1
|
Foustoukos G, Lüthi A. Monoaminergic signaling during mammalian NREM sleep - Recent insights and next-level questions. Curr Opin Neurobiol 2025; 92:103025. [PMID: 40267623 DOI: 10.1016/j.conb.2025.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
Subcortical neuromodulatory activity in the mammalian brain enables flexible wake behaviors, which are essential for survival in an ever-changing external environment. With the suppression of such behaviors in sleep, this activity is, on average, much reduced. Recent discoveries, enabled by unprecedented technical advancements, challenge the long-standing view that monoaminergic systems-noradrenaline (NA), dopamine (DA), and serotonin (5-HT)-remain largely inactive during sleep. This review highlights recent technological and scientific progress in this field, summarizing evidence that monoaminergic signaling in the brain supplements sleep with essential wake-related functions. Stress and/or neuropsychiatric conditions negatively impact on monoaminergic signaling, which can lead to sleep disruptions. Furthermore, subcortical neuromodulatory systems are vulnerable to neurodegenerative pathologies, which implies them in sleep disruptions at early stages of disease. We propose that future research will be well-invested in elucidating the spatiotemporal organization, cellular mechanisms, and functional relevance of neuromodulatory dynamics across species, and in identifying the molecular and physiological processes that sustain their integrity throughout the lifespan.
Collapse
Affiliation(s)
- Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, CH, Switzerland.
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, CH, Switzerland.
| |
Collapse
|
2
|
Li XY, Tang G, Lu J, Zhao Y, Lin H, Zhang Q, Chan K, Liang X, Wang J, Shen B, Tang Y, Zhao J, Sun YM, Wu J, Yen TC, Wang J, Zuo C, Liu FT. Self-Reported REM Sleep Behavior Disorder in Patients With Progressive Supranuclear Palsy: Clinical and 18F-Florzolotau PET Imaging Findings. Neurology 2025; 104:e213376. [PMID: 39951679 DOI: 10.1212/wnl.0000000000213376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Rapid eye movement sleep behavior disorder (RBD) is increasingly recognized in patients with tauopathies, but its significance and underpinnings remain unclear. To address this gap, we investigated the prevalence of self-reported RBD in patients with progressive supranuclear palsy (PSP) and explored its clinical and imaging correlates using 18F-florzolotau PET imaging. METHODS We consecutively enrolled patients meeting the 2017 Movement Disorder Society clinical criteria for PSP at a Chinese tertiary hospital between May 2019 and March 2022. Patients underwent comprehensive clinical assessments and 18F-florzolotau PET to investigate tau deposition patterns. The presence of self-reported RBD was identified using the RBD Single-Question Screen, while its frequency was retrospectively collected from medical history. RESULTS We examined 148 patients recruited in the ongoing Progressive Supranuclear Palsy Neuroimage Initiative cohort. Self-reported RBD was identified in 18.2% of the participants (27/148). Patients with PSP-Richardson syndrome and PSP-parkinsonism reported the highest frequencies of self-reported RBD (21.7% and 18.5%, respectively), compared with PSP-progressive gait freezing (9.7%). While age and sex were similar in patients with and without self-reported RBD, the former group exhibited greater disease severity, as indicated by higher PSP Rating Scale (PSPrs) scores (38.0 vs 27.0, effect size = 0.256, p = 0.002). Furthermore, patients with RBD had significantly higher 18F-florzolotau binding in the locus coeruleus (LC) (1.50 vs 1.38, effect size = 0.231, p = 0.003), which remained significant after false discovery rate correction (p = 0.042). The frequency of RBD was found to be correlated with tau pathology in the LC (n = 8, r = 0.752, p = 0.002). Notably, the presence of self-reported RBD symptoms mediated the relationship between LC tau pathology and PSPrs total scores (proportion-mediated = 2.09%, 95% CI 0.01%-10.00%, p = 0.044). DISCUSSION Approximately one-fifth of patients with PSP reported RBD and exhibited more severe motor and nonmotor symptoms. The elevated 18F-florzolotau binding in the LC and its association with the presence of RBD symptoms underscore the critical role of tau pathology in disrupting sleep-regulating neural circuits. Future studies with larger sample sizes should incorporate polysomnography in patients with PSP with self-reported RBD to further elucidate this relationship.
Collapse
Affiliation(s)
- Xin-Yi Li
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Gan Tang
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yixin Zhao
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Huamei Lin
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qin Zhang
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - KunWang Chan
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China; and
| | - Jing Wang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Yilin Tang
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianjun Wu
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Jian Wang
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Mortazavi N, Talwar P, Koshmanova E, Sharifpour R, Beckers E, Berger A, Campbell I, Paparella I, Balda F, Dardour Hamzaoui I, Berthomier C, Bastin C, Phillips C, Maquet P, Collette F, Zubkov M, Lamalle L, Vandewalle G. REM sleep quality is associated with balanced tonic activity of the locus coeruleus during wakefulness. J Biomed Sci 2025; 32:35. [PMID: 40069818 PMCID: PMC11900061 DOI: 10.1186/s12929-025-01127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Animal studies established that the locus coeruleus (LC) plays important roles in sleep and wakefulness regulation. Whether it contributes to sleep variability in humans is not yet established. Here, we investigated if the in vivo activity of the LC is related to the variability in the quality of Rapid Eye Movement (REM) sleep. METHODS We assessed the LC activity of 34 healthy younger (~ 22y) and 18 older (~ 61y) individuals engaged in bottom-up and top-down cognitive tasks using 7-Tesla functional Magnetic Resonance Imaging (fMRI). We further recorded their sleep electroencephalogram (EEG) to evaluate associations between LC fMRI measures and REM sleep EEG metrics. RESULTS Theta oscillation energy during REM sleep was positively associated with LC response in the top-down task. In contrast, REM sleep theta energy was negatively associated with LC activity in older individuals during the bottom-up task. Importantly, sigma oscillations power immediately preceding a REM sleep episode was positively associated with LC activity in the top-down task. CONCLUSIONS LC activity during wakefulness was related to REM sleep intensity and to a transient EEG change preceding REM sleep, a feature causally related to LC activity in animal studies. The associations depend on the cognitive task, suggesting that a balanced level of LC tonic activity during wakefulness is required for optimal expression of REM sleep. The findings may have implications for the high prevalence of sleep complaints reported in aging and for disorders such as insomnia, Alzheimer's, and Parkinson's disease, for which the LC may play pivotal roles through sleep.
Collapse
Affiliation(s)
- Nasrin Mortazavi
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Puneet Talwar
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Ekaterina Koshmanova
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Roya Sharifpour
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Elise Beckers
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Alexandre Berger
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
- Department of Clinical Neuroscience, Institute of Neuroscience (Ions), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | - Islay Campbell
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Ilenia Paparella
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Fermin Balda
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Ismael Dardour Hamzaoui
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | | | - Christine Bastin
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
- Psyncog, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Pierre Maquet
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
- Neurology Department, CHU de Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
- Psyncog, University of Liège, Liège, Belgium
| | - Mikhail Zubkov
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Laurent Lamalle
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Institute, CRC-Human Imaging, University of Liège, Bâtiment B30, 8 Allée du Six Août, Sart Tilman, 4000, Liège, Belgium.
| |
Collapse
|
4
|
Galgani A, Scotto M, Faraguna U, Giorgi FS. Fading Blue: Exploring the Causes of Locus Coeruleus Damage Across the Lifespan. Antioxidants (Basel) 2025; 14:255. [PMID: 40227216 PMCID: PMC11939699 DOI: 10.3390/antiox14030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Locus Coeruleus (LC) is a brain nucleus that is involved in a variety of key functions (ranging from attention modulation to sleep-wake cycle regulation, to memory encoding); its proper function is necessary both during brain development and for brain integrity maintenance, and both at the microscale and macroscale level. Due to their specific intrinsic and extrinsic features, LC cells are considered particularly susceptible to damage concerning a variety of insults. This explains LC involvement in degenerative diseases not only in adults (in the context of neurodegenerative disease, mainly), but also in children (in relation to early hypoxic damage and Down's Syndrome, among others). In this narrative review, we dissect the potential mechanisms through which LC is affected in different diseases, with a special emphasis on the high rate of activity it is subjected to and the oxidative stress associated with it. Further research aimed at deepening our understanding of these mechanisms is needed to enable the development of potential strategies in the future that could slow down LC degeneration in subjects predisposed to specific brain disorders.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56125 Pisa, Italy
| | - Marco Scotto
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56125 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56125 Pisa, Italy
- I.R.C.C.S. Stella Maris, Calambrone, 56128 Pisa, Italy
| | - Filippo S. Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56125 Pisa, Italy
- I.R.C.C.S. Stella Maris, Calambrone, 56128 Pisa, Italy
| |
Collapse
|
5
|
Broderick MZL, Khan Q, Moradikor N. Understanding the connection between stress and sleep: From underlying mechanisms to therapeutic solutions. PROGRESS IN BRAIN RESEARCH 2025; 291:137-159. [PMID: 40222777 DOI: 10.1016/bs.pbr.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The objective of this chapter is to navigate through the nexus between stress and sleep, highlighting the neurobiological systems that connect them. Starting with an overview of neuroanatomy and physiology of stress and sleep, with a further detailed breakdown of sleep stages and key neuroanatomical centers that are responsible for sleep and wakefulness. Starting with suprachiasmatic nuclei (SCN) in circadian rhythm and sleep regulation overview, with a center point on the molecular systems including the CLOCK/CRY and BMAL1/2/PER1/2 feedback loops. Following this is the neurobiological of stress, specifically the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic-adrenal (SPA) axis and influence on sleep. Vital neural circuits connecting stress and sleep are examined with the attention of the ventral tegmental area (VTA) GABA-somatostatin neurons and the locus coerules in sleep regulation in response to stress. In addition, neuroinflammation's role occurs through the cytokines IL-1β and TNF-α are investigated as a mediator of sleep disturbances caused by stress. It concludes by summarizing the implications of neuroinflammatory modulation in stress-related psychopathologies, emphasizing the opening this provides for interventions that target this inflammation helping to lighten sleep disorder.
Collapse
Affiliation(s)
| | - Qadir Khan
- Faculty of Medicine and Stomatology, Tbilisi State Medical University, Tbilisi, Georgia
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia.
| |
Collapse
|
6
|
Shuster AE, Morehouse A, McDevitt EA, Chen PC, Whitehurst LN, Zhang J, Sattari N, Uzoigwe T, Ekhlasi A, Cai D, Simon K, Niethard N, Mednick SC. REM refines and rescues memory representations: a new theory. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2025; 6:zpaf004. [PMID: 40161405 PMCID: PMC11954447 DOI: 10.1093/sleepadvances/zpaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/24/2024] [Indexed: 04/02/2025]
Abstract
Despite extensive evidence on the roles of nonrapid eye movement (NREM) and REM sleep in memory processing, a comprehensive model that integrates their complementary functions remains elusive due to a lack of mechanistic understanding of REM's role in offline memory processing. We present the REM Refining and Rescuing (RnR) Hypothesis, which posits that the principal function of REM sleep is to increase the signal-to-noise ratio within and across memory representations. As such, REM sleep selectively enhances essential nodes within a memory representation while inhibiting the majority (Refine). Additionally, REM sleep modulates weak and strong memory representations so they fall within a similar range of recallability (Rescue). Across multiple NREM-REM cycles, tuning functions of individual memory traces get sharpened, allowing for integration of shared features across representations. We hypothesize that REM sleep's unique cellular, neuromodulatory, and electrophysiological milieu, marked by greater inhibition and a mixed autonomic state of both sympathetic and parasympathetic activity, underpins these processes. The RnR Hypothesis offers a unified framework that explains diverse behavioral and neural outcomes associated with REM sleep, paving the way for future research and a more comprehensive model of sleep-dependent cognitive functions.
Collapse
Affiliation(s)
- Alessandra E Shuster
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Allison Morehouse
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | | | - Pin-Chun Chen
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | | | - Jing Zhang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Negin Sattari
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Tracy Uzoigwe
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Ali Ekhlasi
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Denise Cai
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine Simon
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Pulmonology Department, Children’s Hospital of Orange County, Orange, CA, USA
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Osorio-Forero A, Foustoukos G, Cardis R, Cherrad N, Devenoges C, Fernandez LMJ, Lüthi A. Infraslow noradrenergic locus coeruleus activity fluctuations are gatekeepers of the NREM-REM sleep cycle. Nat Neurosci 2025; 28:84-96. [PMID: 39587312 DOI: 10.1038/s41593-024-01822-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
The noradrenergic locus coeruleus (LC) regulates arousal levels during wakefulness, but its role in sleep remains unclear. Here, we show in mice that fluctuating LC neuronal activity partitions non-rapid-eye-movement sleep (NREMS) into two brain-autonomic states that govern the NREMS-REMS cycle over ~50-s periods; high LC activity induces a subcortical-autonomic arousal state that facilitates cortical microarousals, whereas low LC activity is required for NREMS-to-REMS transitions. This functional alternation regulates the duration of the NREMS-REMS cycle by setting permissive windows for REMS entries during undisturbed sleep while limiting these entries to maximally one per ~50-s period during REMS restriction. A stimulus-enriched, stress-promoting wakefulness was associated with longer and shorter levels of high and low LC activity, respectively, during subsequent NREMS, resulting in more microarousal-induced NREMS fragmentation and delayed REMS onset. We conclude that LC activity fluctuations are gatekeepers of the NREMS-REMS cycle and that this role is influenced by adverse wake experiences.
Collapse
Affiliation(s)
- Alejandro Osorio-Forero
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Najma Cherrad
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Christiane Devenoges
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Wang X, Yan X, Li M, Cheng L, Qi X, Zhang J, Pan S, Xu X, Wei W, Li Y. U-shaped association between sleep duration and biological aging: Evidence from the UK Biobank study. Aging Cell 2024; 23:e14159. [PMID: 38556842 PMCID: PMC11258478 DOI: 10.1111/acel.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Previous research on sleep and aging largely has failed to illustrate the optimal dose-response curve of this relationship. We aimed to analyze the associations between sleep duration and measures of predicted age. In total, 241,713 participants from the UK Biobank were included. Habitual sleep duration was collected from the baseline questionnaire. Four indicators, homeostatic dysregulation (HD), phenoAge (PA), Klemera-Doubal method (KDM), and allostatic load (AL), were chosen to assess predicted age. Multivariate linear regression models were utilized. The association of sleep duration and predicted age followed a U-shape (All p for nonlinear <0.05). Compared with individuals who sleep for 7 h/day, the multivariable-adjusted beta of ≤5 and ≥9 h/day were 0.05 (95% CI 0.03, 0.07) and 0.03 (95% CI 0.02, 0.05) for HD, 0.08 (95% CI 0.01, 0.14) and 0.36 (95% CI 0.31, 0.41) for PA, and 0.21 (95% CI 0.12, 0.30) and 0.30 (95% CI 0.23, 0.37) for KDM. Significant independent and joint effects of sleep and cystatin C (CysC) and gamma glutamyltransferase (GGT) on predicted age metrics were future found. Similar results were observed when conducting stratification analyses. Short and long sleep duration were associated with accelerated predicted age metrics mediated by CysC and GGT.
Collapse
Affiliation(s)
- Xuanyang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of EducationHarbin Medical UniversityHarbinHeilongjiangChina
| | - Xuemin Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of EducationHarbin Medical UniversityHarbinHeilongjiangChina
| | - Mengdi Li
- Department of Endodontics, The First HospitalHarbin Medical UniversityHarbinChina
| | - Licheng Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of EducationHarbin Medical UniversityHarbinHeilongjiangChina
| | - Xiang Qi
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of EducationHarbin Medical UniversityHarbinHeilongjiangChina
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of EducationHarbin Medical UniversityHarbinHeilongjiangChina
| | - Sijia Pan
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of EducationHarbin Medical UniversityHarbinHeilongjiangChina
| | - Xiaoqing Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of EducationHarbin Medical UniversityHarbinHeilongjiangChina
| | - Wei Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of EducationHarbin Medical UniversityHarbinHeilongjiangChina
- Department of Pharmacology, College of Pharmacy, Key Laboratory of Cardiovascular Research, Ministry of EducationHarbin Medical UniversityHarbinChina
| | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of EducationHarbin Medical UniversityHarbinHeilongjiangChina
| |
Collapse
|
9
|
Galgani A, Giorgi FS. Exploring the Role of Locus Coeruleus in Alzheimer's Disease: a Comprehensive Update on MRI Studies and Implications. Curr Neurol Neurosci Rep 2023; 23:925-936. [PMID: 38064152 PMCID: PMC10724305 DOI: 10.1007/s11910-023-01324-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
PURPOSE OF REVIEW Performing a thorough review of magnetic resonance imaging (MRI) studies assessing locus coeruleus (LC) integrity in ageing and Alzheimer's disease (AD), and contextualizing them with current preclinical and neuropathological literature. RECENT FINDINGS MRI successfully detected LC alterations in ageing and AD, identifying degenerative phenomena involving this nucleus even in the prodromal stages of the disorder. The degree of LC disruption was also associated with the severity of AD cortical pathology, cognitive and behavioral impairment, and the risk of clinical progression. Locus coeruleus-MRI has proved to be a useful tool to assess the integrity of the central noradrenergic system in vivo in humans. It allowed to test in patients preclinical and experimental hypothesis, thus confirming the specific and marked involvement of the LC in AD and its key pathogenetic role. Locus coeruleus-MRI-related data might represent the theoretical basis on which to start developing noradrenergic drugs to target AD.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies School of Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies School of Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|