1
|
Ruiz A, Peña‐Bates C, Ramon‐Luing LA, Baca‐Nuñez D, Vargas MA, Medina‐Quero K, Gutierrez N, Vázquez‐Pérez JA, Falfán‐Valencia R, Pérez‐Rubio G, Di Benedetto C, Buendia‐Roldan I, Selman M, Betancur P, Chavez‐Galan L. OPG and BAFF as predictive biomarkers of the severity of SARS-CoV-2 infection. J Cell Mol Med 2025; 29:e70189. [PMID: 39888266 PMCID: PMC11783147 DOI: 10.1111/jcmm.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 02/01/2025] Open
Abstract
Molecules of the tumour necrosis factor superfamily (TNFSF) are key players in immune regulation; an increase in some TNFSF molecules has been reported during severe COVID-19. In this study, we profiled and evaluated TNFSF members in the serum of COVID-19 vaccine-naïve patients to identify potential biomarkers associated with disease severity. Our data show that TRAIL serum levels are lower in severely affected patients than those mildly affected by COVID-19 (AUC 0.8, p = 0.0003). On the contrary, OPG and BAFF serum levels are higher in severe COVID-19 compared to mild COVID-19 cases (AUC 0.8, p = 0.0001; AUC 0.7, p = 0.0012; respectively) and moderate COVID-19 cases (OPG p < 0.01), BAFF (p < 0.05). At the transcriptional level, TRAIL, OPG and BAFF are elevated in severe compared to mild COVID-19 cases, with OPG and BAFF also higher in moderate compared to mild COVID-19 patients. Additionally, we found that APRIL, LIGHT, CD30L and CD40L protein-levels are higher in COVID-19 patients compared to healthy donors but not significantly different between various COVID-19 clinical statuses. Finally, we found that TNF-α, TNF-β, RANKL and TWEAK protein levels were not affected during COVID-19. Our work identifies OPG and BAFF as potential biomarkers and therapeutic targets for preventing severe COVID-19. Due to the opposite contradictory levels of TRAIL (protein/transcriptional level), its role during COVID-19 should be elucidated and clarified with more in-depth studies.
Collapse
Affiliation(s)
- Andy Ruiz
- Research UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Carlos Peña‐Bates
- Research UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Lucero A. Ramon‐Luing
- Research UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Daniel Baca‐Nuñez
- Research UnitEscuela Militar de Graduados de SanidadMexico CityMexico
| | | | | | - Neptali Gutierrez
- Research UnitEscuela Militar de Graduados de SanidadMexico CityMexico
| | - Joel A. Vázquez‐Pérez
- Research UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Ramcés Falfán‐Valencia
- Research UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Gloria Pérez‐Rubio
- Research UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | | | - Ivette Buendia‐Roldan
- Research UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Moisés Selman
- Research UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Paola Betancur
- Department of Radiation OncologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Leslie Chavez‐Galan
- Research UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| |
Collapse
|
2
|
Liu Y, Li W, Lei L, Zhou Y, Huang M, Li Y, Zhang X, Jiang Y, Wu H, Zheng Z, Ma K, Tang C. Effects of PGK1 on immunoinfiltration by integrated single-cell and bulk RNA-sequencing analysis in sepsis. Front Immunol 2024; 15:1449975. [PMID: 39712033 PMCID: PMC11659135 DOI: 10.3389/fimmu.2024.1449975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Background Sepsis, a life-threatening organ dysfunction caused by a dysregulated immune response to infection, remains a significant global health challenge. Phosphoglycerate kinase 1 (PGK1) has been implicated in regulating inflammation and immune cell infiltration in inflammatory conditions. However, the role of PGK1 in sepsis remains largely unexplored. Methods Four microarray datasets and a high throughput sequencing dataset were acquired from GEO database to reveal the PGK1 expression in patients of sepsis. Quantitative real-time PCR and western blotting was then used to validate the PGK1 level. Additionally, microarray and single-cell RNA sequencing data integration, including gene set enrichment analysis (GSEA), KEGG and GO functional enrichment analysis, immune infiltration analysis, and single-cell sequencing analysis, were performed to elucidate the role of PGK1 in sepsis. Results Our results revealed a significant upregulation of PGK1 in sepsis patients, with the area under the ROC curve (AUC) exceeding 0.9 across multiple datasets, indicating PGK1's strong potential as a diagnostic biomarker. Notably, PGK1 was enriched in key immune-related pathways, including the TNF signaling pathways, and leukocyte transendothelial migration, suggesting its involvement in immune regulation. Furthermore, PGK1 expression showed a positive correlation with the levels of inflammatory mediators CXCL1, CXCL16, and the chemokine receptor CCR1. In terms of immune cell infiltration, PGK1 was positively correlated with naive B cells, resting memory CD4 T cell, gamma delta T cells, M0 macrophages, eosinophils and negatively correlated with plasma cells, CD8 T cells, activated memory CD4 T cell, Tregs, activated dendritic cells. Conclusions This study concluded that PGK1 served as a novel diagnostic biomarker for sepsis, with potential implications for prognosis and immune regulation. The significant upregulation of PGK1 in sepsis patients and its association with immune-related pathways and cell types highlight its potential role in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weijie Li
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yaoliang Zhou
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mingcheng Huang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yide Li
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoying Zhang
- Health Management Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingyu Jiang
- Department of Renal Rheumatology and Immunology, The People’s Hospital of Hezhou, Hezhou, China
| | - Haiqi Wu
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Yang L, Han Y, Zhang T, Dong X, Ge J, Roy A, Zhu J, Lu T, Jeya Vandana J, de Silva N, Robertson CC, Xiang JZ, Pan C, Sun Y, Que J, Evans T, Liu C, Wang W, Naji A, Parker SCJ, Schwartz RE, Chen S. Human vascularized macrophage-islet organoids to model immune-mediated pancreatic β cell pyroptosis upon viral infection. Cell Stem Cell 2024; 31:1612-1629.e8. [PMID: 39232561 PMCID: PMC11546835 DOI: 10.1016/j.stem.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single-cell RNA sequencing (scRNA-seq) analysis of human islets exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory-macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared with separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory-macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune-cell-mediated host damage and uncovered the mechanism of β cell damage during viral exposure.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institute of Health Science, Tianjin 301600, China.
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jian Ge
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aadita Roy
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Tiankun Lu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chendong Pan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Sun
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
4
|
Yang L, Han Y, Zhang T, Dong X, Ge J, Roy A, Zhu J, Lu T, Vandana JJ, de Silva N, Robertson CC, Xiang JZ, Pan C, Sun Y, Que J, Evans T, Liu C, Wang W, Naji A, Parker SC, Schwartz RE, Chen S. Human Vascularized Macrophage-Islet Organoids to Model Immune-Mediated Pancreatic β cell Pyroptosis upon Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606734. [PMID: 39149298 PMCID: PMC11326194 DOI: 10.1101/2024.08.05.606734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single cell RNA-seq analysis of human islets exposed to SARS-CoV-2 or Coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared to separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune cell-mediated host damage and uncovered mechanism of β cell damage during viral exposure.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institute of Health Science, Tianjin 301600, China
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Jian Ge
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aadita Roy
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Tiankun Lu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - J. Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Catherine C. Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chendong Pan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Sun
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Stephen C.J. Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Robert E. Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA. New York 10021, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| |
Collapse
|
5
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
6
|
Cao J, Li C, Cui Z, Deng S, Lei T, Liu W, Yang H, Chen P. Spatial Transcriptomics: A Powerful Tool in Disease Understanding and Drug Discovery. Theranostics 2024; 14:2946-2968. [PMID: 38773973 PMCID: PMC11103497 DOI: 10.7150/thno.95908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024] Open
Abstract
Recent advancements in modern science have provided robust tools for drug discovery. The rapid development of transcriptome sequencing technologies has given rise to single-cell transcriptomics and single-nucleus transcriptomics, increasing the accuracy of sequencing and accelerating the drug discovery process. With the evolution of single-cell transcriptomics, spatial transcriptomics (ST) technology has emerged as a derivative approach. Spatial transcriptomics has emerged as a hot topic in the field of omics research in recent years; it not only provides information on gene expression levels but also offers spatial information on gene expression. This technology has shown tremendous potential in research on disease understanding and drug discovery. In this article, we introduce the analytical strategies of spatial transcriptomics and review its applications in novel target discovery and drug mechanism unravelling. Moreover, we discuss the current challenges and issues in this research field that need to be addressed. In conclusion, spatial transcriptomics offers a new perspective for drug discovery.
Collapse
Affiliation(s)
- Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou City, Hunan Province, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou City, Hunan Province, China
| | - Tong Lei
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou City, Hunan Province, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou City, Hunan Province, China
| |
Collapse
|
7
|
Milross L, Hunter B, McDonald D, Merces G, Thomson A, Hilkens CMU, Wills J, Rees P, Jiwa K, Cooper N, Majo J, Ashwin H, Duncan CJA, Kaye PM, Bayraktar OA, Filby A, Fisher AJ. Distinct lung cell signatures define the temporal evolution of diffuse alveolar damage in fatal COVID-19. EBioMedicine 2024; 99:104945. [PMID: 38142637 PMCID: PMC10788437 DOI: 10.1016/j.ebiom.2023.104945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Lung damage in severe COVID-19 is highly heterogeneous however studies with dedicated spatial distinction of discrete temporal phases of diffuse alveolar damage (DAD) and alternate lung injury patterns are lacking. Existing studies have also not accounted for progressive airspace obliteration in cellularity estimates. We used an imaging mass cytometry (IMC) analysis with an airspace correction step to more accurately identify the cellular immune response that underpins the heterogeneity of severe COVID-19 lung disease. METHODS Lung tissue was obtained at post-mortem from severe COVID-19 deaths. Pathologist-selected regions of interest (ROIs) were chosen by light microscopy representing the patho-evolutionary spectrum of DAD and alternate disease phenotypes were selected for comparison. Architecturally normal SARS-CoV-2-positive lung tissue and tissue from SARS-CoV-2-negative donors served as controls. ROIs were stained for 40 cellular protein markers and ablated using IMC before segmented cells were classified. Cell populations corrected by ROI airspace and their spatial relationships were compared across lung injury patterns. FINDINGS Forty patients (32M:8F, age: 22-98), 345 ROIs and >900k single cells were analysed. DAD progression was marked by airspace obliteration and significant increases in mononuclear phagocytes (MnPs), T and B lymphocytes and significant decreases in alveolar epithelial and endothelial cells. Neutrophil populations proved stable overall although several interferon-responding subsets demonstrated expansion. Spatial analysis revealed immune cell interactions occur prior to microscopically appreciable tissue injury. INTERPRETATION The immunopathogenesis of severe DAD in COVID-19 lung disease is characterised by sustained increases in MnPs and lymphocytes with key interactions occurring even prior to lung injury is established. FUNDING UK Research and Innovation/Medical Research Council through the UK Coronavirus Immunology Consortium, Barbour Foundation, General Sir John Monash Foundation, Newcastle University, JGW Patterson Foundation, Wellcome Trust.
Collapse
Affiliation(s)
- Luke Milross
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Bethany Hunter
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK; Innovation Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David McDonald
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK; Innovation Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - George Merces
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK; Innovation Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amanda Thomson
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Newcastle University Biosciences Institute, Newcastle upon Tyne, UK; Innovation Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Catharien M U Hilkens
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - John Wills
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Paul Rees
- Department of Biomedical Engineering, Swansea University, Wales, UK; Imaging Platform, Broad Institute of MIT and Harvard, 415 Main Street, Boston, Cambridge, MA, USA
| | - Kasim Jiwa
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nigel Cooper
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Joaquim Majo
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Helen Ashwin
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Christopher J A Duncan
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | | | - Andrew Filby
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK; Innovation Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Rubinstein A, Kudryavtsev I, Malkova A, Mammedova J, Isakov D, Isakova-Sivak I, Kudlay D, Starshinova A. Sarcoidosis-related autoimmune inflammation in COVID-19 convalescent patients. Front Med (Lausanne) 2023; 10:1271198. [PMID: 38179278 PMCID: PMC10765615 DOI: 10.3389/fmed.2023.1271198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Currently, there are a large number of reports about the development of autoimmune conditions after COVID-19. Also, there have been cases of sarcoid-like granulomas in convalescents as a part of the post-COVID-19 syndrome. Since one of the etiological theories of sarcoidosis considers it to be an autoimmune disease, we decided to study changes in the adaptive humoral immune response in sarcoidosis and SARS-CoV-2 infection and to find out whether COVID-19 can provoke the development of sarcoidosis. This review discusses histological changes in lymphoid organs in sarcoidosis and COVID-19, changes in B cell subpopulations, T-follicular helper cells (Tfh), and T-follicular regulatory cells (Tfr), and analyzes various autoantibodies detected in these pathologies. Based on the data studied, we concluded that SARS-CoV-2 infection may cause the development of autoimmune pathologies, in particular contributing to the onset of sarcoidosis in convalescents.
Collapse
Affiliation(s)
- Artem Rubinstein
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Annа Malkova
- Ariel University Faculty of Natural Sciences, Ariel, Israel
| | | | - Dmitry Isakov
- First Saint Petersburg State I. Pavlov Medical University, Saint Petersburg, Russia
| | | | - Dmitry Kudlay
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- NRC Institute of Immunology, Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Moscow, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
9
|
Weeratunga P, Denney L, Bull JA, Repapi E, Sergeant M, Etherington R, Vuppussetty C, Turner GDH, Clelland C, Woo J, Cross A, Issa F, de Andrea CE, Melero Bermejo I, Sims D, McGowan S, Zurke YX, Ahern DJ, Gamez EC, Whalley J, Richards D, Klenerman P, Monaco C, Udalova IA, Dong T, Antanaviciute A, Ogg G, Knight JC, Byrne HM, Taylor S, Ho LP. Single cell spatial analysis reveals inflammatory foci of immature neutrophil and CD8 T cells in COVID-19 lungs. Nat Commun 2023; 14:7216. [PMID: 37940670 PMCID: PMC10632491 DOI: 10.1038/s41467-023-42421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Single cell spatial interrogation of the immune-structural interactions in COVID -19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage stage. These findings offer further insights into how immune cells interact in the lungs of severe COVID-19 disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis.
Collapse
Affiliation(s)
- Praveen Weeratunga
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Laura Denney
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Joshua A Bull
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Emmanouela Repapi
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Martin Sergeant
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rachel Etherington
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Chaitanya Vuppussetty
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gareth D H Turner
- Department of Cellular Pathology and Radcliffe Department of Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Colin Clelland
- Anatomic Pathology, Weill Cornell Medical College, Doha, Qatar
| | - Jeongmin Woo
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Amy Cross
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | | | - David Sims
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Simon McGowan
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - David J Ahern
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Eddie C Gamez
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Justin Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Duncan Richards
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Diseases, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claudia Monaco
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Irina A Udalova
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Agne Antanaviciute
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham Ogg
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Stephen Taylor
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ling-Pei Ho
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Barrozo ER, Seferovic MD, Castro ECC, Major AM, Moorshead DN, Jochum MD, Rojas RF, Shope CD, Aagaard KM. SARS-CoV-2 niches in human placenta revealed by spatial transcriptomics. MED 2023; 4:612-634.e4. [PMID: 37423216 PMCID: PMC10527005 DOI: 10.1016/j.medj.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Functional placental niches are presumed to spatially separate maternal-fetal antigens and restrict the vertical transmission of pathogens. We hypothesized a high-resolution map of placental transcription could provide direct evidence for niche microenvironments with unique functions and transcription profiles. METHODS We utilized Visium Spatial Transcriptomics paired with H&E staining to generate 17,927 spatial transcriptomes. By integrating these spatial transcriptomes with 273,944 placental single-cell and single-nuclei transcriptomes, we generated an atlas composed of at least 22 subpopulations in the maternal decidua, fetal chorionic villi, and chorioamniotic membranes. FINDINGS Comparisons of placentae from uninfected healthy controls (n = 4) with COVID-19 asymptomatic (n = 4) and symptomatic (n = 5) infected participants demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in syncytiotrophoblasts occurred in both the presence and the absence of maternal clinical disease. With spatial transcriptomics, we found that the limit of detection for SARS-CoV-2 was 1/7,000 cells, and placental niches without detectable viral transcripts were unperturbed. In contrast, niches with high SARS-CoV-2 transcript levels were associated with significant upregulation in pro-inflammatory cytokines and interferon-stimulated genes, altered metallopeptidase signaling (TIMP1), with coordinated shifts in macrophage polarization, histiocytic intervillositis, and perivillous fibrin deposition. Fetal sex differences in gene expression responses to SARS-CoV-2 were limited, with confirmed mapping limited to the maternal decidua in males. CONCLUSIONS High-resolution placental transcriptomics with spatial resolution revealed dynamic responses to SARS-CoV-2 in coordinate microenvironments in the absence and presence of clinically evident disease. FUNDING This work was supported by the NIH (R01HD091731 and T32-HD098069), NSF (2208903), the Burroughs Welcome Fund and the March of Dimes Preterm Birth Research Initiatives, and a Career Development Award from the American Society of Gene and Cell Therapy.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Maxim D Seferovic
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Eumenia C C Castro
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Angela M Major
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - David N Moorshead
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA; Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Michael D Jochum
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Ricardo Ferral Rojas
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Cynthia D Shope
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
11
|
Wang WJ, Chu LX, He LY, Zhang MJ, Dang KT, Gao C, Ge QY, Wang ZG, Zhao XW. Spatial transcriptomics: recent developments and insights in respiratory research. Mil Med Res 2023; 10:38. [PMID: 37592342 PMCID: PMC10433685 DOI: 10.1186/s40779-023-00471-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field. Although bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) have provided insights into cell types and heterogeneity in the respiratory system, the relevant specific spatial localization and cellular interactions have not been clearly elucidated. Spatial transcriptomics (ST) has filled this gap and has been widely used in respiratory studies. This review focuses on the latest iterative technology of ST in recent years, summarizing how ST can be applied to the physiological and pathological processes of the respiratory system, with emphasis on the lungs. Finally, the current challenges and potential development directions are proposed, including high-throughput full-length transcriptome, integration of multi-omics, temporal and spatial omics, bioinformatics analysis, etc. These viewpoints are expected to advance the study of systematic mechanisms, including respiratory studies.
Collapse
Affiliation(s)
- Wen-Jia Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu-Xi Chu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Li-Yong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ming-Jing Zhang
- Orthopaedic Bioengineering Research Group, Division of Surgery and Interventional Science, University College London, London, HA7 4LP, UK
| | - Kai-Tong Dang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Chen Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qin-Yu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhou-Guang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiang-Wei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
12
|
Li S, Duan X, Jiang N, Jeyarajan AJ, Warner CA, Li Y, Xu M, Li X, Tan L, Li M, Shao T, Li S, Chen L, Gao Y, Han M, Lin W. Vaccination increased host antiviral gene expression and reduced COVID-19 severity during the Omicron variant outbreak in Fuyang City, China. Int Immunopharmacol 2023; 120:110333. [PMID: 37201409 PMCID: PMC10183626 DOI: 10.1016/j.intimp.2023.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND The differences in host antiviral gene expression and disease severity between vaccinated and non-vaccinated coronavirus disease 2019 (COVID-19) patients are not well characterized. We sought to compare the clinical characteristics and host antiviral gene expression patterns of vaccinated and non-vaccinated cohorts at the Second People's Hospital of Fuyang City. METHODS In this case-control study, we retrospectively analyzed 113 vaccinated patients with a COVID-19 Omicron variant infection, 46 non-vaccinated COVID-19 patients, and 24 healthy subjects (no history of COVID-19) recruited from the Second People's Hospital of Fuyang City. Blood samples were collected from each study participant for RNA extraction and PCR. We compared host antiviral gene expression profiles between healthy controls and COVID-19 patients who were either vaccinated or non-vaccinated at the time of infection. RESULTS In the vaccinated group, most patients were asymptomatic, with only 42.9 % of patients developing fever. Notably, no patients had extrapulmonary organ damage. In contrast, 21.4 % of patients in the non-vaccinated group developed severe/critical (SC) disease and 78.6 % had mild/moderate (MM) disease, with fever occurring in 74.2 % patients. We found that Omicron infection in COVID-19 vaccinated patients was associated with significantly increased expression of several important host antiviral genes including IL12B, IL13, CXCL11, CXCL9, IFNA2, IFNA1, IFNγ, and TNFα. CONCLUSION Vaccinated patients infected with the Omicron variant were mostly asymptomatic. In contrast, non-vaccinated patients frequently developed SC or MM disease. Older patients with SC COVID-19 also had a higher occurrence of mild liver dysfunction. Omicron infection in COVID-19 vaccinated patients was associated with the activation of key host antiviral genes and thus may play a role in reducing disease severity.
Collapse
Affiliation(s)
- Shasha Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Ning Jiang
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China; Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Andre J Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Charlotte A Warner
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Xiuyong Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Lin Tan
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Ming Li
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China
| | - Tuo Shao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, PR China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China.
| | - Mingfeng Han
- Department of Hepatology, The Second People's Hospital of Fuyang City, Fuyang 236015, Anhui Province, PR China.
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
13
|
Song H, Lei N, Zeng L, Li X, Jiang C, Feng Q, Su Y, Liu J, Mu J. Mendelian randomization analysis identified tumor necrosis factor as being associated with severe COVID-19. Front Pharmacol 2023; 14:1171404. [PMID: 37397483 PMCID: PMC10311560 DOI: 10.3389/fphar.2023.1171404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Observational studies have shown that anti-tumor necrosis factor (TNF) therapy may be beneficial for patients with coronavirus disease 2019 (COVID-19). Nevertheless, because of the methodological restrictions of traditional observational studies, it is a challenge to make causal inferences. This study involved a two-sample Mendelian randomization analysis to investigate the causal link between nine TNFs and COVID-19 severity using publicly released genome-wide association study summary statistics. Methods: Summary statistics for nine TNFs (21,758 cases) were obtained from a large-scale genome-wide association study. Correlation data between single-nucleotide polymorphisms and severe COVID-19 (18,152 cases vs. 1,145,546 controls) were collected from the COVID-19 host genetics initiative. The causal estimate was calculated by inverse variance-weighted (IVW), MR-Egger, and weighted median methods. Sensitivity tests were conducted to assess the validity of the causal relationship. Results: Genetically predicted TNF receptor superfamily member 6 (FAS) positively correlated with the severity of COVID-19 (IVW, odds ratio = 1.10, 95% confidence interval = 1.01-1.19, p = 0.026), whereas TNF receptor superfamily member 5 (CD40) was protective against severe COVID-19 (IVW, odds ratio = 0.92, 95% confidence interval = 0.87-0.97, p = 0.002). Conclusion: Genetic evidence from this study supports that the increased expression of FAS is associated with the risk of severe COVID-19 and that CD40 may have a potential protective effect against COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yue Su
- Traditional Chinese Medicine and Inflammation Regulation Research Group, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- Traditional Chinese Medicine and Inflammation Regulation Research Group, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Mu
- Traditional Chinese Medicine and Inflammation Regulation Research Group, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Kozak RA, Salvant E, Chang V, Oikonomou A, Biondi MJ, Feld JJ, Armstrong S, Wasif S, Mubareka S, Nirmalarajah K, Seth A, Amemiya Y, Wang C, Tsui H. Host Expression Profiling From Diagnostic Coronavirus Disease 2019 Swabs Associates Upper Respiratory Tract Immune Responses With Radiologic Lung Pathology and Clinical Severity. Open Forum Infect Dis 2023; 10:ofad190. [PMID: 37180592 PMCID: PMC10173546 DOI: 10.1093/ofid/ofad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Background COVID-19 presents with a breadth of symptomatology including a spectrum of clinical severity requiring intensive care unit (ICU) admission. We investigated the mucosal host gene response at the time of gold standard COVID-19 diagnosis using clinical surplus RNA from upper respiratory tract swabs. Methods Host response was evaluated by RNA-sequencing, and transcriptomic profiles of 44 unvaccinated patients including outpatients and in-patients with varying levels of oxygen supplementation were included. Additionally, chest X-rays were reviewed and scored for patients in each group. Results Host transcriptomics revealed significant changes in the immune and inflammatory response. Patients destined for the ICU were distinguished by the significant upregulation of immune response pathways and inflammatory chemokines, including cxcl2 which has been linked to monocyte subsets associated with COVID-19 related lung damage. In order to temporally associate gene expression profiles in the upper respiratory tract at diagnosis of COVID-19 with lower respiratory tract sequalae, we correlated our findings with chest radiography scoring, showing nasopharygeal or mid-turbinate sampling can be a relevant surrogate for downstream COVID-19 pneumonia/ICU severity. Conclusions This study demonstrates the potential and relevance for ongoing study of the mucosal site of infection of SARS-CoV-2 using a single sampling that remains standard of care in hospital settings. We highlight also the archival value of high quality clinical surplus specimens, especially with rapidly evolving COVID-19 variants and changing public health/vaccination measures.
Collapse
Affiliation(s)
- Robert A Kozak
- Correspondence: Hubert Tsui, MD, PhD, FRCPC, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada (); Robert A. Kozak, PhD, FCCM, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada ()
| | - Elsa Salvant
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Veronica Chang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Anastasia Oikonomou
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Mia J Biondi
- School of Nursing, York University, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario, Canada
| | - Susan Armstrong
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sumaiyah Wasif
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Samira Mubareka
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kuganya Nirmalarajah
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Arun Seth
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Precision Diagnostics and Therapeutics Program, Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Yutaka Amemiya
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hubert Tsui
- Correspondence: Hubert Tsui, MD, PhD, FRCPC, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada (); Robert A. Kozak, PhD, FCCM, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada ()
| |
Collapse
|
15
|
Classification of COVID-19 Patients into Clinically Relevant Subsets by a Novel Machine Learning Pipeline Using Transcriptomic Features. Int J Mol Sci 2023; 24:ijms24054905. [PMID: 36902333 PMCID: PMC10002748 DOI: 10.3390/ijms24054905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The persistent impact of the COVID-19 pandemic and heterogeneity in disease manifestations point to a need for innovative approaches to identify drivers of immune pathology and predict whether infected patients will present with mild/moderate or severe disease. We have developed a novel iterative machine learning pipeline that utilizes gene enrichment profiles from blood transcriptome data to stratify COVID-19 patients based on disease severity and differentiate severe COVID cases from other patients with acute hypoxic respiratory failure. The pattern of gene module enrichment in COVID-19 patients overall reflected broad cellular expansion and metabolic dysfunction, whereas increased neutrophils, activated B cells, T-cell lymphopenia, and proinflammatory cytokine production were specific to severe COVID patients. Using this pipeline, we also identified small blood gene signatures indicative of COVID-19 diagnosis and severity that could be used as biomarker panels in the clinical setting.
Collapse
|