HL059367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. Funding was also supported by 5RC2HL102419, R01NS087541 and R01HL131136. Neurocognitive data were collected by U01 2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902, 2U01HL096917 from the NIH (NHLBI, NINDS, NIA and NIDCD). Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. This Cardiovascular Heath Study (CHS) research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, 75N92021D00006; and NHLBI grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, R01HL085251, R01HL144483, and U01HL130114 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629, R01AG15928, and R01AG20098 from the National Institute on Aging (NIA). AEF is supported by K01AG071689. The Framingham Heart Study is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-HC-25195, HHSN268201500001I and 75N92019D00031). This work was also supported by grant R01AG063507, R01AG054076, R01AG049607, R01AG059421, R01AG033040, R01AG066524, P30AG066546, U01 AG052409, U01 AG058589 from from the National Institute on Aging and R01 AG017950, UH2/3 NS100605, UF1 NS125513 from National Institute of Neurological Disorders and Stroke and R01HL132320. AGES has been funded by NIA contracts N01-AG012100 and HSSN271201200022C, NIH Grant No. 1R01AG065596-01A1, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). M. R. Duggan, T. Tanaka, J. Candia, K. A. Walker, L. Ferrucci, L.J. Launer, O. Meirelles are funded by the National Institute on Aging Intramural Research Program. This study was funded, in part, by the National Institute on Aging Intramural Research Program. The Coronary Artery Risk Development in Young Adults Study (CARDIA) is supported by contracts HHSN268201800003I, HHSN268201800004I, HHSN268201800005I, HHSN268201800006I, and HHSN268201800007I from the National Heart, Lung, and Blood Institute (NHLBI). The LBC1921 was supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC), The Royal Society, and The Chief Scientist Office of the Scottish Government. Genotyping was funded by the BBSRC (BB/F019394/1). LBC1936 is supported by the Biotechnology and Biological Sciences Research Council, and the Economic and Social Research Council [BB/W008793/1], Age UK (Disconnected Mind project), and the University of Edinburgh. Genotyping was funded by the BBSRC (BB/F019394/1). The Olink® Neurology Proteomics assay was supported by a National Institutes of Health (NIH) research grant R01AG054628. Phenotype harmonization, data management, sample-identity QC, and general study coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-120393-02S1), and TOPMed MESA Multi-Omics (HHSN2682015000031/HSN26800004). The MESA projects are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for the Multi-Ethnic Study of Atherosclerosis (MESA) projects are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1TR001881, DK063491, and R01HL105756. The Three City (3C) Study is conducted under a partnership agreement among the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Bordeaux, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study is also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, Mutuelle Générale de l’Education Nationale (MGEN), Institut de la Longévité, Conseils Régionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Programme “Cohortes et collections de données biologiques.” Ilana Caro received a grant from the EUR digital public health. This PhD program is supported within the framework of the PIA3 (Investment for the future). Project reference 17-EURE-0019.
Collapse
Affiliation(s)
- Adrienne Tin
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Alison E Fohner
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA.
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Qiong Yang
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ilana Caro
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, UMR 1219, CHU Bordeaux, Bordeaux, France
| | - Joni V Lindbohm
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, The Klarman Cell Observatory, Cambridge, MA, USA
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Osorio Meirelles
- National Institute on Aging, National Institutes of Health, Laboratory of Epidemiology and Population Science, Bethesda, MD, USA
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Valborg Gudmundsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Adele M Taylor
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Albert Henry
- Institute of Cardiovascular Science, University of London, London, UK
| | - Alexa S Beiser
- Department of Biostatistics, Boston University, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Annabell Coors
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Annette L Fitzpatrick
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Departments of Family Medicine, University of Washington, Seattle, WA, USA
| | - Claudia Langenberg
- Precision Healthcare Institute, Queen Mary University of London, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia L Satizabal
- Framingham Heart Study, Framingham, MA, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Maik Pietzner
- Precision Healthcare Institute, Queen Mary University of London, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert E Gerszten
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Thomas R Austin
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Valur Emilsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA, USA
- University of Texas School of Public Health in San Antonio, San Antonio, TX, USA
- University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yineng Zhu
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Christophe Tzourio
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, UMR 1219, CHU Bordeaux, Bordeaux, France
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Mika Kivimäki
- UCL Brain Sciences, University College London, London, UK
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Stephanie Debette
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, UMR 1219, CHU Bordeaux, Bordeaux, France
- Department of Neurology, Institute for Neurodegenerative Diseases, CHU de Bordeaux, Bordeaux, France
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, MA, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Myriam Fornage
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
9
|
Thielemans R, Speeckaert R, Delrue C, De Bruyne S, Oyaert M, Speeckaert MM. Unveiling the Hidden Power of Uromodulin: A Promising Potential Biomarker for Kidney Diseases. Diagnostics (Basel) 2023; 13:3077. [PMID: 37835820 PMCID: PMC10572911 DOI: 10.3390/diagnostics13193077] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Uromodulin, also known as Tamm-Horsfall protein, represents the predominant urinary protein in healthy individuals. Over the years, studies have revealed compelling associations between urinary and serum concentrations of uromodulin and various parameters, encompassing kidney function, graft survival, cardiovascular disease, glucose metabolism, and overall mortality. Consequently, there has been a growing interest in uromodulin as a novel and effective biomarker with potential applications in diverse clinical settings. Reduced urinary uromodulin levels have been linked to an elevated risk of acute kidney injury (AKI) following cardiac surgery. In the context of chronic kidney disease (CKD) of different etiologies, urinary uromodulin levels tend to decrease significantly and are strongly correlated with variations in estimated glomerular filtration rate. The presence of uromodulin in the serum, attributable to basolateral epithelial cell leakage in the thick ascending limb, has been observed. This serum uromodulin level is closely associated with kidney function and histological severity, suggesting its potential as a biomarker capable of reflecting disease severity across a spectrum of kidney disorders. The UMOD gene has emerged as a prominent locus linked to kidney function parameters and CKD risk within the general population. Extensive research in multiple disciplines has underscored the biological significance of the top UMOD gene variants, which have also been associated with hypertension and kidney stones, thus highlighting the diverse and significant impact of uromodulin on kidney-related conditions. UMOD gene mutations are implicated in uromodulin-associated kidney disease, while polymorphisms in the UMOD gene show a significant association with CKD. In conclusion, uromodulin holds great promise as an informative biomarker, providing valuable insights into kidney function and disease progression in various clinical scenarios. The identification of UMOD gene variants further strengthens its relevance as a potential target for better understanding kidney-related pathologies and devising novel therapeutic strategies. Future investigations into the roles of uromodulin and regulatory mechanisms are likely to yield even more profound implications for kidney disease diagnosis, risk assessment, and management.
Collapse
Affiliation(s)
- Raïsa Thielemans
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium; (R.T.); (C.D.)
| | | | - Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium; (R.T.); (C.D.)
| | - Sander De Bruyne
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.D.B.); (M.O.)
| | - Matthijs Oyaert
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.D.B.); (M.O.)
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium; (R.T.); (C.D.)
- Research Foundation Flanders, 1000 Brussels, Belgium
| |
Collapse
|
10
|
Schlosser P, Grams ME, Rhee EP. Proteomics: Progress and Promise of High-Throughput Proteomics in Chronic Kidney Disease. Mol Cell Proteomics 2023; 22:100550. [PMID: 37076045 PMCID: PMC10326701 DOI: 10.1016/j.mcpro.2023.100550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/21/2023] Open
Abstract
Current proteomic tools permit the high-throughput analysis of the blood proteome in large cohorts, including those enriched for chronic kidney disease (CKD) or its risk factors. To date, these studies have identified numerous proteins associated with cross-sectional measures of kidney function, as well as with the longitudinal risk of CKD progression. Representative signals that have emerged from the literature include an association between levels of testican-2 and favorable kidney prognosis and an association between levels of TNFRSF1A and TNFRSF1B and worse kidney prognosis. For these and other associations, however, understanding whether the proteins play a causal role in kidney disease pathogenesis remains a fundamental challenge, especially given the strong impact that kidney function can have on blood protein levels. Prior to investing in dedicated animal models or randomized trials, methods that leverage the availability of genotyping in epidemiologic cohorts-including Mendelian randomization, colocalization analyses, and proteome-wide association studies-can add evidence for causal inference in CKD proteomics research. In addition, integration of large-scale blood proteome analyses with urine and tissue proteomics, as well as improved assessment of posttranslational protein modifications (e.g., carbamylation), represent important future directions. Taken together, these approaches seek to translate progress in large-scale proteomic profiling into the promise of improved diagnostic tools and therapeutic target identification in kidney disease.
Collapse
Affiliation(s)
- Pascal Schlosser
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| | - Morgan E Grams
- Division of Precision Medicine, Department of Medicine, New York University, New York, New York, USA
| | - Eugene P Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Duca M, Malagolini N, Dall'Olio F. The story of the Sd a antigen and of its cognate enzyme B4GALNT2: What is new? Glycoconj J 2023; 40:123-133. [PMID: 36287346 DOI: 10.1007/s10719-022-10089-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
Abstract
The structure Siaα2,3(GalNAcβ1,4)Gal- is the epitope of the Sda antigen, which is expressed on the erythrocytes and secretions of the vast majority of Caucasians, carried by N- and O-linked chains of glycoproteins, as well as by glycolipids. Sda is very similar, but not identical, to ganglioside GM2 [Siaα2,3(GalNAcβ1,4)Galβ1,4Glc-Cer]. The Sda synthase β1,4 N-acetylgalactosaminyl transferase 2 (B4GALNT2) exists in a short and a long form, diverging in the aminoterminal domain. The latter has a very long cytoplasmic tail and displays a Golgi- as well as a post-Golgi localization. The biosynthesis of Sda is mutually exclusive with that of the cancer-associated sialyl Lewis antigens, whose structure is Siaα2,3Galβ1,3/4(Fucα1,4/3)GlcNAc-. B4GALNT2 is down-regulated in colon cancer but patients with higher expression survive longer. In experimental systems, B4GALNT2 inhibits colon cancer progression,not only through inhibition of sialyl Lewis antigen biosynthesis. By contrast, in breast cancer B4GALNT2 is associated with malignancy. In colon cancer, the B4GALNT2 gene is regulated by multiple mechanisms, which include miRNA and transcription factor expression, as well as CpG methylation. In addition, Sda/B4GALNT2 regulates the susceptibility to infectious agents, the protection from muscle dystrophy, the activity of immune system in pregnancy and the immune rejection in xenotransplantation.
Collapse
Affiliation(s)
- Martina Duca
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy.
| |
Collapse
|
12
|
LaFavers KA, Micanovic R, Sabo AR, Maghak LA, El-Achkar TM. Evolving Concepts in Uromodulin Biology, Physiology, and Its Role in Disease: a Tale of Two Forms. Hypertension 2022; 79:2409-2418. [PMID: 35959659 PMCID: PMC9669127 DOI: 10.1161/hypertensionaha.122.18567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Uromodulin (or Tamm-Horsfall protein) is a glycoprotein uniquely produced in the kidney by tubular cells of the thick ascending limb of the loop of Henle and early distal tubules. This protein exhibits bidirectional secretion in the urine and in the renal interstitium and circulation. The role of this protein in maintaining renal and systemic homeostasis is becoming increasingly appreciated. Furthermore, perturbations of its functions may play a role in various diseases affecting the kidney and distant organs. In this review, we will discuss important advances in understanding its biology, highlighting the recent discoveries of its secretion and differential precursor processing that generates 2 forms: (1) a highly polymerizing form that is apically excreted in the urine and generates filaments and (2) a nonpolymerizing form that retains a polymerization inhibitory pro-peptide and is released basolaterally in the kidney interstitium and circulation, but can also be found in the urine. We will also discuss factors regulating its production and release, taking into account its intricate physiology, and propose best practices to report its levels. We also discuss breaking advances in its role in hypertension, acute kidney injury and progression to chronic disease, immunomodulation and regulating renal and systemic oxidative stress. We anticipate that this work will be a great resource for researchers and clinicians. This review will highlight the importance of defining what regulates the 2 forms of uromodulin, so that modulation of uromodulin levels and function could become a novel tool in our therapeutic armamentarium against kidney disease.
Collapse
Affiliation(s)
- Kaice A LaFavers
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN. Roudebush VA Medical Center, Indianapolis, IN
| | - Radmila Micanovic
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN. Roudebush VA Medical Center, Indianapolis, IN
| | - Angela R Sabo
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN. Roudebush VA Medical Center, Indianapolis, IN
| | - Lauren A Maghak
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN. Roudebush VA Medical Center, Indianapolis, IN
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
13
|
Mary S, Boder P, Padmanabhan S, McBride MW, Graham D, Delles C, Dominiczak AF. Role of Uromodulin in Salt-Sensitive Hypertension. Hypertension 2022; 79:2419-2429. [PMID: 36378920 PMCID: PMC9553220 DOI: 10.1161/hypertensionaha.122.19888] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The exclusive expression of uromodulin in the kidneys has made it an intriguing protein in kidney and cardiovascular research. Genome-wide association studies discovered variants of uromodulin that are associated with chronic kidney diseases and hypertension. Urinary and circulating uromodulin levels reflect kidney and cardiovascular health as well as overall mortality. More recently, Mendelian randomization studies have shown that genetically driven levels of uromodulin have a causal and adverse effect on kidney function. On a mechanistic level, salt sensitivity is an important factor in the pathophysiology of hypertension, and uromodulin is involved in salt reabsorption via the NKCC2 (Na+-K+-2Cl- cotransporter) on epithelial cells of the ascending limb of loop of Henle. In this review, we provide an overview of the multifaceted physiology and pathophysiology of uromodulin including recent advances in its genetics; cellular trafficking; and mechanistic and clinical studies undertaken to understand the complex relationship between uromodulin, blood pressure, and kidney function. We focus on tubular sodium reabsorption as one of the best understood and pathophysiologically and clinically most important roles of uromodulin, which can lead to therapeutic interventions.
Collapse
Affiliation(s)
- Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Philipp Boder
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Sandosh Padmanabhan
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Martin W. McBride
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Anna F. Dominiczak
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Devuyst O, Bochud M, Olinger E. UMOD and the architecture of kidney disease. Pflugers Arch 2022; 474:771-781. [PMID: 35881244 PMCID: PMC9338900 DOI: 10.1007/s00424-022-02733-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/17/2022]
Abstract
The identification of genetic factors associated with the risk, onset, and progression of kidney disease has the potential to provide mechanistic insights and therapeutic perspectives. In less than two decades, technological advances yielded a trove of information on the genetic architecture of chronic kidney disease. The spectrum of genetic influence ranges from (ultra)rare variants with large effect size, involved in Mendelian diseases, to common variants, often non-coding and with small effect size, which contribute to polygenic diseases. Here, we review the paradigm of UMOD, the gene coding for uromodulin, to illustrate how a kidney-specific protein of major physiological importance is involved in a spectrum of kidney disorders. This new field of investigation illustrates the importance of genetic variation in the pathogenesis and prognosis of disease, with therapeutic implications.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland.
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1010, Lausanne, Switzerland
| | - Eric Olinger
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|