1
|
Wieringa FP, Suran S, Søndergaard H, Ash S, Cummins C, Chaudhuri AR, Irmak T, Gerritsen K, Vollenbroek J. The Future of Technology-Based Kidney Replacement Therapies: An Update on Portable, Wearable, and Implantable Artificial Kidneys. Am J Kidney Dis 2025; 85:787-796. [PMID: 39914734 DOI: 10.1053/j.ajkd.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 03/19/2025]
Abstract
Worldwide, the number of people who need lifesaving kidney replacement therapy (KRT) steadily increases, but approximately two thirds of them lack access to KRT and therefore die. Access to KRT depends on economic, social, infrastructural, ecological, and political factors. Current KRTs include kidney transplant, peritoneal dialysis, and hemodialysis. The field of xenotransplantation has been opening promising new perspectives recently but needs improvement. Unfortunately, not all patients are suitable for transplant. Peritoneal dialysis and hemodialysis will remain important KRTs, but they are expensive and strongly dependent on infrastructure, with few fundamental changes since the 1980s. The KRT field might learn from the "African mobile phone revolution" that beat infrastructural limitations, lowered costs, and increased access. We provide a nonexhaustive overview of promising ways to increase the mobility of technology-based KRTs by dialysate regeneration, chip-based nanoporous filters, bioreactor-enabling technologies, and using the gut as a "third kidney." In 2018, the Kidney Health Initiative published a road map for innovative KRTs composed by leading innovators, but the pace of innovation is slower than was targeted. Ambitious political statements about realizing this road map can only succeed if the granted funding matches the targeted time scale. Patient-centered international "coopetition" (ie, the act of cooperation between competing entities) seems to offer the quickest pathway to success.
Collapse
Affiliation(s)
- Fokko P Wieringa
- imec, Holst Centre, Eindhoven, The Netherlands; Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands; European Kidney Health Alliance Work Group 3 "Breakthrough Innovation," Brussels, Belgium; International Electrotechnical Commission TC62D/MT20, Geneva, Switzerland.
| | | | - Henning Søndergaard
- European Kidney Health Alliance Work Group 3 "Breakthrough Innovation," Brussels, Belgium; Danish Kidney Association, Copenhagen, Denmark
| | - Stephen Ash
- Department of Medicine, Purdue University, West Lafayette, IN
| | | | | | - Tugrul Irmak
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands; European Kidney Health Alliance Work Group 3 "Breakthrough Innovation," Brussels, Belgium
| | - Karin Gerritsen
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Vollenbroek
- imec, Holst Centre, Eindhoven, The Netherlands; Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands; BIOS Lab-on-a-Chip Group, University of Twente, Enschede, The Netherlands
| |
Collapse
|
2
|
Kim W, Hong S, Kim K, Lee S, Shin DA, Yang SH, Lee J, Kim K, Lee KJ, Cho WS, Lee H, Kim DK, Kim HC, Kim YS, Lee JC, Sung GY, Kim SJ. Scalable ion concentration polarization dialyzer for peritoneal dialysate regeneration. J Nanobiotechnology 2025; 23:255. [PMID: 40155950 PMCID: PMC11954356 DOI: 10.1186/s12951-025-03294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
A wearable artificial kidney (WAK) stands poised to offer dialysis treatment with maximal temporal and spatial flexibility for end-stage renal disease (ESRD) patients, while portability has not yet been achieved due to difficulties in portable purification. The ion concentration polarization (ICP), one of the nanoelectrokinetic phenomenon, has garnered substantial attention in the realm of portable purification applications, owing to its remarkable capacity for charge separation. In this work, scalable ICP dialyzer with 10,000-fold increase in throughput, was applied for peritoneal dialysate regeneration. First, the mechanism underpinning dialysate purification was corroborated based on micro-nanofluidics. Simultaneously, the electrochemical reactions utilized the complete decomposition of uncharged toxin (urea), achieving approximately 99% clearance, while the ICP phenomenon promoted the removal of positively charged toxin (creatinine), achieving approximately 30% clearance. Second, 3-D scalable ICP dialyzer was developed with a creation of micro-nanofluidic environment inside. Throughput scalability was demonstrated up to 1 mL/min with average approximately 30% toxins clearance. Ultimately, the 3-D ICP dialyzer was applied to assist peritoneal dialysis (PD) using a bilateral nephrectomy rat model. We demonstrated that regenerated dialysate successfully reduced in vivo toxicity, with average toxins removal ratio of approximately 30% per cycle. We believe that the integration of this scalable ICP dialyzer into the WAK holds tremendous potential for substantially enhancing the quality of life for individuals with ESRD.
Collapse
Affiliation(s)
- Wonseok Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- SOFT Foundry Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seongjun Hong
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kihong Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunhwa Lee
- Division of Nephrology, Kangwon National University Hospital, Chuncheon, 24289, Republic of Korea
| | - Dong Ah Shin
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Medical and Biological Engineering, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 08826, Republic of Korea
| | - Jeongeun Lee
- Major in Materials Science and Engineering, School of Future Convergence, Hallym University, Chuncheon, 24252, Republic of Korea
- Interdisciplinary Program of Nano-Medical Device Engineering, Graduate School, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyunghee Kim
- Major in Materials Science and Engineering, School of Future Convergence, Hallym University, Chuncheon, 24252, Republic of Korea
- Interdisciplinary Program of Nano-Medical Device Engineering, Graduate School, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyoung Jin Lee
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Medical and Biological Engineering, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea
| | - Woo Sang Cho
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hajeong Lee
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Dong Ki Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hee Chan Kim
- Institute of Medical and Biological Engineering, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea
- CHA Future Medicine Research Institute, Seongnam-si, 13488, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yon Su Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Jung Chan Lee
- Institute of Medical and Biological Engineering, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Gun Yong Sung
- Major in Materials Science and Engineering, School of Future Convergence, Hallym University, Chuncheon, 24252, Republic of Korea.
- Interdisciplinary Program of Nano-Medical Device Engineering, Graduate School, Hallym University, Chuncheon, 24252, Republic of Korea.
- Integrative Materials Research Institute, Hallym University, Chuncheon, 24252, Republic of Korea.
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- SOFT Foundry Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
- SNU Energy Initiative, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Kooman JP. The Revival of Sorbents in Chronic Dialysis Treatment. Semin Dial 2025; 38:54-61. [PMID: 38506130 PMCID: PMC11867157 DOI: 10.1111/sdi.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 03/21/2024]
Abstract
Interest in the use of sorbents in chronic dialysis treatment has undergone a revival in the last decades, for which two major factors are responsible. The first is the potential of sorbents as adjunct therapy for the removal of substances that are difficult to remove by conventional dialysis therapies. The second is their use in regeneration of dialysate, which is of pivotal importance in the design of portable or even wearable treatments, next to the potential for reducing water use during conventional dialysis treatment. Sorbent-enhanced dialysis with synthetic polymers was associated with a reduction in inflammatory parameters as compared to hemodialysis and even associated with improved survival in smaller studies, although this needs to be confirmed in large randomized trials. Incorporation of sorbents within a dialysis membrane (mixed matrix membrane) appears a promising way forward to reduce the complexity and costs of a dual therapy but needs to be tested in vivo. For regeneration of dialysate, at present, a combination of urease, zirconium-based sorbents, and activated charcoal is used. Next to sodium release by the sorbent in exchange for ammonium and the CO2 release by the hydrolysis of urea has been a bottleneck in the design of wearable devices, although short-term trials have been performed. Still, for widespread and flexible application of sorbent-assisted portable or wearable devices, a direct urea sorbent would be a major asset. In the near future, it will likely become apparent whether sorbent-assisted dialysis techniques are feasible for routine implementation in clinical practice.
Collapse
Affiliation(s)
- Jeroen Peter Kooman
- Division of Nephrology, Department of Internal MedicineMaastricht University Medical CentreMaastrichtThe Netherlands
| |
Collapse
|
4
|
Shamy OE, Sloand JA. Automation and innovation in home hemodialysis machines. Curr Opin Nephrol Hypertens 2025; 34:90-94. [PMID: 39470227 DOI: 10.1097/mnh.0000000000001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW In this review, we discuss the timeline of innovation and technologic development in home hemodialysis (HHD) in the United States and the legislative approvals that accompanied them. RECENT FINDINGS The most recently FDA-approved home hemodialysis devices provide features that include on-demand and batch dialysate generation, access disconnect for venous needle dislodgement, touchscreen interface with visual and auditory prompts and animations, drop-in sterilized cartridges with prestrung tubing, hot water disinfection of tubing allowing extended-use, dialysate flow rates as high as 500 ml/min, as well as remote treatment monitoring capabilities. Furthermore, wearable/portable dialysis devices are currently under development to simplify dialysis delivery to patients with end-stage kidney disease. SUMMARY Home hemodialysis devices providing longitudinal hemodialysis across different clinical settings, virtual reality headsets for more personalized training, automated patient support, as well as wearable device development and innovations give hope for a future where home hemodialysis is more accessible and seamless.
Collapse
Affiliation(s)
- Osama El Shamy
- Division of Kidney Diseases & Hypertension, George Washington University, Washington, DC, USA
| | | |
Collapse
|
5
|
Sasaki M, Szabó L, Uto K, Ebara M. Double-Layered Electrospun Nanofiber Filter for the Simultaneous Removal of Urea and Ammonium from Blood. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67399-67410. [PMID: 39584375 DOI: 10.1021/acsami.4c16068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
A major challenge in the development of wearable artificial kidneys (WAKs) lies in the efficient removal of urea, which is found at an extremely high concentration in the blood of patients with chronic kidney disease (CKD). Urease is an enzyme that hydrolyzes urea. While it can efficiently remove urea, toxic ammonium is produced as a byproduct. In this study, nanofibers capable of removing both urea and ammonium from the blood were fabricated. Specifically, urease was immobilized on electrospun poly(ethylene-co-vinyl alcohol) (EVOH)/chitosan nanofiber membranes via covalent cross-linking. Chitosan not only helped covalent immobilization via its free amino groups but also improved hemocompatibility by suppressing protein adhesion. The resulting urease-immobilized EVOH/chitosan nanofibers exhibited an outstanding urea removal performance of 690 mg/g per hour. For ammonium removal, EVOH nanofiber membranes containing sodium cobalt(II) hexacyanoferrate(II) (NaCoHCF), an ammonium adsorbent, were prepared. The fabricated EVOH/NaCoHCF membranes exhibited an ammonium adsorption capacity of 135.5 mg/g. The two types of nanofiber membranes were combined to form a double-layered nanofiber membrane that was placed in a filter holder for continuous-flow cycling experiments. Under such conditions, all urea at a concentration similar to that in the blood of CKD patients was degraded within 1 h, and ammonium production was reduced by approximately 90% of the normal level. This double-layered nanofiber membrane can achieve both urea degradation and ammonium adsorption and is expected to advance the development of WAKs, a game changer in the treatment of CKD.
Collapse
Affiliation(s)
- Makoto Sasaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Ibaraki, Japan
| | - László Szabó
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Koichiro Uto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Ibaraki, Japan
| |
Collapse
|
6
|
Rivara MB, Himmelfarb J. From Home to Wearable Hemodialysis: Barriers, Progress, and Opportunities. Clin J Am Soc Nephrol 2024; 19:1488-1495. [PMID: 38190138 PMCID: PMC11556920 DOI: 10.2215/cjn.0000000000000424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
Although the past two decades have seen substantial proportional growth of home hemodialysis in the United States, the absolute number of patients treated with home hemodialysis remains small. Currently available stationary hemodialysis devices for use in the home have inherent limitations that represent barriers for more widespread adoption by a larger proportion of individuals with kidney failure. These limitations include device weight and bulk, ergonomics considerations, technical complexity, vascular access challenges, and limited remote patient monitoring. Recent years have witnessed a resurgence in research and development of prototype wearable kidney replacement devices incorporating innovations in miniaturization, new biomaterials, and new methods for toxin clearance and dialysate regeneration. Recent work has built on five decades of incremental innovation in wearable dialysis concepts and prototypes, starting from the work by Kolff in the 1970s. Wearable dialysis devices that successfully overcome key persistent barriers to successful development and adoption of these technologies will radically reshape the landscape of kidney replacement therapies and have the potential to dramatically improve the lives of individuals living with kidney failure.
Collapse
Affiliation(s)
- Matthew B Rivara
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | | |
Collapse
|
7
|
Song Y, Ye SH, Ash SR, Li L. Thermal Vapor Deposition of a Hydrophobic and Gas-Permeable Membrane on Zirconium Phosphate Cation Exchanger: An Oral Sorbent for the Urea Removal of Kidney Failure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16502-16510. [PMID: 39039728 PMCID: PMC11308767 DOI: 10.1021/acs.langmuir.4c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
An oral sorbent with high capacity for NH4+ is desirable in lowering the blood urea level and mitigating the dialysis burden for end-stage kidney disease (ESKD) patients. Zirconium phosphate (ZrP) is an amorphous cation ion exchanger with high NH4+ binding capacity as a sorbent material, but its selectivity to remove NH4+ is limited in the presence of other competing ions in water solution. We previously have developed a gas-permeable and hydrophobic perfluorocarbon coating on ZrP, which improves ZrP's NH4+ selectivity. However, the coating preparation procedure, a wet chemistry approach, is complicated and time-consuming, and more importantly, the large amount of usage of acetone poses a concern for the application of ZrP as an oral sorbent. In this study, we developed a solventless coating protocol that effectively coats ZrP with tetraethyl orthosilicate (TEOS) and 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FOTS) via thermal vapor deposition (TVD) in a simplified manner. X-ray photoelectron spectroscopy (XPS) and contact angle measurements verify the two coatings are successfully deposited on the ZrP surface, and the coating condition was optimized based on an in vitro static binding study. The dynamic binding study of competing ions on Na-loaded ZrP with TVD coatings yields a maximum NH4+ removal (∼3.2 mequiv/g), which can be improved to ∼4.7 mequiv/g if H-loaded ZrP under the same coating condition is used in basic stock solutions. More importantly, both materials barely remove Ca2+ and show excellent acid resistance. The significant improvement in the NH4+ binding capacity and selectivity reported here establishes a highly promising surface modification approach to optimize oral sorbents for ESKD patients.
Collapse
Affiliation(s)
- Yihan Song
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sang-Ho Ye
- McGowan
Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15210, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R. Ash
- Nephrology
Department, Indiana University Health Arnett
Hospital, Lafayette, Indiana 47905, United States
- CEO,
HemoCleanse Technologies, LLC, Lafayette, Indiana 47904, United States
| | - Lei Li
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Himmelfarb J, Ratner BD. An Innovation Ecosystem: The Center for Dialysis Innovation (CDI). J Am Soc Nephrol 2024; 35:1119-1122. [PMID: 38588568 PMCID: PMC11377788 DOI: 10.1681/asn.0000000000000363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Affiliation(s)
- Jonathan Himmelfarb
- Department of Medicine, Center for Dialysis Innovation, University of Washington, Seattle, Washington
| | - Buddy D Ratner
- Department of Bioengineering and Chemical Engineering, Center for Dialysis Innovation, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Ramírez-Guerrero G, Ronco C, Lorenzin A, Brendolan A, Sgarabotto L, Zanella M, Reis T. Development of a new miniaturized system for ultrafiltration. Heart Fail Rev 2024; 29:615-630. [PMID: 38289525 DOI: 10.1007/s10741-024-10384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 04/23/2024]
Abstract
Acute decompensated heart failure and fluid overload are the most common causes of hospitalization in heart failure patients, and often, they contribute to disease progression. Initial treatment encompasses intravenous diuretics although there might be a percentual of patients refractory to this pharmacological approach. New technologies have been developed to perform extracorporeal ultrafiltration in fluid overloaded patients. Current equipment allows to perform ultrafiltration in most hospital and acute care settings. Extracorporeal ultrafiltration is then prescribed and conducted by specialized teams, and fluid removal is planned to restore a status of hydration close to normal. Recent clinical trials and European and North American practice guidelines suggest that ultrafiltration is indicated for patients with refractory congestion not responding to medical therapy. Close interaction between nephrologists and cardiologists may be the key to a collaborative therapeutic effort in heart failure patients. Further studies are today suggesting that wearable technologies might become available soon to treat patients in ambulatory and de-hospitalized settings. These new technologies may help to cope with the increasing demand for the care of chronic heart failure patients. Herein, we provide a state-of-the-art review on extracorporeal ultrafiltration and describe the steps in the development of a new miniaturized system for ultrafiltration, called AD1 (Artificial Diuresis).
Collapse
Affiliation(s)
- Gonzalo Ramírez-Guerrero
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Nephrology and Dialysis Unit, Carlos Van Buren Hospital, Valparaíso, Chile
- Departamento de Medicina Interna, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy.
- Department of Medicine (DIMED), Università degli Studi di Padova, Padua, Italy.
| | - Anna Lorenzin
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Alessandra Brendolan
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Luca Sgarabotto
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
- Department of Medicine (DIMED), Università degli Studi di Padova, Padua, Italy
| | - Monica Zanella
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Thiago Reis
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Laboratory of Molecular Pharmacology, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
- Department of Nephrology and Kidney Transplantation, Fenix Group, Sao Paulo, Brazil
| |
Collapse
|
10
|
Jayanti S, Rangan GK. Advances in Human-Centered Care to Address Contemporary Unmet Needs in Chronic Dialysis. Int J Nephrol Renovasc Dis 2024; 17:91-104. [PMID: 38525412 PMCID: PMC10961023 DOI: 10.2147/ijnrd.s387598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Advances in the treatment of kidney failure with chronic dialysis have stagnated over the past three decades, with over 50% of patients still managed by conventional in-hospital haemodialysis. In parallel, the demands of chronic dialysis medical care have changed and evolved due to a growing population that has higher frailty and multimorbidity. Thus, the gap between the needs of kidney failure patients and the healthcare capability to provide effective overall management has widened. To address this problem, healthcare policy has increasingly aligned towards a human-centred approach. The paradigm shift of human-centred approach places patients at the forefront of decision-making processes, ensuring that specific needs are understood and prioritised. Integration of human-centred approaches with patient care has been shown to improve satisfaction and quality of life. The aim of this narrative is to evaluate the current clinical challenges for managing kidney failure for dialysis providers; summarise current experiences and unmet needs of chronic dialysis patients; and finally emphasise how human-centred care has advanced chronic dialysis care. Specific incremental advances include implementation of renal supportive care; home-assisted dialysis; hybrid dialysis; refinements to dialysis methods; whereas emerging advances include portable and wearable dialysis devices and the potential for the integration of artificial intelligence in clinical practice.
Collapse
Affiliation(s)
- Sumedh Jayanti
- Department of Renal Medicine, Westmead Hospital, Sydney, NSW, Australia
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Gopala K Rangan
- Department of Renal Medicine, Westmead Hospital, Sydney, NSW, Australia
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Karageorgos FF, Neiros S, Karakasi KE, Vasileiadou S, Katsanos G, Antoniadis N, Tsoulfas G. Artificial kidney: Challenges and opportunities. World J Transplant 2024; 14:89025. [PMID: 38576754 PMCID: PMC10989479 DOI: 10.5500/wjt.v14.i1.89025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 03/15/2024] Open
Abstract
This review aims to present the developments occurring in the field of artificial organs and particularly focuses on the presentation of developments in artificial kidneys. The challenges for biomedical engineering involved in overcoming the potential difficulties are showcased, as well as the importance of interdisciplinary collaboration in this marriage of medicine and technology. In this review, modern artificial kidneys and the research efforts trying to provide and promise artificial kidneys are presented. But what are the problems faced by each technology and to what extent is the effort enough to date?
Collapse
Affiliation(s)
- Filippos F Karageorgos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Stavros Neiros
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Konstantina-Eleni Karakasi
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Stella Vasileiadou
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Katsanos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Nikolaos Antoniadis
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| |
Collapse
|
12
|
Moyer J, Wilson MW, Sorrentino TA, Santandreu A, Chen C, Hu D, Kerdok A, Porock E, Wright N, Ly J, Blaha C, Frassetto LA, Fissell WH, Vartanian SM, Roy S. Renal Embolization-Induced Uremic Swine Model for Assessment of Next-Generation Implantable Hemodialyzers. Toxins (Basel) 2023; 15:547. [PMID: 37755973 PMCID: PMC10536310 DOI: 10.3390/toxins15090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Reliable models of renal failure in large animals are critical to the successful translation of the next generation of renal replacement therapies (RRT) into humans. While models exist for the induction of renal failure, none are optimized for the implantation of devices to the retroperitoneal vasculature. We successfully piloted an embolization-to-implantation protocol enabling the first implant of a silicon nanopore membrane hemodialyzer (SNMHD) in a swine renal failure model. Renal arterial embolization is a non-invasive approach to near-total nephrectomy that preserves retroperitoneal anatomy for device implants. Silicon nanopore membranes (SNM) are efficient blood-compatible membranes that enable novel approaches to RRT. Yucatan minipigs underwent staged bilateral renal arterial embolization to induce renal failure, managed by intermittent hemodialysis. A small-scale arteriovenous SNMHD prototype was implanted into the retroperitoneum. Dialysate catheters were tunneled externally for connection to a dialysate recirculation pump. SNMHD clearance was determined by intermittent sampling of recirculating dialysate. Creatinine and urea clearance through the SNMHD were 76-105 mL/min/m2 and 140-165 mL/min/m2, respectively, without albumin leakage. Normalized creatinine and urea clearance measured in the SNMHD may translate to a fully implantable clinical-scale device. This pilot study establishes a path toward therapeutic testing of the clinical-scale SNMHD and other implantable RRT devices.
Collapse
Affiliation(s)
- Jarrett Moyer
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Mark W. Wilson
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Thomas A. Sorrentino
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Ana Santandreu
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Caressa Chen
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Dean Hu
- Outset Medical, San Jose, CA 95134, USA
| | | | - Edward Porock
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Nathan Wright
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Jimmy Ly
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Charles Blaha
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Lynda A. Frassetto
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - William H. Fissell
- Silicon Kidney, San Ramon, CA 94583, USA
- Division of Nephrology & Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shant M. Vartanian
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Shuvo Roy
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| |
Collapse
|
13
|
Ibi Y, Nishinakamura R. Kidney Bioengineering for Transplantation. Transplantation 2023; 107:1883-1894. [PMID: 36717963 DOI: 10.1097/tp.0000000000004526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The kidney is an important organ for maintenance of homeostasis in the human body. As renal failure progresses, renal replacement therapy becomes necessary. However, there is a chronic shortage of kidney donors, creating a major problem for transplantation. To solve this problem, many strategies for the generation of transplantable kidneys are under investigation. Since the first reports describing that nephron progenitors could be induced from human induced pluripotent stem cells, kidney organoids have been attracting attention as tools for studying human kidney development and diseases. Because the kidney is formed through the interactions of multiple renal progenitors, current studies are investigating ways to combine these progenitors derived from human induced pluripotent stem cells for the generation of transplantable kidney organoids. Other bioengineering strategies, such as decellularization and recellularization of scaffolds, 3-dimensional bioprinting, interspecies blastocyst complementation and progenitor replacement, and xenotransplantation, also have the potential to generate whole kidneys, although each of these strategies has its own challenges. Combinations of these approaches will lead to the generation of bioengineered kidneys that are transplantable into humans.
Collapse
Affiliation(s)
- Yutaro Ibi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
14
|
Ramada DL, de Vries J, Vollenbroek J, Noor N, Ter Beek O, Mihăilă SM, Wieringa F, Masereeuw R, Gerritsen K, Stamatialis D. Portable, wearable and implantable artificial kidney systems: needs, opportunities and challenges. Nat Rev Nephrol 2023:10.1038/s41581-023-00726-9. [PMID: 37277461 DOI: 10.1038/s41581-023-00726-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/07/2023]
Abstract
Haemodialysis is life sustaining but expensive, provides limited removal of uraemic solutes, is associated with poor patient quality of life and has a large carbon footprint. Innovative dialysis technologies such as portable, wearable and implantable artificial kidney systems are being developed with the aim of addressing these issues and improving patient care. An important challenge for these technologies is the need for continuous regeneration of a small volume of dialysate. Dialysate recycling systems based on sorbents have great potential for such regeneration. Novel dialysis membranes composed of polymeric or inorganic materials are being developed to improve the removal of a broad range of uraemic toxins, with low levels of membrane fouling compared with currently available synthetic membranes. To achieve more complete therapy and provide important biological functions, these novel membranes could be combined with bioartificial kidneys, which consist of artificial membranes combined with kidney cells. Implementation of these systems will require robust cell sourcing; cell culture facilities annexed to dialysis centres; large-scale, low-cost production; and quality control measures. These challenges are not trivial, and global initiatives involving all relevant stakeholders, including academics, industrialists, medical professionals and patients with kidney disease, are required to achieve important technological breakthroughs.
Collapse
Affiliation(s)
- David Loureiro Ramada
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands
| | - Joost de Vries
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Vollenbroek
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- BIOS Lab on a Chip Group, MESA + Institute, University of Twente, Hallenweg 15, 7522, NH Enschede, The Netherlands
| | - Nazia Noor
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands
| | - Odyl Ter Beek
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Fokko Wieringa
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Autonomous Therapeutics, IMEC, Eindhoven, The Netherlands
- European Kidney Health Alliance (EKHA), WG3 "Breakthrough Innovation", Brussels, Belgium
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karin Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dimitrios Stamatialis
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands.
- European Kidney Health Alliance (EKHA), WG3 "Breakthrough Innovation", Brussels, Belgium.
| |
Collapse
|
15
|
Richards E, Ye SH, Ash SR, Li L. A Perfluorocarbon-Coated ZrP Cation Exchanger with Excellent Ammonium Selectivity and Chemical Stability: An Oral Sorbent for End-Stage Kidney Disease (ESKD). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37227933 DOI: 10.1021/acs.langmuir.3c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An oral sorbent to remove NH4+ within the small intestine of end-stage kidney disease (ESKD) patients could reduce blood urea levels and diminish their dialysis treatment burden. But current sorbent materials like amorphous zirconium phosphate particles Zr(HPO4)2·H2O (ZrP) lack the selectivity to remove NH4+ in water solution with other competing ions. Our previous work found that a gas-permeable, hydrophobic polydimethylsiloxane (PDMS) coating on ZrP improved the material's selectivity for NH4+. However, a competing ion Ca2+ was still removed by PDMS-coated ZrP sorbent, and the permeability of the PDMS coating to Ca2+ was increased after low-pH stomach-like condition exposure. An alternative hydrophobic and gas permeable coating has been investigated─perfluorooctyltriethoxysilane (FOTS). The coating was attached in place of PDMS to a tetraethyl orthosilicate-coated ZrP surface. Surface atomic composition analysis and scanning electron microscopy observation verified the successful application of the FOTS coating. Water contact angle analysis validated the FOTS coating was hydrophobic (145.0 ± 3.2°). In vitro competing ion studies indicated the FOTS coating attached to ZrP increased NH4+ removal by 53% versus uncoated ZrP. FOTS offers complete selectivity for NH4+ over Ca2+ with similar NH4+ capacity as the previous PDMS coating. Moreover, FOTS-coated ZrP maintained NH4+ removal capacity and selectivity after the acid exposure study, indicating excellent acid resistance while NH4+ selectivity of ZrP-PDMS decreased by 72%. The results suggested that FOTS-coated ZrP is promising as an oral sorbent for ESKD patients.
Collapse
Affiliation(s)
- Evan Richards
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R Ash
- CEO, HemoCleanse Technologies, LLC, Lafayette, Indiana 47904, United States
| | - Lei Li
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
16
|
Abstract
End-stage renal disease (ESRD) continues to be a disease process with a high rate of hospitalization and mortality. There has been little innovation in nephrology over the last few decades compared to revolutionary high-tech advancements in other areas like oncology and cardiovascular medicine. Kidney transplantation, the only available alternative to renal replacement therapy, is limited in its availability. It is essential to have advances in this field to improve the efficiency of currently available treatments and devise new therapies. The current description of renal replacement therapy is inappropriate as it only replaces the filtration function of the failed kidney without addressing its other vital metabolic, endocrinologic, and immunologic roles and portability. Hence, it is critical to have newer therapies focusing on total replacement and portability, not just clearance. This review will address the developments in hemodialysis therapy. Advances in hemodialysis therapy include hemodiafiltration, portable machines, wearable artificial kidneys, and bioartificial kidneys. Although promising, newer technologies in this direction are still far from clinical application. Several organizations and enterprises including the Kidney Health Initiative and Kidney X: The Kidney Innovation Accelerator, as well as The Advancing American Kidney Health Initiative, are working in tandem to develop new therapies that could customize the treatment of ESRD.
Collapse
Affiliation(s)
- Bijin Thajudeen
- Division of Nephrology, Banner University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, USA
| | - Dany Issa
- WG (Bill) Hefner VA Medical Center, 1601 Brenner Ave, Salisbury, NC 28144, USA
| | - Prabir Roy-Chaudhury
- UNC Kidney Center, University of North Carolina at Chapel Hill, 101 Manning Dr, Chapel Hill, NC 27514, USA
| |
Collapse
|
17
|
Gupta U, Kumar N, Lata A, Singh P, Arun RK. Bio-inspired self-pumping microfluidic device for cleaning of urea using reduced graphene oxide (rGO) modified polymeric nanohybrid membrane. Int J Biol Macromol 2023; 241:124614. [PMID: 37119905 DOI: 10.1016/j.ijbiomac.2023.124614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
In vitro technology facilitates the replication of in vivo tissues more accurately than conventional cell-based artificial organs, enabling researchers to mimic both the structural and functional characteristics of natural systems. Here, we demonstrate a novel spiral-shaped self-pumping microfluidic device for the cleaning of urea by incorporating reduced graphene oxide (rGO) modified a Polyethersulfone (PES) nanohybrid membrane for efficient filtration capacity. The spiral-shaped microfluidic chip is a two-layer configuration of polymethyl methacrylate (PMMA) integrated with the modified filtration membrane. In essence, the device replicates the main features of the kidney (Glomerulus), i.e., a nano-porous membrane modified with reduced graphene oxide to separate the sample fluid from the upper layer and collect the biomolecule-free fluid through the bottom of the device. We have achieved a cleaning efficiency of 97.94 ± 0.6 % using this spiral shaped microfluidic system. The spiral-shaped microfluidic device integrated with nanohybrid membrane has potential for organ-on-a-chips applications.
Collapse
Affiliation(s)
- Upasana Gupta
- Department of Chemical Engineering, Indian Institute of Technology Jammu, India
| | - Natish Kumar
- Department of Chemical Engineering, Indian Institute of Technology Jammu, India
| | - Akash Lata
- Department of Chemical Engineering, Indian Institute of Technology Jammu, India
| | - Preeti Singh
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ravi Kumar Arun
- Department of Chemical Engineering, Indian Institute of Technology Jammu, India.
| |
Collapse
|
18
|
Ji H, Li Y, Su B, Zhao W, Kizhakkedathu JN, Zhao C. Advances in Enhancing Hemocompatibility of Hemodialysis Hollow-Fiber Membranes. ADVANCED FIBER MATERIALS 2023; 5:1-43. [PMID: 37361105 PMCID: PMC10068248 DOI: 10.1007/s42765-023-00277-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 06/28/2023]
Abstract
Hemodialysis, the most common modality of renal replacement therapy, is critically required to remove uremic toxins from the blood of patients with end-stage kidney disease. However, the chronic inflammation, oxidative stress as well as thrombosis induced by the long-term contact of hemoincompatible hollow-fiber membranes (HFMs) contribute to the increase in cardiovascular diseases and mortality in this patient population. This review first retrospectively analyzes the current clinical and laboratory research progress in improving the hemocompatibility of HFMs. Details on different HFMs currently in clinical use and their design are described. Subsequently, we elaborate on the adverse interactions between blood and HFMs, involving protein adsorption, platelet adhesion and activation, and the activation of immune and coagulation systems, and the focus is on how to improve the hemocompatibility of HFMs in these aspects. Finally, challenges and future perspectives for improving the hemocompatibility of HFMs are also discussed to promote the development and clinical application of new hemocompatible HFMs. Graphical Abstract
Collapse
Affiliation(s)
- Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207 China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| |
Collapse
|
19
|
Tatum R, Wong D, Martins PN, Tchantchaleishvili V. Current status and future directions in the development and optimization of thoracic and abdominal artificial organs. Artif Organs 2023; 47:451-458. [PMID: 36421073 DOI: 10.1111/aor.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/18/2022] [Accepted: 11/06/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Artificial organs are engineered devices with the capacity to be implanted or integrated into a living body to replace a failing organ, or to duplicate or augment one or multiple functions of the diseased organ. AREAS COVERED We evaluate the present landscape and future possibilities of artificial organ engineering by exploring the spectrum of four distinguishable device features: mobility, compatibility, functionality, and material composition. These mechanical and functional differences provide the framework through which we examine the current status and future possibilities of the abdominal and thoracic artificial organs. EXPERT OPINION Transforming the artificial organs landscape in ways that expand the scope of existing device capabilities and improve the clinical utility of artificial organs will require making improvements upon existing technologies and multidisciplinary cooperation to create and discover new capacities.
Collapse
Affiliation(s)
- Robert Tatum
- Division of Cardiac Surgery, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniella Wong
- Division of Cardiac Surgery, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Paulo N Martins
- Division of Cardiac Surgery, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Vakhtang Tchantchaleishvili
- Division of Cardiac Surgery, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Stauss M, Htay H, Kooman JP, Lindsay T, Woywodt A. Wearables in Nephrology: Fanciful Gadgetry or Prêt-à-Porter? SENSORS (BASEL, SWITZERLAND) 2023; 23:1361. [PMID: 36772401 PMCID: PMC9919296 DOI: 10.3390/s23031361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Telemedicine and digitalised healthcare have recently seen exponential growth, led, in part, by increasing efforts to improve patient flexibility and autonomy, as well as drivers from financial austerity and concerns over climate change. Nephrology is no exception, and daily innovations are underway to provide digitalised alternatives to current models of healthcare provision. Wearable technology already exists commercially, and advances in nanotechnology and miniaturisation mean interest is also garnering clinically. Here, we outline the current existing wearable technology pertaining to the diagnosis and monitoring of patients with a spectrum of kidney disease, give an overview of wearable dialysis technology, and explore wearables that do not yet exist but would be of great interest. Finally, we discuss challenges and potential pitfalls with utilising wearable technology and the factors associated with successful implementation.
Collapse
Affiliation(s)
- Madelena Stauss
- Department of Nephrology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| | - Htay Htay
- Department of Renal Medicine, Singapore General Hospital, Singapore 169608, Singapore
| | - Jeroen P. Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Thomas Lindsay
- Department of Nephrology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| | - Alexander Woywodt
- Department of Nephrology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| |
Collapse
|
21
|
Ding S, Wang D, Wang X. Hierarchically structural layered double oxides with stretchable nanopores for highly effective removal of protein-bound uremic toxins. Sep Purif Technol 2022; 301:122033. [PMID: 36071792 PMCID: PMC9436783 DOI: 10.1016/j.seppur.2022.122033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022]
Abstract
The global outbreak and prevalence of coronavirus disease 2019 (COVID-19) has triggered an urgent demand for family hemodialysis equipment. It is particularly vital to design and apply superior adsorbents to adsorb toxins for reducing the usage of dialysate. In this work, hierarchically structural MgAl layered double oxides (LDO) with stretchable nanopores were exploited through a facile one-pot trisodium citrate (TSC) assistant hydrothermal reaction followed by calcination treatment for effectively adsorbing protein-bound uremic toxins such as hippuric acid (HA) or indoxyl sulfate (IS). The optimized MgAl LDO possessed flower-like spherical morphology, ultrahigh specific surface area (187.3 m2/g) and uniquely stretchable nanopores, which were more conducive to incorporating anions due to their unique memory effect endowing them with promising adsorption capacities for HA or IS. And the adsorption data could be better conformed to pseudo-second-order kinetic model and Langmuir isotherm determining that the maximum adsorption capacity of HA and IS was 129.8 mg/g and 63.1 mg/g, respectively. Furthermore, the computation of molecular size paired with the analysis of adsorption mechanism accurately revealed that high-efficiency toxin capture was mainly attributed to electrostatic interaction for internal intercalation and surface adsorption. Therefore, the application of such delicate LDO as new premium adsorbent would facilitate the development and popularization of family hemodialysis equipment.
Collapse
Affiliation(s)
- Siping Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Dong Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
22
|
Zhao H, Huang J, Huang L, Yang Y, Xiao Z, Chen Q, Huang Q, Ai K. Surface control approach for growth of cerium oxide on flower-like molybdenum disulfide nanosheets enables superior removal of uremic toxins. J Colloid Interface Sci 2022; 630:855-865. [DOI: 10.1016/j.jcis.2022.10.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
23
|
Groth T, Stegmayr BG, Ash SR, Kuchinka J, Wieringa FP, Fissell WH, Roy S. Wearable and implantable artificial kidney devices for end-stage kidney disease treatment-Current status and review. Artif Organs 2022; 47:649-666. [PMID: 36129158 DOI: 10.1111/aor.14396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a major cause of early death worldwide. By 2030, 14.5 million people will have end-stage kidney disease (ESKD, or CKD stage 5), yet only 5.4 million will receive kidney replacement therapy (KRT) due to economic, social, and political factors. Even for those who are offered KRT by various means of dialysis, the life expectancy remains far too low. OBSERVATION Researchers from different fields of artificial organs collaborate to overcome the challenges of creating products such as Wearable and/or Implantable Artificial Kidneys capable of providing long-term effective physiologic kidney functions such as removal of uremic toxins, electrolyte homeostasis, and fluid regulation. A focus should be to develop easily accessible, safe, and inexpensive KRT options that enable a good quality of life and will also be available for patients in less-developed regions of the world. CONCLUSIONS Hence, it is required to discuss some of the limits and burdens of transplantation and different techniques of dialysis, including those performed at home. Furthermore, hurdles must be considered and overcome to develop wearable and implantable artificial kidney devices that can help to improve the quality of life and life expectancy of patients with CKD.
Collapse
Affiliation(s)
- Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,International Federation for Artificial Organs, Painesville, Ohio, USA
| | - Bernd G Stegmayr
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| | | | - Janna Kuchinka
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fokko P Wieringa
- IMEC, Eindhoven, The Netherlands.,Department of Nephrology, University Medical Centre, Utrecht, The Netherlands.,European Kidney Health Alliance, WG3 "Breakthrough Innovation", Brussels, Belgium
| | | | - Shuvo Roy
- University of California, California, San Francisco, USA
| |
Collapse
|
24
|
Copur S, Tanriover C, Yavuz F, Soler MJ, Ortiz A, Covic A, Kanbay M. Novel strategies in nephrology: what to expect from the future? Clin Kidney J 2022; 16:230-244. [PMID: 36755838 PMCID: PMC9900595 DOI: 10.1093/ckj/sfac212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
Chronic kidney disease (CKD) will become the fifth global case of death by 2040. Its largest impact is on premature mortality but the number of persons with kidney failure requiring renal replacement therapy (RRT) is also increasing dramatically. Current RRT is suboptimal due to the shortage of kidney donors and dismal outcomes associated with both hemodialysis and peritoneal dialysis. Kidney care needs a revolution. In this review, we provide an update on emerging knowledge and technologies that will allow an earlier diagnosis of CKD, addressing the current so-called blind spot (e.g. imaging and biomarkers), and improve renal replacement therapies (wearable artificial kidneys, xenotransplantation, stem cell-derived therapies, bioengineered and bio-artificial kidneys).
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Maria J Soler
- Department of Nephrology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Spain,Nephrology and Kidney Transplant Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Alberto Ortiz
- Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, ‘C.I. PARHON’ University Hospital, and ‘Grigore T. Popa’ University of Medicine, Iasi, Romania
| | | |
Collapse
|
25
|
Lee S, Sirich TL, Blanco IJ, Plummer NS, Meyer TW. Removal of Uremic Solutes from Dialysate by Activated Carbon. Clin J Am Soc Nephrol 2022; 17:1168-1175. [PMID: 35835518 PMCID: PMC9435996 DOI: 10.2215/cjn.01610222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/30/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Adsorption of uremic solutes to activated carbon provides a potential means to limit dialysate volumes required for new dialysis systems. The ability of activated carbon to take up uremic solutes has, however, not been adequately assessed. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Graded volumes of waste dialysate collected from clinical hemodialysis treatments were passed through activated carbon blocks. Metabolomic analysis assessed the adsorption by activated carbon of a wide range of uremic solutes. Additional experiments tested the ability of the activated carbon to increase the clearance of selected solutes at low dialysate flow rates. RESULTS Activated carbon initially adsorbed the majority, but not all, of 264 uremic solutes examined. Solute adsorption fell, however, as increasing volumes of dialysate were processed. Moreover, activated carbon added some uremic solutes to the dialysate, including methylguanidine. Activated carbon was particularly effective in adsorbing uremic solutes that bind to plasma proteins. In vitro dialysis experiments showed that introduction of activated carbon into the dialysate stream increased the clearance of the protein-bound solutes indoxyl sulfate and p-cresol sulfate by 77%±12% (mean±SD) and 73%±12%, respectively, at a dialysate flow rate of 200 ml/min, but had a much lesser effect on the clearance of the unbound solute phenylacetylglutamine. CONCLUSIONS Activated carbon adsorbs many but not all uremic solutes. Introduction of activated carbon into the dialysate stream increased the clearance of those solutes that it does adsorb.
Collapse
Affiliation(s)
- Seolhyun Lee
- The Department of Medicine, Stanford University, Palo Alto, California .,The Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Tammy L. Sirich
- The Department of Medicine, Stanford University, Palo Alto, California,The Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Ignacio J. Blanco
- The Department of Medicine, Stanford University, Palo Alto, California
| | - Natalie S. Plummer
- The Department of Medicine, Stanford University, Palo Alto, California,The Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Timothy W. Meyer
- The Department of Medicine, Stanford University, Palo Alto, California,The Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| |
Collapse
|
26
|
Richards E, Ye SH, Ash SR, Li L. Developing a Selective Zirconium Phosphate Cation Exchanger to Adsorb Ammonium: Effect of a Gas-Permeable and Hydrophobic Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8677-8685. [PMID: 35786968 DOI: 10.1021/acs.langmuir.2c01194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sorbent with a high enough capacity for NH4+ could serve as an oral binder to lower urea levels in end-stage kidney disease (ESKD) patients. A hydrogen-loaded cation exchanger such as zirconium phosphate Zr(HPO4)2·H2O (ZrP) is a promising candidate for this application. However, the NH4+ binding selectivity versus other ions must be improved. Here, we have developed a gas-permeable and hydrophobic surface coating on an amorphous form of ZrP using tetraethyl orthosilicate and methoxy-terminated polydimethylsiloxane. The hydrophobic coating serves as a barrier to ions in water solution from reaching the ion-exchanger's surface. Meanwhile, its gas-permeable nature allows for gaseous ammonia transfer to the cation exchanger. In vitro studies were designed to replicate the small intestine's expected ion concentrations and exposure time to the sorbent. The effectiveness of the coating was measured with NH4+ and Ca2+ solutions and uncoated ZrP as the negative control. X-ray photoelectron spectroscopy and scanning electron microscopy measurements show that the coating successfully modifies the surface of the cation exchanger─ZrP. Water contact angle studies indicate that coated ZrP is hydrophobic with an angle of (149.8 ± 2.5°). Simulated small intestine solution studies show that the coated ZrP will bind 94% (±11%) more NH4+ than uncoated ZrP in the presence of Ca2+. Meanwhile, Ca2+ binding decreases by 64% (±6%). The nearly fourfold increase in NH4+ selectivity can be attributed to the gas-permeable and hydrophobic coating applied on the ZrP surface. This work suggests a novel pathway to develop a selective cation exchanger for treating ESKD patients.
Collapse
Affiliation(s)
- Evan Richards
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R Ash
- Nephrology Department, Indiana University Health Arnett Hospital, Lafayette, Indiana 47905, United States
- CEO, HemoCleanse Technologies, LLC, Lafayette, Indiana 47904, United States
| | - Lei Li
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
27
|
Vanholder R, Conway PT, Gallego D, Scheres E, Wieringa F. The European Kidney Health Alliance (EKHA) and the Decade of the KidneyTM. Nephrol Dial Transplant 2022; 38:1113-1122. [PMID: 35790139 DOI: 10.1093/ndt/gfac211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
The European Kidney Health Alliance (EKHA) is an advocacy organization that defends the case of the kidney patients and the nephrological community at the level of the European Union (EU), and from there, top to bottom, also at the national level of the EU member states and the EU-associated countries. The Decade of the KidneyTM is a global initiative launched by the American Association of Kidney Patients (AAKP) to create greater awareness and organize patient demands for long overdue innovation in kidney care. This article describes the medical and patient burden of kidney disease, the history of EKHA, its major activities and tools for policy action and the need for innovation. We then describe the Decade of the KidneyTM initiative, the rationale why EKHA joined this activity to emanate parallel action at the European side, the novel professionalized structure of EKHA, and its immediate targets. The final aim is to align all major stakeholders for an action plan on kidney disease comparable to Europe's successful Beating Cancer Plan, with the additional intent that the EKHA model is applied also by the respective national kidney-related societies to create a broad mobilization at all levels. The ultimate aims are that the EU considers chronic kidney disease (CKD) as a major health and health-economic problem, to consequently have CKD included as a key health research target by the European Commission, and to improve quality of life and outcomes for all kidney patients.
Collapse
Affiliation(s)
- Raymond Vanholder
- European Kidney Health Alliance (EKHA), Brussels, Belgium.,Nephrology Section, Department of Internal Medicine and Pediatrics, University Hospital Ghent, Ghent, Belgium
| | - Paul T Conway
- Policy and Global Affairs, American Association of Kidney Patients (AAKP), Washington, DC, US
| | - Daniel Gallego
- European Kidney Patient's Federation (EKPF), Vienna, Austria
| | - Eveline Scheres
- European Kidney Health Alliance (EKHA), Brussels, Belgium.,Buiten de Lijnen, Utrecht, The Netherlands
| | - Fokko Wieringa
- Department of Nephrology and Hypertension, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.,Department of Autonomous Therapeutics, Imec, Eindhoven, The Netherlands
| |
Collapse
|
28
|
Tsuji K, Kitamura S, Wada J. Potential Strategies for Kidney Regeneration With Stem Cells: An Overview. Front Cell Dev Biol 2022; 10:892356. [PMID: 35586342 PMCID: PMC9108336 DOI: 10.3389/fcell.2022.892356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
Kidney diseases are a major health problem worldwide. Despite advances in drug therapies, they are only capable of slowing the progression of kidney diseases. Accordingly, potential kidney regeneration strategies with stem cells have begun to be explored. There are two different directions for regenerative strategies, de novo whole kidney fabrication with stem cells, and stem cell therapy. De novo whole kidney strategies include: 1) decellularized scaffold technology, 2) 3D bioprinting based on engineering technology, 3) kidney organoid fabrication, 4) blastocyst complementation with chimeric technology, and 5) the organogenic niche method. Meanwhile, stem cell therapy strategies include 1) injection of stem cells, including mesenchymal stem cells, nephron progenitor cells, adult kidney stem cells and multi-lineage differentiating stress enduring cells, and 2) injection of protective factors secreted from these stem cells, including growth factors, chemokines, and extracellular vesicles containing microRNAs, mRNAs and proteins. Over the past few decades, there have been remarkable step-by-step developments in these strategies. Here, we review the current advances in the potential strategies for kidney regeneration using stem cells, along with their challenges for possible clinical use in the future.
Collapse
|
29
|
Oomen L, Bootsma-Robroeks C, Cornelissen E, de Wall L, Feitz W. Pearls and Pitfalls in Pediatric Kidney Transplantation After 5 Decades. Front Pediatr 2022; 10:856630. [PMID: 35463874 PMCID: PMC9024248 DOI: 10.3389/fped.2022.856630] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide, over 1,300 pediatric kidney transplantations are performed every year. Since the first transplantation in 1959, healthcare has evolved dramatically. Pre-emptive transplantations with grafts from living donors have become more common. Despite a subsequent improvement in graft survival, there are still challenges to face. This study attempts to summarize how our understanding of pediatric kidney transplantation has developed and improved since its beginnings, whilst also highlighting those areas where future research should concentrate in order to help resolve as yet unanswered questions. Existing literature was compared to our own data of 411 single-center pediatric kidney transplantations between 1968 and 2020, in order to find discrepancies and allow identification of future challenges. Important issues for future care are innovations in immunosuppressive medication, improving medication adherence, careful donor selection with regard to characteristics of both donor and recipient, improvement of surgical techniques and increased attention for lower urinary tract dysfunction and voiding behavior in all patients.
Collapse
Affiliation(s)
- Loes Oomen
- Division of Pediatric Urology, Department of Urology, Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands
| | - Charlotte Bootsma-Robroeks
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands
- Department of Pediatrics, Pediatric Nephrology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Cornelissen
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands
| | - Liesbeth de Wall
- Division of Pediatric Urology, Department of Urology, Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands
| | - Wout Feitz
- Division of Pediatric Urology, Department of Urology, Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands
| |
Collapse
|
30
|
Shao G, Himmelfarb J, Hinds BJ. Strategies for optimizing urea removal to enable portable kidney dialysis: A reappraisal. Artif Organs 2022; 46:997-1011. [PMID: 35383963 DOI: 10.1111/aor.14185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Portable hemodialysis has the potential to improve health outcomes and quality of life for patients with kidney failure at reduced costs. Urea removal, required for dialysate regeneration, is a central function of any existing/potential portable dialysis device. Urea in the spent dialysate coexists with non-urea uremic toxins, nutrients, and electrolytes, all of which will interfere with the urea removal efficiency, regardless of whether the underlying urea removal mechanism is based on urease conversion, direct urea adsorption, or oxidation. The aim of the current review is to identify the amount of the most prevalent chemicals being removed during a single dialysis session and evaluate the potential benefits of an urea-selective membrane for portable dialysis. METHODS We have performed a literature search using Web of Science and PubMed databases to find available articles reporting (or be able to calculate from blood plasma concentration) > 5 mg of individually quantified solutes removed during thrice-weekly hemodialysis sessions. If multiple reports of the same solute were available, the reported values were averaged, and the geometric mean of standard deviations was taken. Further critical literature analysis of reported dialysate regeneration methods was performed using Web of Science and PubMed databases. RESULTS On average, 46.0 g uremic retention solutes are removed in a single conventional dialysis session, out of which urea is only 23.6 g. For both urease- and sorbent-based urea removal mechanisms, amino acids, with 7.7 g removal per session, could potentially interfere with urea removal efficiency. Additionally for the oxidation-based urea removal system, plentiful nutrients such as glucose (24.0 g) will interfere with urea removal by competition. Using a nanofiltration membrane between dialysate and oxidation unit with a molecular weight cutoff (MWCO) of ~200 Da, 67.6 g of non-electrolyte species will be removed in a single dialysis session, out of which 44.0 g are non-urea molecules. If the membrane MWCO is further decreased to 120 Da, the mass of non-electrolyte non-urea species will drop to 9.3 g. Reverse osmosis membranes have been shown to be both effective at blocking the transport of non-urea species (creatinine for example with ~90% rejection ratio), and permissive for urea transport (~20% rejection ratio), making them a promising urea selective membrane to increase the efficiency of the oxidative urea removal system. CONCLUSIONS Compiled are quantified solute removal amounts greater than 5 mg per session during conventional hemodialysis treatments, to act as a guide for portable dialysis system design. Analysis shows that multiple chemical species in the dialysate interfere with all proposed portable urea removal systems. This suggests the need for an additional protective dialysate loop coupled to urea removal system and an urea-selective membrane.
Collapse
Affiliation(s)
- Guozheng Shao
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington, USA.,Center for Dialysis Innovation, University of Washington, Seattle, Washington, USA
| | - Jonathan Himmelfarb
- Center for Dialysis Innovation, University of Washington, Seattle, Washington, USA.,Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Bruce J Hinds
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington, USA.,Center for Dialysis Innovation, University of Washington, Seattle, Washington, USA
| |
Collapse
|
31
|
|
32
|
Siddiq F, Umer Farooq M, Aslam Shad M, Badaruddin Ahmad H, Ashraf M, Majeed S. Magnetic chitosan membrane as an effective analytical tool for adsorptive removal of creatinine from biological samples. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2042073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Farhat Siddiq
- Institute of Chemical Sciences, Bahauddin Zakarya University, Multan Pakistan
- Department of Chemistry, The Women University Multan, Pakistan
| | | | - Muhammad Aslam Shad
- Institute of Chemical Sciences, Bahauddin Zakarya University, Multan Pakistan
- Department of Biochemistry, Bahauddin Zakariya University Multan, Pakistan
| | | | | | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakarya University, Multan Pakistan
| |
Collapse
|
33
|
De Pascale M, De Angelis MG, Boi C. Mixed Matrix Membranes Adsorbers (MMMAs) for the Removal of Uremic Toxins from Dialysate. MEMBRANES 2022; 12:203. [PMID: 35207125 PMCID: PMC8878186 DOI: 10.3390/membranes12020203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
We developed Mixed Matrix Membrane Adsorbers (MMMAs) formed by cellulose acetate and various sorbent particles (activated carbon, zeolites ZSM-5 and clinoptilolite) for the removal of urea, creatinine and uric acid from aqueous solutions, to be used in the regeneration of spent dialysate water from Hemodialysis (HD). This process would allow reducing the disproportionate amount of water consumed and permits the development of closed-loop HD devices, such as wearable artificial kidneys. The strategy of MMMAs is to combine the high permeability of porous membranes with the toxin-capturing ability of embedded particles. The water permeability of the MMMAs ranges between 600 and 1500 L/(h m2 bar). The adsorption of urea, the limiting toxin, can be improved of about nine times with respect to the pure cellulose acetate membrane. Flow experiments demonstrate the feasibility of the process in a real HD therapy session.
Collapse
Affiliation(s)
- Matilde De Pascale
- Department of Civil, Chemical Environmental and Materials Engineering, DICAM, University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
| | - Maria Grazia De Angelis
- Department of Civil, Chemical Environmental and Materials Engineering, DICAM, University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Sanderson Building, Robert Stevenson Road, Edinburgh EH9 3FB, UK
- Italian Consortium for Science and Technology of Materials (INSTM), 50121 Firenze, Italy
| | - Cristiana Boi
- Department of Civil, Chemical Environmental and Materials Engineering, DICAM, University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
| |
Collapse
|
34
|
Generation of chimeric kidneys using progenitor cell replacement: Oshima Award Address 2021. Clin Exp Nephrol 2022; 26:491-500. [PMID: 35138500 PMCID: PMC9114015 DOI: 10.1007/s10157-022-02191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/28/2022] [Indexed: 11/03/2022]
Abstract
It is believed that the development of new renal replacement therapy (RRT) will increase treatment options for end-stage kidney disease and help reduce the mismatch between supply and demand. Technological advancement in the development of kidney organoids derived from pluripotent stem cells and xenotransplantation using porcine kidneys has been accelerated by a convergence of technological innovations, including the discovery of induced pluripotent stem cells and genome editing, and improvement of analysis techniques such as single-cell ribonucleic acid sequencing. Given the difficulty associated with kidney regeneration, hybrid kidneys are studied as an innovative approach that involves the use of stem cells to generate kidneys, with animal fetal kidneys used as a scaffold. Hybrid kidney technology entails the application of local chimerism for the generation of chimeric kidneys from exogenous renal progenitor cells by borrowing complex nephrogenesis programs from the developmental environment of heterologous animals. Hybrid kidneys can also utilize the urinary tract and bladder tissue of animal fetuses for urine excretion. Generating nephrons from syngeneic stem cells to increase self-cell ratio in xeno-tissues can reduce the risk of xeno-rejection. We showed that nephrons can be generated by ablation of host nephron progenitor cells (NPCs) in the nephron development region of animals and replacing them with exogenous NPCs. This progenitor cell replacement is the basis of hybrid kidney regeneration from progenitor cells using chimera technology. The goal of xeno-regenerative medicine using hybrid kidneys is to overcome serious organ shortage.
Collapse
|
35
|
Karimi K, Rahsepar M. Optimization of the Urea Removal in a Wearable Dialysis Device Using Nitrogen-Doped and Phosphorus-Doped Graphene. ACS OMEGA 2022; 7:4083-4094. [PMID: 35155902 PMCID: PMC8829914 DOI: 10.1021/acsomega.1c05495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/12/2022] [Indexed: 05/31/2023]
Abstract
Dialysis has been recognized as an essential treatment for end-stage renal disease (ESRD). This therapy, however, suffers from several limitations leading to numerous complications in the patients. As dialysis cannot completely substitute healthy kidney functions, the health condition of an ESRD patient is ultimately affected. Wearable artificial kidney (WAK) can resolve the restrictions of blood purification by the dialysis method. However, absorbing large amounts of urea produced in the body is one of the main challenges of these WAK and overcoming this is necessary to improve both functionality and footprint of the device. This study investigates the adsorption capabilities of N- and P-doped graphene nanosorbents for the first time by using molecular dynamic simulation. Urea removal on carbon nanosheets was simulated with different percentages of phosphorus and nitrogen dopants along with the pristine graphene. Specifically, the effects of interaction energy, adsorption percentage, gyration radius, hydrogen bonding, and other molecular dynamic analyses on urea removal were also investigated. The results from this study match well with the existing research, demonstrating the accuracy of the model. The results further suggest that graphene nanosheets doped by 10% nitrogen are likely the most effective in removing urea given that it is associated with the maximum radial distribution function (RDF), the maximum reduction in gyration radius, a high number of hydrogen bonds, and the most negative adsorption energy. This molecular study offers attractive suggestions for the novel adsorbents of artificial kidney devices and paves the way for the development of novel and enhanced urea adsorbents.
Collapse
Affiliation(s)
- Keyvan Karimi
- Department of Materials Science
and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz 7134851154, Iran
| | - Mansour Rahsepar
- Department of Materials Science
and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz 7134851154, Iran
| |
Collapse
|
36
|
Artificial Kidney Engineering: The Development of Dialysis Membranes for Blood Purification. MEMBRANES 2022; 12:membranes12020177. [PMID: 35207097 PMCID: PMC8876607 DOI: 10.3390/membranes12020177] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
The artificial kidney, one of the greatest medical inventions in the 20th century, has saved innumerable lives with end stage renal disease. Designs of artificial kidney evolved dramatically in decades of development. A hollow-fibered membrane with well controlled blood and dialysate flow became the major design of the modern artificial kidney. Although they have been well established to prolong patients’ lives, the modern blood purification system is still imperfect. Patient’s quality of life, complications, and lack of metabolic functions are shortcomings of current blood purification treatment. The direction of future artificial kidneys is toward miniaturization, better biocompatibility, and providing metabolic functions. Studies and trials of silicon nanopore membranes, tissue engineering for renal cell bioreactors, and dialysate regeneration are all under development to overcome the shortcomings of current artificial kidneys. With all these advancements, wearable or implantable artificial kidneys will be achievable.
Collapse
|
37
|
|
38
|
Brightwell CR, Kulkarni AS, Paredes W, Zhang K, Perkins JB, Gatlin KJ, Custodio M, Farooq H, Zaidi B, Pai R, Buttar RS, Tang Y, Melamed ML, Hostetter TH, Pessin JE, Hawkins M, Fry CS, Abramowitz MK. Muscle fibrosis and maladaptation occur progressively in CKD and are rescued by dialysis. JCI Insight 2021; 6:150112. [PMID: 34784301 PMCID: PMC8783691 DOI: 10.1172/jci.insight.150112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Skeletal muscle maladaptation accompanies chronic kidney disease (CKD) and negatively impacts physical function. Emphasis in CKD has historically been placed on muscle fiber intrinsic deficits, such as altered protein metabolism and atrophy. However, targeted treatment of fiber intrinsic dysfunction has produced limited improvement, whereas alterations within the fiber extrinsic environment have scarcely been examined. METHODS We investigated alterations to the skeletal muscle interstitial environment with deep cellular phenotyping of biopsies from patients with CKD compared to age-matched control participants and performed transcriptome profiling to define the molecular underpinnings of CKD-associated muscle impairments. We further examined changes in the observed muscle maladaptation following initiation of dialysis therapy for kidney failure. RESULTS Patients with CKD exhibited a progressive fibrotic muscle phenotype, which was associated with impaired regenerative capacity and lower vascular density. The severity of these deficits was strongly associated with the degree of kidney dysfunction. Consistent with these profound deficits, CKD was associated with broad alterations to the muscle transcriptome, including altered extracellular matrix organization, downregulated angiogenesis, and altered expression of pathways related to stem cell self-renewal. Remarkably, despite the seemingly advanced nature of this fibrotic transformation, dialysis treatment rescued these deficits, restoring a healthier muscle phenotype. Furthermore, after accounting for muscle atrophy, strength and endurance improved after dialysis initiation. CONCLUSION These data identify a dialysis-responsive muscle fibrotic phenotype in CKD and suggest that the early dialysis window presents a unique opportunity of improved muscle regenerative capacity during which targeted interventions may achieve maximal impact. TRIAL REGISTRATION NCT01452412FUNDING. NIH.
Collapse
Affiliation(s)
- Camille R Brightwell
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, United States of America
| | - Ameya S Kulkarni
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - William Paredes
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Kehao Zhang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Jaclyn B Perkins
- Department of Nutrition and Metabolism, The University of Texas Medical Branch, Galveston, United States of America
| | - Knubian J Gatlin
- Department of Nutrition and Metabolism, The University of Texas Medical Branch, Galveston, United States of America
| | - Matthew Custodio
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Hina Farooq
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Bushra Zaidi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Rima Pai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Rupinder S Buttar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Yan Tang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Michal L Melamed
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Thomas H Hostetter
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, United States of America
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Meredith Hawkins
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | | | - Matthew K Abramowitz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| |
Collapse
|
39
|
Nagasubramanian S. The future of the artificial kidney. Indian J Urol 2021; 37:310-317. [PMID: 34759521 PMCID: PMC8555564 DOI: 10.4103/iju.iju_273_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
End-stage renal disease (ESRD) is increasing worldwide. In India, diabetes mellitus and hypertension are the leading causes of chronic kidney disease and ESRD. Hemodialysis is the most prevalent renal replacement therapy (RRT) in India. The ideal RRT must mimic the complex structure of the human kidney while maintaining the patient's quality of life. The quest for finding the ideal RRT, the “artificial kidney”– that can be replicated in the clinical setting and scaled-up across barriers– continues to this date. This review aims to outline the developments, the current status of the artificial kidney and explore its future potential.
Collapse
|
40
|
Ding S, Zhang T, Li P, Wang X. Dialysis/adsorption bifunctional thin-film nanofibrous composite membrane for creatinine clearance in portable artificial kidney. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Rivara M. Assessment of Patient Experience of Care in Home Dialysis Around the World: Enhancing the Patient’s Voice in Home Dialysis Care and Research. BULLETIN DE LA DIALYSE À DOMICILE 2021. [DOI: 10.25796/bdd.v4i3.62803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
With the global growth in the use of home dialysis modalities, there is a need to better understand patients’ experiences with their home dialysis care. Patient-reported experience measures or PREMs, are standardized survey questionnaires that allow patients to provide input on processes and experiences of care in a confidential and validated manner. Until recently, no validated PREM has been available for assessment of patient-reported experience of care for home dialysis modalities, including peritoneal dialysis or home hemodialysis. The Home Dialysis Care Experience instrument (Home-DCE) is a newly developed and content-valid PREM for use among patients treated with home dialysis modalities. The survey instrument includes 26 core survey questions and 20 demographic questions, and is now available in English, Spanish, and French. Domains of care assessed in the Home-DCE include staff education and patient-centered communication, care coordination, patient safety, concern and helpfulness of the care team, and staff care proficiency. Worldwide use of the Home-DCE will allow incorporation of patients’ experiences and preferences in initiatives to enhance quality of care for home dialysis patients globally. Translation and deployment of a PREM in additional languages should be done using established cultural adaptation methods, the gold standard for which is termed linguistic validation. Translation and linguistic validation are hurdles to global use of the Home-DCE, but challenges that should be met to enhance home dialysis patients’ voice in clinical kidney care.
Collapse
|
42
|
Systems of conductive skin for power transfer in clinical applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 51:171-184. [PMID: 34477935 PMCID: PMC8964546 DOI: 10.1007/s00249-021-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 11/03/2022]
Abstract
The primary aim of this article is to review the clinical challenges related to the supply of power in implanted left ventricular assist devices (LVADs) by means of transcutaneous drivelines. In effect of that, we present the preventive measures and post-operative protocols that are regularly employed to address the leading problem of driveline infections. Due to the lack of reliable wireless solutions for power transfer in LVADs, the development of new driveline configurations remains at the forefront of different strategies that aim to power LVADs in a less destructive manner. To this end, skin damage and breach formation around transcutaneous LVAD drivelines represent key challenges before improving the current standard of care. For this reason, we assess recent strategies on the surface functionalization of LVAD drivelines, which aim to limit the incidence of driveline infection by directing the responses of the skin tissue. Moreover, we propose a class of power transfer systems that could leverage the ability of skin tissue to effectively heal short diameter wounds. In this direction, we employed a novel method to generate thin conductive wires of controllable surface topography with the potential to minimize skin disruption and eliminate the problem of driveline infections. Our initial results suggest the viability of the small diameter wires for the investigation of new power transfer systems for LVADs. Overall, this review uniquely compiles a diverse number of topics with the aim to instigate new research ventures on the design of power transfer systems for IMDs, and specifically LVADs.
Collapse
|
43
|
Lee S, Sirich TL, Meyer TW. Improving Clearance for Renal Replacement Therapy. KIDNEY360 2021; 2:1188-1195. [PMID: 35355887 PMCID: PMC8786098 DOI: 10.34067/kid.0002922021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The adequacy of hemodialysis is now assessed by measuring the removal of a single solute, urea. The urea clearance provided by current dialysis methods is a large fraction of the blood flow through the dialyzer, and, therefore, cannot be increased much further. However, other solutes, which are less effectively cleared than urea, may contribute more to the residual uremic illness suffered by patients on hemodialysis. Here, we review a variety of methods that could be used to increase the clearance of such nonurea solutes. New clinical studies will be required to test the extent to which increasing solute clearances improves patients' health.
Collapse
Affiliation(s)
- Seolhyun Lee
- Department of Medicine, Stanford University, Palo Alto, California,Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Tammy L. Sirich
- Department of Medicine, Stanford University, Palo Alto, California,Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Timothy W. Meyer
- Department of Medicine, Stanford University, Palo Alto, California,Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| |
Collapse
|
44
|
Ho CWL, Caals K. A Call for an Ethics and Governance Action Plan to Harness the Power of Artificial Intelligence and Digitalization in Nephrology. Semin Nephrol 2021; 41:282-293. [PMID: 34330368 DOI: 10.1016/j.semnephrol.2021.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Digitalization in nephrology has progressed in a manner that is disparate and siloed, even though learning (under a broader Learning Health System initiative) has been manifested in all the main areas of clinical application. Most applications based on artificial intelligence/machine learning (AI/ML) are still in the initial developmental stages and are yet to be adequately validated and shown to contribute to positive patient outcomes. There is also no consistent or comprehensive digitalization plan, and insufficient data are a limiting factor across all of these areas. In this article, we first consider how digitalization along nephrology care pathways relates to the Learning Health System initiative. We then consider the current state of AI/ML-based software and devices in nephrology and the ethical and regulatory challenges in scaling them up toward broader clinical application. We conclude with our proposal to establish a dedicated ethics and governance framework that is centered around health care providers in nephrology and the AI/ML-based software to which their work relates. This framework should help to integrate ethical and regulatory values and considerations, involve a wide range of stakeholders, and apply across normative domains that are conventionally demarcated as clinical, research, and public health.
Collapse
Affiliation(s)
- Calvin Wai-Loon Ho
- Centre for Medical Ethics and Law, Department of Law, The University of Hong Kong, Hong Kong SAR.
| | - Karel Caals
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
45
|
Miri Jahromi A, Zandi P, Khedri M, Ghasemy E, Maleki R, Tayebi L. Molecular insight into optimizing the N- and P-doped fullerenes for urea removal in wearable artificial kidneys. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:49. [PMID: 33891249 PMCID: PMC8065003 DOI: 10.1007/s10856-021-06525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Urea is the result of the breakdown of proteins in the liver, the excess of which circulates in the blood and is adsorbed by the kidneys. However, in the case of kidney diseases, some products, specifically urea, cannot be removed from the blood by the kidneys and causes serious health problems. The end-stage renal disease (ESRD) patients are not able to purify their blood, which endangers their life. ESRD patients require dialysis, a costly and difficult method of urea removal from the blood. Wearable artificial kidneys (WAKs) are consequently designed to remove the waste from blood. Regarding the great amount of daily urea production in the body, WAKs should contain strong and selective urea adsorbents. Fullerenes-which possess fascinating chemical properties-have been considered herein to develop novel urea removal adsorbents. Molecular dynamics (MD) has enabled researchers to study the interaction of different materials and can pave the way toward facilitating the development of wearable devices. In this study, urea adsorption by N-doped fullerenes and P-doped fullerenes were assessed through MD simulations. The urea adsorption was simulated by five samples of fullerenes, with phosphorous and different nitrogen dopant contents. For comparing the urea adsorption capacity in the performed simulations, detailed characteristics-including the energy analysis, radius of gyration, radial distribution function (RDF), root-mean-square fluctuation (RMSD), and H-bond analyses were investigated. It had been determined that the fullerene containing 8% nitrogen-with the highest reduction in the radius of gyration, the maximum RDF, a high adsorption energy, and a high number of hydrogen bonds-adsorbs urea more efficiently.
Collapse
Affiliation(s)
- Ahmad Miri Jahromi
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Pegah Zandi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ebrahim Ghasemy
- Nanotechnology Department, School of New Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
46
|
Duy Nguyen BT, Nguyen Thi HY, Nguyen Thi BP, Kang DK, Kim JF. The Roles of Membrane Technology in Artificial Organs: Current Challenges and Perspectives. MEMBRANES 2021; 11:239. [PMID: 33800659 PMCID: PMC8065507 DOI: 10.3390/membranes11040239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
The recent outbreak of the COVID-19 pandemic in 2020 reasserted the necessity of artificial lung membrane technology to treat patients with acute lung failure. In addition, the aging world population inevitably leads to higher demand for better artificial organ (AO) devices. Membrane technology is the central component in many of the AO devices including lung, kidney, liver and pancreas. Although AO technology has improved significantly in the past few decades, the quality of life of organ failure patients is still poor and the technology must be improved further. Most of the current AO literature focuses on the treatment and the clinical use of AO, while the research on the membrane development aspect of AO is relatively scarce. One of the speculated reasons is the wide interdisciplinary spectrum of AO technology, ranging from biotechnology to polymer chemistry and process engineering. In this review, in order to facilitate the membrane aspects of the AO research, the roles of membrane technology in the AO devices, along with the current challenges, are summarized. This review shows that there is a clear need for better membranes in terms of biocompatibility, permselectivity, module design, and process configuration.
Collapse
Affiliation(s)
- Bao Tran Duy Nguyen
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (B.T.D.N.); (H.Y.N.T.); (B.P.N.T.)
| | - Hai Yen Nguyen Thi
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (B.T.D.N.); (H.Y.N.T.); (B.P.N.T.)
| | - Bich Phuong Nguyen Thi
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (B.T.D.N.); (H.Y.N.T.); (B.P.N.T.)
| | - Dong-Ku Kang
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Jeong F. Kim
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (B.T.D.N.); (H.Y.N.T.); (B.P.N.T.)
- Innovation Center for Chemical Engineering, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
47
|
Vanholder R, Argilés A, Jankowski J. A history of uraemic toxicity and of the European Uraemic Toxin Work Group (EUTox). Clin Kidney J 2021; 14:1514-1523. [PMID: 34413975 PMCID: PMC8371716 DOI: 10.1093/ckj/sfab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
The uraemic syndrome is a complex clinical picture developing in the advanced stages of chronic kidney disease, resulting in a myriad of complications and a high early mortality. This picture is to a significant extent defined by retention of metabolites and peptides that with a preserved kidney function are excreted or degraded by the kidneys. In as far as those solutes have a negative biological/biochemical impact, they are called uraemic toxins. Here, we describe the historical evolution of the scientific knowledge about uraemic toxins and the role played in this process by the European Uraemic Toxin Work Group (EUTox) during the last two decades. The earliest knowledge about a uraemic toxin goes back to the early 17th century when the existence of what would later be named as urea was recognized. It took about two further centuries to better define the role of urea and its link to kidney failure, and one more century to identify the relevance of post-translational modifications caused by urea such as carbamoylation. The knowledge progressively extended, especially from 1980 on, by the identification of more and more toxins and their adverse biological/biochemical impact. Progress of knowledge was paralleled and impacted by evolution of dialysis strategies. The last two decades, when insights grew exponentially, coincide with the foundation and activity of EUTox. In the final section, we summarize the role and accomplishments of EUTox and the part it is likely to play in future action, which should be organized around focus points like biomarker and potential target identification, intestinal generation, toxicity mechanisms and their correction, kidney and extracorporeal removal, patient-oriented outcomes and toxin characteristics in acute kidney injury and transplantation.
Collapse
Affiliation(s)
- Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Angel Argilés
- RD-Néphrologie, Montpellier, France.,Néphrologie Dialyse St Guilhem, Sète, France
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital, RWTH Aachen, Aachen, Germany.,School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
48
|
Himmelfarb J, Ratner B. Wearable artificial kidney: problems, progress and prospects. Nat Rev Nephrol 2020; 16:558-559. [PMID: 32612282 DOI: 10.1038/s41581-020-0318-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Buddy Ratner
- Center for Dialysis Innovation, University of Washington, Seattle, WA, USA.
| |
Collapse
|
49
|
Lu L, Zhang J, Xie Y, Gao F, Xu S, Wu X, Ye Z. Wearable Health Devices in Health Care: Narrative Systematic Review. JMIR Mhealth Uhealth 2020; 8:e18907. [PMID: 33164904 PMCID: PMC7683248 DOI: 10.2196/18907] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND With the rise of mobile medicine, the development of new technologies such as smart sensing, and the popularization of personalized health concepts, the field of smart wearable devices has developed rapidly in recent years. Among them, medical wearable devices have become one of the most promising fields. These intelligent devices not only assist people in pursuing a healthier lifestyle but also provide a constant stream of health care data for disease diagnosis and treatment by actively recording physiological parameters and tracking metabolic status. Therefore, wearable medical devices have the potential to become a mainstay of the future mobile medical market. OBJECTIVE Although previous reviews have discussed consumer trends in wearable electronics and the application of wearable technology in recreational and sporting activities, data on broad clinical usefulness are lacking. We aimed to review the current application of wearable devices in health care while highlighting shortcomings for further research. In addition to daily health and safety monitoring, the focus of our work was mainly on the use of wearable devices in clinical practice. METHODS We conducted a narrative review of the use of wearable devices in health care settings by searching papers in PubMed, EMBASE, Scopus, and the Cochrane Library published since October 2015. Potentially relevant papers were then compared to determine their relevance and reviewed independently for inclusion. RESULTS A total of 82 relevant papers drawn from 960 papers on the subject of wearable devices in health care settings were qualitatively analyzed, and the information was synthesized. Our review shows that the wearable medical devices developed so far have been designed for use on all parts of the human body, including the head, limbs, and torso. These devices can be classified into 4 application areas: (1) health and safety monitoring, (2) chronic disease management, (3) disease diagnosis and treatment, and (4) rehabilitation. However, the wearable medical device industry currently faces several important limitations that prevent further use of wearable technology in medical practice, such as difficulties in achieving user-friendly solutions, security and privacy concerns, the lack of industry standards, and various technical bottlenecks. CONCLUSIONS We predict that with the development of science and technology and the popularization of personalized health concepts, wearable devices will play a greater role in the field of health care and become better integrated into people's daily lives. However, more research is needed to explore further applications of wearable devices in the medical field. We hope that this review can provide a useful reference for the development of wearable medical devices.
Collapse
Affiliation(s)
- Lin Lu
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayao Zhang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Xu
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghuo Wu
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewei Ye
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Canaud B, Kooman JP, Selby NM, Taal MW, Francis S, Maierhofer A, Kopperschmidt P, Collins A, Kotanko P. Dialysis-Induced Cardiovascular and Multiorgan Morbidity. Kidney Int Rep 2020; 5:1856-1869. [PMID: 33163709 PMCID: PMC7609914 DOI: 10.1016/j.ekir.2020.08.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Hemodialysis has saved many lives, albeit with significant residual mortality. Although poor outcomes may reflect advanced age and comorbid conditions, hemodialysis per se may harm patients, contributing to morbidity and perhaps mortality. Systemic circulatory "stress" resulting from hemodialysis treatment schedule may act as a disease modifier, resulting in a multiorgan injury superimposed on preexistent comorbidities. New functional intradialytic imaging (i.e., echocardiography, cardiac magnetic resonance imaging [MRI]) and kinetic of specific cardiac biomarkers (i.e., Troponin I) have clearly documented this additional source of end-organ damage. In this context, several factors resulting from patient-hemodialysis interaction and/or patient management have been identified. Intradialytic hypovolemia, hypotensive episodes, hypoxemia, solutes, and electrolyte fluxes as well as cardiac arrhythmias are among the contributing factors to systemic circulatory stress that are induced by hemodialysis. Additionally, these factors contribute to patients' symptom burden, impair cognitive function, and finally have a negative impact on patients' perception and quality of life. In this review, we summarize the adverse systemic effects of current intermittent hemodialysis therapy, their pathophysiologic consequences, review the evidence for interventions that are cardioprotective, and explore new approaches that may further reduce the systemic burden of hemodialysis. These include improved biocompatible materials, smart dialysis machines that automatically may control the fluxes of solutes and electrolytes, volume and hemodynamic control, health trackers, and potentially disruptive technologies facilitating a more personalized medicine approach.
Collapse
Affiliation(s)
- Bernard Canaud
- Montpellier University, Montpellier, France
- GMO, FMC, Bad Homburg, Germany
| | - Jeroen P. Kooman
- Maastricht University Medical Centre, Department of Internal Medicine, Maastricht, Netherlands
| | - Nicholas M. Selby
- Centre for Kidney Research and Innovation, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, UK
| | - Maarten W. Taal
- Centre for Kidney Research and Innovation, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, UK
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham, UK
| | | | | | | | - Peter Kotanko
- Renal Research Institute, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|