1
|
Kim H, Kim AR, Byun S, Um SJ. Asxl1 loss in mice leads to microcephaly by regulating neural stem cell survival. Anim Cells Syst (Seoul) 2025; 29:241-250. [PMID: 40276524 PMCID: PMC12020147 DOI: 10.1080/19768354.2025.2481979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 04/26/2025] Open
Abstract
Additional sex comb-like 1 (ASXL1) is a chromatin-associated factor essential for transcriptional regulation. De novo truncating mutations in the ASXL1 gene are linked to Bohring-Opitz syndrome, a developmental disorder characterized by microcephaly; however, the role of Asxl1 in brain development remains unclear. In this study, we demonstrate that Asxl1 deletion in mice induces microcephaly, primarily caused by a reduction in the size and number of cortical neurons. Asxl1 ablation disrupts neural stem cell (NSC) maintenance, as evidenced by decreased proliferation and increased apoptosis. Transcriptomic analysis of Asxl1-deficient NSCs revealed 4,635 differentially expressed genes, including 2,262 upregulated and 2,373 downregulated genes. Gene ontology analysis indicated that Asxl1 regulates NSC survival through the histone methyltransferase Ezh2, a core component of the Polycomb Repressive Complex 2 (PRC2). Inhibition of H3K27me3 using GSK343 significantly reduced the viability of wild-type NSCs, but had a markedly diminished effect on Asxl1-deficient NSCs. Furthermore, Ezh2 target genes associated with apoptosis, such as Epha7 and Osr1, were upregulated in wild-type NSCs following GSK343 treatment but not significantly affected in Asxl1-deficient NSCs. These findings establish Asxl1 as a critical regulator of NSC survival and neurogenesis via Ezh2-mediated chromatin modification and provide insights into the mechanisms underlying microcephaly in developmental disorders.
Collapse
Affiliation(s)
- Hyeju Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - A.-Reum Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Sukyoung Byun
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| |
Collapse
|
2
|
Rostamzadeh Mahdabi E, Tian R, Tian J, Asadollahpour Nanaie H, Wang X, Zhao M, Li H, Dalai B, Sai Y, Guo W, Li Y, Zhang H, Esmailizadeh A. Uncovering genomic diversity and signatures of selection in red Angus × Chinese red steppe crossbred cattle population. Sci Rep 2025; 15:12977. [PMID: 40234714 PMCID: PMC12000499 DOI: 10.1038/s41598-025-98346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/10/2025] [Indexed: 04/17/2025] Open
Abstract
Crossbreeding is a cornerstone of modern livestock improvement, combining desirable traits to enhance productivity and environmental resilience. This study conducts the first comprehensive genomic analysis of Red Angus × Chinese Red Steppe (RACS) crossbred cattle, evaluating their genetic architecture, diversity, and selection signatures relative to founder breeds (Red Angus and Chinese Red Steppe) and global populations. A total of 119 cattle, comprising 104 RACS crossbreds and 15 Chinese Red Steppes cattle, were genotyped using the GGP Bovine 100k SNP array. Additionally, the public available genotypic data generated using the BovineSNP50 chip from 550 animals across eight beef breeds (Angus, Hereford, Limousin, Charolais, Mongolian, Shorthorn, Red Angus, and Simmental) and one dairy breed (Holstein) were incorporated into the analysis. We aimed to (1) define the population structure of RACS cattle, (2) quantify their genomic diversity and inbreeding levels, and (3) pinpoint regions under selection linked to adaptive and economic traits. We employed runs of homozygosity (ROH) and population differentiation (Fst) analyses to detect selection signals. The results revealed that the crossbred (RACS), Angus, and Red Angus breeds exhibited similar clustering patterns in principal component analysis (PCA), but the crossbred population showed the highest nucleotide diversity and lowest inbreeding coefficients compared to other breeds. Notably, candidate regions associated with immune response, cold adaptation, and carcass traits were identified within the RACS population. These findings enhance our understanding of the genetic makeup of crossbred beef cattle and highlight their potential for genetic improvement, informing future selection and breeding strategies aimed at optimizing beef production in challenging environments.
Collapse
Affiliation(s)
- Elaheh Rostamzadeh Mahdabi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PO BOX 76169-133, Kerman, Iran
| | - Rugang Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Jing Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | | | - Xiao Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Meng Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hui Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Baolige Dalai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yin Sai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Wenhua Guo
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yuan Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hao Zhang
- Forestry and Grassland Bureau of Siziwang Banner, Wulanchabu, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PO BOX 76169-133, Kerman, Iran.
| |
Collapse
|
3
|
Lin I, Awamleh Z, Sinvhal M, Wan A, Bondhus L, Wei A, Russell BE, Weksberg R, Arboleda VA. ASXL1 truncating variants in BOS and myeloid leukemia drive shared disruption of Wnt-signaling pathways but have differential isoform usage of RUNX3. BMC Med Genomics 2024; 17:282. [PMID: 39614348 DOI: 10.1186/s12920-024-02039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Rare variants in epigenes (a.k.a. chromatin modifiers), a class of genes that control epigenetic regulation, are commonly identified in both pediatric neurodevelopmental syndromes and as somatic variants in cancer. However, little is known about the extent of the shared disruption of signaling pathways by the same epigene across different diseases. To address this, we study an epigene, Additional Sex Combs-like 1 (ASXL1), where truncating heterozygous variants cause Bohring-Opitz syndrome (BOS, OMIM #605039), a germline neurodevelopmental disorder, while somatic variants are driver events in acute myeloid leukemia (AML). No BOS patients have been reported to have AML. METHODS This study explores common pathways dysregulated by ASXL1 variants in patients with BOS and AML. We analyzed whole blood transcriptomic and DNA methylation data from patients with BOS and AML with ASXL1-variant (AML-ASXL1) and examined differential exon usage and cell proportions. RESULTS Our analyses identified common molecular signatures between BOS and AML-ASXL1 and highlighted key biomarkers, including VANGL2, GRIK5 and GREM2, that are dysregulated across samples with ASXL1 variants, regardless of disease type. Notably, our data revealed significant de-repression of posterior homeobox A (HOXA) genes and upregulation of Wnt-signaling and hematopoietic regulator HOXB4. While we discovered many shared epigenetic and transcriptomic features, we also identified differential splice isoforms in RUNX3 where the long isoform, p46, is preferentially expressed in BOS, while the shorter p44 isoform is expressed in AML-ASXL1. CONCLUSION Our findings highlight the strong effects of ASXL1 variants that supersede cell-type and even disease states. This is the first direct comparison of transcriptomic and methylation profiles driven by pathogenic variants in a chromatin modifier gene in distinct diseases. Similar to RASopathies, in which pathogenic variants in many genes lead to overlapping phenotypes that can be treated by inhibiting a common pathway, our data identifies common pathways for ASXL1 variants that can be targeted for both disease states. Comparative approaches of high-penetrance genetic variants across cell types and disease states can identify targetable pathways to treat multiple diseases. Finally, our work highlights the connections of epigenes, such as ASXL1, to an underlying stem-cell state in both early development and in malignancy.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mili Sinvhal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Andrew Wan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Leroy Bondhus
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Angela Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bianca E Russell
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, Division of Clinical Genetics, UCLA, Los Angeles, CA, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Sciences, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Interdepartmental Bioinformatics Program, UCLA, Los Angeles, CA, USA.
- Molecular Biology institute, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Pavlović N, Kelam N, Racetin A, Filipović N, Pogorelić Z, Prusac IK, Vukojević K. Expression Profiles of ITGA8 and VANGL2 Are Altered in Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). Molecules 2024; 29:3294. [PMID: 39064873 PMCID: PMC11279313 DOI: 10.3390/molecules29143294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Kidney failures in infants are mostly caused by congenital anomalies of the kidney and urinary tract (CAKUT), which are among the most common congenital birth disorders worldwide when paired with cardiac abnormalities. People with CAKUT often have severe kidney failure as a result of a wide range of abnormalities that can occur alone or in conjunction with other syndromic disorders. In this study, we aimed to investigate the expression pattern of CAKUT candidate genes alpha-8 integrin (ITGA8) and Van Gogh-like 2 (VANGL2) in fetal tissues of healthy and CAKUT-affected kidneys using immunohistochemistry and immunofluorescence. We found that under CAKUT circumstances, the expressions of ITGA8 and VANGL2 are changed. Additionally, we showed that VANGL2 expression is constant during fetal aging, but ITGA8 expression varies. Moreover, compared to normal healthy kidneys (CTRL), ITGA8 is poorly expressed in duplex kidneys (DKs) and dysplastic kidneys (DYS), whereas VANGL2 is substantially expressed in dysplastic kidneys (DYS) and poorly expressed in hypoplastic kidneys (HYP). These results point to VANGL2 and ITGA8 as potential prognostic indicators for CAKUT malformations. Further research is necessary to explore the molecular mechanisms underlying this differential expression of ITGA8 and VANGL2.
Collapse
Affiliation(s)
- Nikola Pavlović
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (K.V.)
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (K.V.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (K.V.)
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (K.V.)
| | - Zenon Pogorelić
- Department of Pediatric Surgery, University Hospital of Split, 21000 Split, Croatia
- Department of Surgery, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivana Kuzmić Prusac
- Department of Pathology, University Hospital Centre Split, Spinciceva 1, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (K.V.)
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
5
|
Nava AA, Arboleda VA. The omics era: a nexus of untapped potential for Mendelian chromatinopathies. Hum Genet 2024; 143:475-495. [PMID: 37115317 PMCID: PMC11078811 DOI: 10.1007/s00439-023-02560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The OMICs cascade describes the hierarchical flow of information through biological systems. The epigenome sits at the apex of the cascade, thereby regulating the RNA and protein expression of the human genome and governs cellular identity and function. Genes that regulate the epigenome, termed epigenes, orchestrate complex biological signaling programs that drive human development. The broad expression patterns of epigenes during human development mean that pathogenic germline mutations in epigenes can lead to clinically significant multi-system malformations, developmental delay, intellectual disabilities, and stem cell dysfunction. In this review, we refer to germline developmental disorders caused by epigene mutation as "chromatinopathies". We curated the largest number of human chromatinopathies to date and our expanded approach more than doubled the number of established chromatinopathies to 179 disorders caused by 148 epigenes. Our study revealed that 20.6% (148/720) of epigenes cause at least one chromatinopathy. In this review, we highlight key examples in which OMICs approaches have been applied to chromatinopathy patient biospecimens to identify underlying disease pathogenesis. The rapidly evolving OMICs technologies that couple molecular biology with high-throughput sequencing or proteomics allow us to dissect out the causal mechanisms driving temporal-, cellular-, and tissue-specific expression. Using the full repertoire of data generated by the OMICs cascade to study chromatinopathies will provide invaluable insight into the developmental impact of these epigenes and point toward future precision targets for these rare disorders.
Collapse
Affiliation(s)
- Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Lin TL, Jaiswal AK, Ritter AJ, Reppas J, Tran TM, Neeb ZT, Katzman S, Thaxton ML, Cohen A, Sanford JR, Rao DS. Targeting IGF2BP3 enhances antileukemic effects of menin-MLL inhibition in MLL-AF4 leukemia. Blood Adv 2024; 8:261-275. [PMID: 38048400 PMCID: PMC10824693 DOI: 10.1182/bloodadvances.2023011132] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT RNA-binding proteins (RBPs) are emerging as a novel class of therapeutic targets in cancer, including in leukemia, given their important role in posttranscriptional gene regulation, and have the unexplored potential to be combined with existing therapies. The RBP insulin-like growth factor 2 messenger RNA-binding protein 3 (IGF2BP3) has been found to be a critical regulator of MLL-AF4 leukemogenesis and represents a promising therapeutic target. Here, we study the combined effects of targeting IGF2BP3 and menin-MLL interaction in MLL-AF4-driven leukemia in vitro and in vivo, using genetic inhibition with CRISPR-Cas9-mediated deletion of Igf2bp3 and pharmacologic inhibition of the menin-MLL interaction with multiple commercially available inhibitors. Depletion of Igf2bp3 sensitized MLL-AF4 leukemia to the effects of menin-MLL inhibition on cell growth and leukemic initiating cells in vitro. Mechanistically, we found that both Igf2bp3 depletion and menin-MLL inhibition led to increased differentiation in vitro and in vivo, seen in functional readouts and by gene expression analyses. IGF2BP3 knockdown had a greater effect on increasing survival and attenuating disease than pharmacologic menin-MLL inhibition with small molecule MI-503 alone and showed enhanced antileukemic effects in combination. Our work shows that IGF2BP3 is an oncogenic amplifier of MLL-AF4-mediated leukemogenesis and a potent therapeutic target, providing a paradigm for targeting leukemia at both the transcriptional and posttranscriptional level.
Collapse
Affiliation(s)
- Tasha L. Lin
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Amit K. Jaiswal
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Alexander J. Ritter
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Jenna Reppas
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Tiffany M. Tran
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Zachary T. Neeb
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Sol Katzman
- Center for Biomolecular Science & Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Michelle L. Thaxton
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Amanda Cohen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Jeremy R. Sanford
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
- Center for Biomolecular Science & Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
Singh M, Spendlove SJ, Wei A, Bondhus LM, Nava AA, de L Vitorino FN, Amano S, Lee J, Echeverria G, Gomez D, Garcia BA, Arboleda VA. KAT6A mutations in Arboleda-Tham syndrome drive epigenetic regulation of posterior HOXC cluster. Hum Genet 2023; 142:1705-1720. [PMID: 37861717 PMCID: PMC10676314 DOI: 10.1007/s00439-023-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
Arboleda-Tham Syndrome (ARTHS) is a rare genetic disorder caused by heterozygous, de novo mutations in Lysine(K) acetyltransferase 6A (KAT6A). ARTHS is clinically heterogeneous and characterized by several common features, including intellectual disability, developmental and speech delay, and hypotonia, and affects multiple organ systems. KAT6A is the enzymatic core of a histone-acetylation protein complex; however, the direct histone targets and gene regulatory effects remain unknown. In this study, we use ARTHS patient (n = 8) and control (n = 14) dermal fibroblasts and perform comprehensive profiling of the epigenome and transcriptome caused by KAT6A mutations. We identified differential chromatin accessibility within the promoter or gene body of 23% (14/60) of genes that were differentially expressed between ARTHS and controls. Within fibroblasts, we show a distinct set of genes from the posterior HOXC gene cluster (HOXC10, HOXC11, HOXC-AS3, HOXC-AS2, and HOTAIR) that are overexpressed in ARTHS and are transcription factors critical for early development body segment patterning. The genomic loci harboring HOXC genes are epigenetically regulated with increased chromatin accessibility, high levels of H3K23ac, and increased gene-body DNA methylation compared to controls, all of which are consistent with transcriptomic overexpression. Finally, we used unbiased proteomic mass spectrometry and identified two new histone post-translational modifications (PTMs) that are disrupted in ARTHS: H2A and H3K56 acetylation. Our multi-omics assays have identified novel histone and gene regulatory roles of KAT6A in a large group of ARTHS patients harboring diverse pathogenic mutations. This work provides insight into the role of KAT6A on the epigenomic regulation in somatic cell types.
Collapse
Affiliation(s)
- Meghna Singh
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Sarah J Spendlove
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, CA, USA
| | - Angela Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, CA, USA
| | - Leroy M Bondhus
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Aileen A Nava
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Francisca N de L Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, USA
| | - Seth Amano
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jacob Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gesenia Echeverria
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Dianne Gomez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, USA
| | - Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, 615 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Ayoub MC, Anderson JT, Russell BE, Wilson RB. Examining the neurodevelopmental and motor phenotypes of Bohring-Opitz syndrome (ASXL1) and Bainbridge-Ropers syndrome (ASXL3). Front Neurosci 2023; 17:1244176. [PMID: 38027485 PMCID: PMC10657810 DOI: 10.3389/fnins.2023.1244176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background Chromatin Modifying Disorders (CMD) have emerged as one of the most rapidly expanding genetic disorders associated with autism spectrum disorders (ASD). Motor impairments are also prevalent in CMD and may play a role in the neurodevelopmental phenotype. Evidence indicates that neurodevelopmental outcomes in CMD may be treatable postnatally; thus deep phenotyping of these conditions can improve clinical screening while improving the development of treatment targets for pharmacology and for clinical trials. Here, we present developmental phenotyping data on individuals with Bohring-Optiz Syndrome (BOS - ASXL1) and Bainbridge-Ropers Syndrome (BRS - ASXL3) related disorders, two CMDs highly penetrant for motor and developmental delays. Objectives To phenotype the motor and neurodevelopmental profile of individuals with ASXL1 and ASXL3 related disorders (BOS and BRS). To provide a preliminary report on the association of motor impairments and ASD. Methods Neurodevelopmental and motor phenotyping was conducted on eight individuals with pathogenic ASXL1 variants and seven individuals with pathogenic ASXL3 variants, including medical and developmental background intake, movement and development questionnaires, neurological examination, and quantitative gait analysis. Results Average age of first developmental concerns was 4 months for individuals with BOS and 9 months in BRS. 100% of individuals who underwent the development questionnaire met a diagnosis of developmental coordination disorder. 71% of children with BOS and 0% of children with BRS noted movement difficulty greatly affected classroom learning. Participants with BRS and presumed diagnoses of ASD were reported to have more severe motor impairments in recreational activities compared to those without ASD. This was not the case for the individuals with BOS. Conclusion Motor impairments are prevalent and pervasive across the ASXL disorders with and without ASD, and these impairments negatively impact engagement in school-based activities. Unique neurodevelopmental and motor findings in our data include a mixed presentation of hypo and hypertonia in individuals with BOS across a lifespan. Individuals with BRS exhibited hypotonia and greater variability in motor skills. This deep phenotyping can aid in appropriate clinical diagnosis, referral to interventions, and serve as meaningful treatment targets in clinical trials.
Collapse
Affiliation(s)
- Maya C. Ayoub
- Division of Child Neurology, Department of Pediatrics, UCLA Health, Los Angeles, CA, United States
| | - Jeffrey T. Anderson
- Department of Medicine, UCLA Health, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Bianca E. Russell
- Division of Clinical Genetics, Department of Human Genetics, UCLA Health, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Rujuta B. Wilson
- Division of Child Psychiatry, Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
9
|
Singh M, Spendlove S, Wei A, Bondhus L, Nava A, de L. Vitorino FN, Amano S, Lee J, Echeverria G, Gomez D, Garcia BA, Arboleda VA. KAT6A mutations in Arboleda-Tham syndrome drive epigenetic regulation of posterior HOXC cluster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.550595. [PMID: 37577627 PMCID: PMC10418288 DOI: 10.1101/2023.08.03.550595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Arboleda-Tham Syndrome (ARTHS) is a rare genetic disorder caused by heterozygous, de novo truncating mutations in Lysine(K) acetyltransferase 6A (KAT6A). ARTHS is clinically heterogeneous and characterized by several common features including intellectual disability, developmental and speech delay, hypotonia and affects multiple organ systems. KAT6A is highly expressed in early development and plays a key role in cell-type specific differentiation. KAT6A is the enzymatic core of a histone-acetylation protein complex, however the direct histone targets and gene regulatory effects remain unknown. In this study, we use ARTHS patient (n=8) and control (n=14) dermal fibroblasts and perform comprehensive profiling of the epigenome and transcriptome caused by KAT6A mutations. We identified differential chromatin accessibility within the promoter or gene body of 23%(14/60) of genes that were differentially expressed between ARTHS and controls. Within fibroblasts, we show a distinct set of genes from the posterior HOXC gene cluster (HOXC10, HOXC11, HOXC-AS3, HOXC-AS2, HOTAIR) that are overexpressed in ARTHS and are transcription factors critical for early development body segment patterning. The genomic loci harboring HOXC genes are epigenetically regulated with increased chromatin accessibility, high levels of H3K23ac, and increased gene-body DNA methylation compared to controls, all of which are consistent with transcriptomic overexpression. Finally, we used unbiased proteomic mass spectrometry and identified two new histone post-translational modifications (PTMs) that are disrupted in ARTHS: H2A and H3K56 acetylation. Our multi-omics assays have identified novel histone and gene regulatory roles of KAT6A in a large group of ARTHS patients harboring diverse pathogenic mutations. This work provides insight into the role of KAT6A on the epigenomic regulation in somatic cell types.
Collapse
Affiliation(s)
- Meghna Singh
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Sarah Spendlove
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Interdepartmental BioInformatics Program, UCLA
| | - Angela Wei
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Interdepartmental BioInformatics Program, UCLA
| | - Leroy Bondhus
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Aileen Nava
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | - Seth Amano
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jacob Lee
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gesenia Echeverria
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Dianne Gomez
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis
| | - Valerie A. Arboleda
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Interdepartmental BioInformatics Program, UCLA
| |
Collapse
|