1
|
Fukasawa N, Tsunoda J, Sunaga S, Kiyohara H, Nakamoto N, Teratani T, Mikami Y, Kanai T. The gut-organ axis: Clinical aspects and immune mechanisms. Allergol Int 2025; 74:197-209. [PMID: 39979198 DOI: 10.1016/j.alit.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 02/22/2025] Open
Abstract
The gut-brain axis exemplifies the bidirectional connection between the intestines and the brain, as evidenced by the impact of severe stress on gastrointestinal symptoms including abdominal pain and diarrhea, and conversely, the influence of abdominal discomfort on mood. Clinical observations support the notion of the gut-brain connection, including an increased prevalence of inflammatory bowel disease (IBD) in patients with depression and anxiety, as well as the association of changes in the gut microbiota with neurological disorders such as multiple sclerosis, Parkinson's disease, stroke and Alzheimer's disease. The gut and brain communicate via complex mechanisms involving inflammatory cytokines, immune cells, autonomic nerves, and gut microbiota, which contribute to the pathogenesis in certain gut and brain diseases. Two primary pathways mediate the bidirectional information exchange between the intestinal tract and the brain: signal transduction through bloodstream factors, such as bacterial metabolites and inflammatory cytokines, and neural pathways, such as neurotransmitters and inflammatory cytokines within the autonomic nervous system through the interaction between the nerve cells and beyond. In recent years, the basic mechanisms of the pathophysiology of the gut-brain axis have been gradually elucidated. Beyond the gut-brain interaction, emerging evidence suggests the influence of the gut extends to other organs, such as the liver and lungs, through intricate inter-organ communication pathways. An increasing number of reports on this clinical and basic cross-organ interactions underscore the potential for better understanding and novel therapeutic strategies targeting inter-organs networks. Further clarification of interactions between multiorgans premises transformative insights into cross-organ therapeutic strategies.
Collapse
Affiliation(s)
- Naoto Fukasawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Junya Tsunoda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shogo Sunaga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
2
|
Wu B, Weng X, Pan Y, Tian Z, Wu P, Shao J, Liu Y, Huang R, Xu T, Zhou K. Genetic inhibition of nicotinamide N-methyltransferase and prevention of alcohol-associated fatty liver in humans. J Hum Genet 2025; 70:141-146. [PMID: 39695269 DOI: 10.1038/s10038-024-01313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Recent studies of animal models reported Nicotinamide N-methyltransferase (NNMT) as a potential therapeutic target for preventing alcohol-associated fatty liver (AFL), yet its efficacy and safety in humans remain unknown. We aim to estimate the effectiveness and safety of inhibiting NNMT in humans. We leveraged Electronic Medical Records (EMRs) data coupled with genetic information to perform a retrospective drug target validation study. We examined longitudinal clinical data from 612 individuals with excessive alcohol consumption. Two variants lowering NNMT protein levels were combined to calculate a weighted NNMT genetic score that could mimic mild inhibition of NNMT. Participants with an NNMT score above the median were classified as genetically inhibited, while others were considered non-inhibited. We then evaluated whether genetic inhibition of NNMT would affect the incidence of AFL or the risk of liver injury, to illuminate the effectiveness and safety of genetic inhibition of NNMT respectively. NNMT genetic inhibition correlated with a reduced AFL risk (hazard ratio [HR] 0.67, 95% confidence interval [CI] 0.49-0.90, P = 0.009) without a significant increase in serum aminotransferase levels (P > 0.10). Notably, elevated ALT and AST levels were observed (P < 0.05) in the genetically inhibited group prior to alcohol exposure. These findings suggest NNMT inhibition is a promising avenue for AFL prevention among individuals with excessive alcohol intake. They also underscore the need for precise target population identification to mitigate potential adverse effects.
Collapse
Affiliation(s)
- Benrui Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiong Weng
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
| | - Ying Pan
- Department of general practice, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Zijian Tian
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Wu
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Jian Shao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Yiying Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Huang
- Medical Science and Technology Innovation Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| | - Kaixin Zhou
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
- College of Public Health, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Deng X, Li Y, Jiang L, Xie X, Wang X. 1-methylnicotinamide modulates IL-10 secretion and voriconazole metabolism. Front Immunol 2025; 16:1529660. [PMID: 40018042 PMCID: PMC11865947 DOI: 10.3389/fimmu.2025.1529660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/14/2025] [Indexed: 03/01/2025] Open
Abstract
Background Inflammatory diseases impair the hepatic metabolism of voriconazole (VRC). 1-Methylnicotinamide (1-MNA), a common final metabolite of nicotinamide in the liver, has demonstrated anti-inflammatory effects in recent studies. This study investigated the impact of 1-MNA on VRC metabolism in the liver. Method Mice with a systemic inflammatory response induced by lipopolysaccharide (LPS) were intragastrically administered 1-MNA, and their VRC metabolic capacity was evaluated. Kupffer cells and primary hepatocytes were isolated, and flow cytometry along with molecular knockdown experiments were performed to explore the molecular mechanisms underlying improved drug metabolism. IL-10 knockout (IL-10-/-) mice were used to validate the role of IL-10 in enhancing hepatocyte VRC metabolism under inflammatory conditions. Results 1-MNA promoted M2 polarization of liver Kupffer cells, stimulated IL-10 secretion, upregulated CYP2C38 expression in primary hepatocytes, and enhanced VRC metabolism. The mechanism by which IL-10 upregulated CYP2C38 appears to involve the inhibition of the nuclear transcription factor NF-κB (p65) in hepatocytes. Conclusions 1-MNA regulated Kupffer cell polarization in an LPS-induced inflammatory environment, reduced the inflammatory inhibition of CYP2C38 expression in hepatocytes, and promoted VRC metabolism.
Collapse
Affiliation(s)
- Xiaoyan Deng
- Center of Community Health Service Management, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yuanqing Li
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Lin Jiang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xuqiu Xie
- Office of the Dean, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
4
|
Park J, Shin EJ, Kim TH, Yang JH, Ki SH, Kang KW, Kim KM. Exploring NNMT: from metabolic pathways to therapeutic targets. Arch Pharm Res 2024; 47:893-913. [PMID: 39604638 DOI: 10.1007/s12272-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Cellular metabolism-related epigenetic modulation plays a pivotal role in the maintenance of cellular homeostasis. Nicotinamide N-methyltransferase (NNMT) serves as a crucial link between cellular metabolism and epigenetics by catalyzing nicotinamide methylation using the universal methyl donor S-adenosyl-L-methionine. This direct connection bridges the methylation-mediated one-carbon metabolism with nicotinamide adenine dinucleotide levels. Numerous studies have revealed tissue-specific differences in NNMT expression and activity, indicating that its varied physiological and pathological roles depend on its distribution. In this review, we provide an overview of the NNMT involvement in various pathological conditions, including cancer, liver disease, obesity, diabetes, brain disease, pulmonary disease, cardiovascular disease, and kidney disease. By synthesizing this information, our article aims to enhance our understanding of the cellular mechanisms underlying NNMT biology related to diverse diseases and lay the molecular groundwork for developing therapeutic strategies for pharmacological interventions.
Collapse
Affiliation(s)
- Jeongwoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do, 58245, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea.
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
5
|
Liu MT, Zhang Y, Xiang CG, Yang T, Wang XH, Lu QK, Lu HM, Fan C, Feng CL, Yang XQ, Zou DW, Li H, Tang W. Methionine-choline deficient diet deteriorates DSS-induced murine colitis through disturbance of gut microbes and infiltration of macrophages. Acta Pharmacol Sin 2024; 45:1912-1925. [PMID: 38684800 PMCID: PMC11336253 DOI: 10.1038/s41401-024-01291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Ulcerative colitis (UC) is associated with changed dietary habits and mainly linked with the gut microbiota dysbiosis, necroptosis of epithelial cells, and mucosal ulcerations. Liver dysfunction and abnormal level of liver metabolism indices were identified in UC patients, suggesting a close interaction between gut and liver disorders. Methionine-choline deficient diet (MCD) has been shown to induce persistent alterations of gut microbiota and metabolome during hepatitis. In this study we further explored the disease phenotypes in UC patients and investigated whether MCD functioned as a trigger for UC susceptibility. After assessing 88 serum specimens from UC patients, we found significant liver dysfunction and dyslipidemia including abnormal ALT, AST, TG, TC, LDL-c and HDL-c. Liver dysfunction and dyslipidemia were confirmed in DSS-induced colitis mice. We fed mice with MCD for 14 days to cause mild liver damage, and then treated with DSS for 7 days. We found that MCD intake significantly exacerbated the pathogenesis of mucosal inflammation in DSS-induced acute, progressive, and chronic colitis, referring to promotion of mucosal ulcers, colon shortening, diarrhea, inflammatory immune cell infiltration, cytokines release, and abnormal activation of inflammatory macrophages in colon and liver specimens. Intraperitoneal injection of clodronate liposomes to globally delete macrophages dramatically compromised the pathogenesis of MCD-triggering colitis. In addition, MCD intake markedly changed the production pattern of short-chain fatty acids (SCFAs) in murine stools, colons, and livers. We demonstrated that MCD-induced colitis pathogenesis largely depended on the gut microbes and the disease phenotypes could be transmissible through fecal microbiota transplantation (FMT). In conclusion, this study supports the concept that intake of MCD predisposes to experimental colitis and enhances its pathogenesis via modulating gut microbes and macrophages in mice.
Collapse
Affiliation(s)
- Mo-Ting Liu
- Laboratory of Anti-inflammation and Immunopharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cai-Gui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Yang
- Laboratory of Anti-inflammation and Immunopharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Han Wang
- Laboratory of Anti-inflammation and Immunopharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu-Kai Lu
- Laboratory of Anti-inflammation and Immunopharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Min Lu
- Laboratory of Anti-inflammation and Immunopharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Fan
- Laboratory of Anti-inflammation and Immunopharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chun-Lan Feng
- Laboratory of Anti-inflammation and Immunopharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Qian Yang
- Laboratory of Anti-inflammation and Immunopharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Duo-Wu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Jyotsna, Sarkar B, Yadav M, Deka A, Markandey M, Sanyal P, Nagarajan P, Gaikward N, Ahuja V, Mohanty D, Basak S, Gokhale RS. A hepatocyte-specific transcriptional program driven by Rela and Stat3 exacerbates experimental colitis in mice by modulating bile synthesis. eLife 2024; 12:RP93273. [PMID: 39137024 PMCID: PMC11321761 DOI: 10.7554/elife.93273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Hepatic factors secreted by the liver promote homeostasis and are pivotal for maintaining the liver-gut axis. Bile acid metabolism is one such example wherein, bile acid synthesis occurs in the liver and its biotransformation happens in the intestine. Dysfunctional interactions between the liver and the intestine stimulate varied pathological outcomes through its bidirectional portal communication. Indeed, aberrant bile acid metabolism has been reported in inflammatory bowel disease (IBD). However, the molecular mechanisms underlying these crosstalks that perpetuate intestinal permeability and inflammation remain obscure. Here, we identify a novel hepatic gene program regulated by Rela and Stat3 that accentuates the inflammation in an acute experimental colitis model. Hepatocyte-specific ablation of Rela and Stat3 reduces the levels of primary bile acids in both the liver and the gut and shows a restricted colitogenic phenotype. On supplementation of chenodeoxycholic acid (CDCA), knock-out mice exhibit enhanced colitis-induced alterations. This study provides persuasive evidence for the development of multi-organ strategies for treating IBD and identifies a hepatocyte-specific Rela-Stat3 network as a promising therapeutic target.
Collapse
Affiliation(s)
- Jyotsna
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Binayak Sarkar
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Mohit Yadav
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Alvina Deka
- System Immunology Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Manasvini Markandey
- Department of GastroEnterology, All India Institute of Medical SciencesNew DelhiIndia
| | | | - Perumal Nagarajan
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | | | - Vineet Ahuja
- Department of GastroEnterology, All India Institute of Medical SciencesNew DelhiIndia
| | - Debasisa Mohanty
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Soumen Basak
- System Immunology Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Rajesh S Gokhale
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
- Department of Biology, Indian Institute of Science Education and ResearchPashanIndia
| |
Collapse
|
7
|
König Kardgar A, Doyle D, Warwas N, Hjelleset T, Sundh H, Carney Almroth B. Microplastics in aquaculture - Potential impacts on inflammatory processes in Nile tilapia. Heliyon 2024; 10:e30403. [PMID: 38726173 PMCID: PMC11079099 DOI: 10.1016/j.heliyon.2024.e30403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Aquaculture is essential for meeting the growing global demand for fish consumption. However, the widespread use of plastic and the presence of microplastics in aquaculture systems raise concerns about their impact on fish health and the safety of aquaculture products. This study focused on the Nile tilapia (Oreochromis niloticus), one of the most important aquaculture fish species globally. The aim of this study was to investigate the effects of dietary exposure to a mixture of four conventional fossil fuel-based polymers (microplastics) on the health of adult and juvenile Nile tilapia. Two experiments were conducted, with 36 juvenile tilapia (10-40 g weight) exposed for 30 days and 24 adult tilapia (600-1000 g) exposed for 7 days, the former including a natural particle (kaolin) treatment. In the adult tilapia experiment, no significant effects on intestinal health (Ussing chamber method), oxidative stress, or inflammatory pathways (enzymatic and genetic biomarkers) were observed after exposure to the microplastic mixture. However, in the juvenile tilapia experiment, significant alterations in inflammatory pathways were observed following 30 days of exposure to the microplastic mixture, indicating potential adverse effects on fish health. These results highlight the potential negative impacts of microplastics on fish health and the economics and safety of aquaculture.
Collapse
Affiliation(s)
- Azora König Kardgar
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Darragh Doyle
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Niklas Warwas
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Terese Hjelleset
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Malik S, Chakraborty D, Agnihotri P, Kumar V, Biswas S. Unveiling the Nexus: Cellular Metabolomics Unravels the Impact of Estrogen on Nicotinamide Metabolism in Mitigating Rheumatoid Arthritis Pathogenesis. Metabolites 2024; 14:214. [PMID: 38668342 PMCID: PMC11052502 DOI: 10.3390/metabo14040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a metabolic joint disorder influenced by hormonal regulation, notably estrogen, which plays a cytoprotective role against inflammation. While estrogen's impact on RA pathogenesis has been studied, the altered metabolite expression under estrogen's influence remains unexplored. This study investigated the changes in the metabolome of synovial fibroblasts isolated from RA patients under 17β-estradiol (E2) using the liquid chromatography with tandem mass spectrometry (LC-MS/MS) approach followed by multivariate and biological pathway analysis along with in vitro validation. Results identified 3624 m/z, among which eight metabolites were significant (p < 0.05). Nicotinate and nicotinamide metabolism was found to be highly correlated with the treatment of E2, with metabolites NAD+ and 1-methynicotinamide (1-MNA) upregulated by E2 induction in RA-FLS. PharmMapper analysis identified potential gene targets of 1-MNA, which were further matched with RA gene targets, and thus, STAT1, MAPK14, MMP3, and MMP9 were concluded to be the common targets. E2 treatment affected the expression of these gene targets and ameliorated the development of oxidative stress associated with RA inflammation, which can be attributed to increased concentration of 1-MNA. Thus, an LC-MS/MS-based metabolomics study revealed the prominent role of estrogen in preventing inflammatory progression in RA by altering metabolite concentration, which can support its therapeutic capacity in remitting RA.
Collapse
Affiliation(s)
- Swati Malik
- Department of Integrative and Functional Biology, CSIR—Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (S.M.); (D.C.); (P.A.)
- AcSIR—Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR—Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (S.M.); (D.C.); (P.A.)
- AcSIR—Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Prachi Agnihotri
- Department of Integrative and Functional Biology, CSIR—Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (S.M.); (D.C.); (P.A.)
- AcSIR—Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Vijay Kumar
- Department of Orthopaedics, AIIMS—All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India;
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR—Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (S.M.); (D.C.); (P.A.)
- AcSIR—Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
9
|
Zhao Y, Wang H, Jin L, Zhang Z, Liu L, Zhou M, Zhang X, Zhang L. Targeting fusion proteins of the interleukin family: A promising new strategy for the treatment of autoinflammatory diseases. Eur J Pharm Sci 2024; 192:106647. [PMID: 37984595 DOI: 10.1016/j.ejps.2023.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
As a means of communication between immune cells and non-immune cells, Interleukins (ILs) has the main functions of stimulating the proliferation and activation of inflammatory immune cells such as dendritic cells and lymphocytes, promote the development of blood cells and so on. However, dysregulation of ILs expression is a major feature of autoinflammatory diseases. The drugs targeting ILs or IL-like biologics have played an important role in the clinical treatment of autoinflammatory diseases. Nevertheless, the widespread use of IL products may result in significant off-target adverse reactions. Thus, there is a clear need to develop next-generation ILs products in the biomedical field. Fusion proteins are proteins created through the joining of two or more genes that originally coded for separate proteins. Over the last 30 years, there has been increasing interest in the use of fusion protein technology for developing anti-inflammatory drugs. In comparison to single-target drugs, fusion proteins, as multiple targets drugs, have the ability to enhance the cytokine therapeutic index, resulting in improved efficacy over classical drugs. The strategy of preparing ILs or their receptors as fusion proteins is increasingly used in the treatment of autoimmune and chronic inflammation. This review focuses on the efficacy of several fusion protein drugs developed with ILs or their receptors in the treatment of autoinflammatory diseases, in order to illustrate the prospects of this new technology as an anti-inflammatory drug development protocol in the future.
Collapse
Affiliation(s)
- Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| |
Collapse
|
10
|
Abstract
Inflammatory bowel diseases (IBD) are currently recognized to involve chronic intestinal inflammation in genetically susceptible individuals. Patients with IBD mainly develop gastrointestinal inflammation, but it is sometimes accompanied by extraintestinal manifestations such as arthritis, erythema nodosum, episcleritis, pyoderma gangrenosum, uveitis, and primary sclerosing cholangitis. These clinical aspects imply the importance of interorgan networks in IBD. In the gastrointestinal tract, immune cells are influenced by multiple local environmental factors including microbiota, dietary environment, and intercellular networks, which further alter molecular networks in immune cells. Therefore, deciphering networks at interorgan, intercellular, and intracellular levels should help to obtain a comprehensive understanding of IBD. This review focuses on the intestinal immune system, which governs the physiological and pathological functions of the digestive system in harmony with the other organs.
Collapse
|
11
|
Low-Dose Colchicine Attenuates Sepsis-Induced Liver Injury: A Novel Method for Alleviating Systemic Inflammation. Inflammation 2023; 46:963-974. [PMID: 36656466 DOI: 10.1007/s10753-023-01783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Sepsis is a significant public health challenge. The immune system underlies the pathogenesis of the disease. The liver is both an active player and a target organ in sepsis. Targeting the gut immune system using low-dose colchicine is an attractive method for alleviating systemic inflammation in sepsis without inducing immunosuppression. The present study aimed to determine the use of low-dose colchicine in LPS-induced sepsis in mice. C67B mice were injected intraperitoneal with LPS to induce sepsis. The treatment group received 0.02 mg/kg colchicine daily by gavage. Short and extended models were performed, lasting 3 and 5 days, respectively. We followed the mice for biochemical markers of end-organ injury, blood counts, cytokine levels, and liver pathology and conducted proteomic studies on liver samples. Targeting the gut immune system using low-dose colchicine improved mice's well-being measured by the murine sepsis score. Treatment alleviated the liver injury in septic mice, manifested by a significant decrease in their liver enzyme levels, including ALT, AST, and LDH. Treatment exerted a trend to reduce creatinine levels. Low-dose colchicine improved liver pathology, reduced inflammation, and reduced the pro-inflammatory cytokine TNFα and IL1-β levels. A liver proteomic analysis revealed low-dose colchicine down-regulated sepsis-related proteins, alpha-1 antitrypsin, and serine dehydratase. Targeting the gut immune system using low-dose colchicine attenuated liver injury in LPS-induced sepsis, reducing the pro-inflammatory cytokine levels. Low-dose colchicine provides a safe method for immunomodulation for multiple inflammatory disorders.
Collapse
|
12
|
Rong W, Xia H, Zhang K, Zhang Y, Tao C, Wu F, Wang L, Zhang H, Sun G, Wu J. Serum metabolic effects of corn oligopeptides with 7-day supplementation on early post-surgery primary liver cancer patients: a double-blind randomized controlled trial. Hepatobiliary Surg Nutr 2022; 11:834-847. [PMID: 36523946 PMCID: PMC9745621 DOI: 10.21037/hbsn-21-116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/11/2021] [Indexed: 08/25/2023]
Abstract
BACKGROUND Liver cancer as the main leading cancer has caused heavy burdens globally. The prognosis of liver cancer is closely related with postoperative nutrition support. Corn oligopeptides (COPs) are protein hydrolysates produced by enzymatic treatments, which have shown potential bioactivities, such as inhibiting angiotensin I-converting enzyme, resisting lipid peroxidation and anti-oxidant. However, the correlation between COPs and liver cancer patients is still unknown and the potential mechanism of COPs on liver cancer is unclear as well. The aim of this study was to assess effects of 7-day intervention of COPs after surgery on liver function and serum metabolic profiles of liver cancer patients. METHODS Patients were assigned into COPs intervention group (n=50) and control group (n=91) for 7 days. Investigations were scheduled at 1st day and 7th day after liver resection surgery respectively, mainly including anthropometric, biochemical indexes and liquid chromatography-mass spectrometry (LC/MS) analysis. RESULTS Seven-day supplementation of COPs on early post-surgery liver cancer patients down-regulated levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin, direct bilirubin and up-regulated prothrombin time activity and prealbumin levels. LC/MS analysis revealed metabolic signatures including regulation of 16 metabolites, which was closely related with two metabolic pathways (nicotinate and nicotinamide metabolism, fatty acid metabolism). CONCLUSIONS COPs supplementation has displayed the potentials on alleviating the injury of liver function and it may be due to regulation of fatty acid metabolism, nicotinate and nicotinamide metabolism, lipid peroxidation and anti-inflammatory action. More researches are warranted in future to confirm the exact mechanisms.
Collapse
Affiliation(s)
- Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Kai Zhang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yihan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Changcheng Tao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Hong Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| |
Collapse
|
13
|
Teratani T, Mikami Y, Kanai T. Neuroimmune crosstalk in the gut and liver. Int Immunol 2022; 34:475-484. [PMID: 35793533 DOI: 10.1093/intimm/dxac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
It has long been assumed that the nervous system exerts distinct effects on immune functions, given the large number of immune disorders that are affected by mental stress. In fact, many different immune cells have been shown to possess a wide variety of neurotransmitter receptors and receive signals of various neurotransmitters, including acetylcholine and noradrenaline. Compared with the findings on local neuroimmune interactions, limited experimental techniques have so far failed to capture a comprehensive overview of neuroimmune interactions between distant organs and the autonomic nervous system in vivo, and the molecular mechanisms underlying local immune regulation of the nervous system have long remained unclear. However, the recent rapid progress in genetic recombination, microscopy and single-cell analysis has deepened our understanding of the anatomical and physiological functions of peripheral nerves at each organ to which they belong. Furthermore, the development of optogenetic and chemogenetic methods has enabled the artificial modulation of specific neuronal activities, and there has been remarkable progress in elucidation of the interaction between nerves and immune cells in vivo, particularly in barrier organs such as the gastrointestinal tract, respiratory tract and skin. This review focuses on the immunoregulatory mechanisms governed by the autonomic nervous system and outlines the latest findings in the regulation of enteric and hepatic immunity by the nervous system.
Collapse
Affiliation(s)
- Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
14
|
Cellular Carcinogenesis: Role of Polarized Macrophages in Cancer Initiation. Cancers (Basel) 2022; 14:cancers14112811. [PMID: 35681791 PMCID: PMC9179569 DOI: 10.3390/cancers14112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Inflammation is a hallmark of many cancers. Macrophages are key participants in innate immunity and important drivers of inflammation. When chronically polarized beyond normal homeostatic responses to infection, injury, or aging, macrophages can express several pro-carcinogenic phenotypes. In this review, evidence supporting polarized macrophages as endogenous sources of carcinogenesis is discussed. In addition, the depletion or modulation of macrophages by small molecule inhibitors and probiotics are reviewed as emerging strategies in cancer prevention. Abstract Inflammation is an essential hallmark of cancer. Macrophages are key innate immune effector cells in chronic inflammation, parainflammation, and inflammaging. Parainflammation is a form of subclinical inflammation associated with a persistent DNA damage response. Inflammaging represents low-grade inflammation due to the dysregulation of innate and adaptive immune responses that occur with aging. Whether induced by infection, injury, or aging, immune dysregulation and chronic macrophage polarization contributes to cancer initiation through the production of proinflammatory chemokines/cytokines and genotoxins and by modulating immune surveillance. This review presents pre-clinical and clinical evidence for polarized macrophages as endogenous cellular carcinogens in the context of chronic inflammation, parainflammation, and inflammaging. Emerging strategies for cancer prevention, including small molecule inhibitors and probiotic approaches, that target macrophage function and phenotype are also discussed.
Collapse
|
15
|
Th17 cells in the liver: balancing autoimmunity and pathogen defense. Semin Immunopathol 2022; 44:509-526. [PMID: 35211777 DOI: 10.1007/s00281-022-00917-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
In addition to carcinogenesis, T helper 17 (Th17) cells (a subtype of CD4 + T lymphocytes) are involved in the acute, chronic, and cirrhotic phases of liver diseases; however, their role in the development and progression of liver diseases remains unclear. It is difficult to elucidate the role of Th17 cells in liver diseases due to their dichotomous nature, i.e., plasticity in terms of pathogenic or host protective function depending on environmental and time phase factors. Moreover, insufficient depletion of Th17 cells by inhibiting the cytokines and transcription factors involved in their production causes difficulties in analyzing their specific role in vitro and in vivo murine models, partially due to complex interaction. This review summarizes the recent progress in understanding the plasticity and function of hepatic Th17 cells and type 3 cytokines.
Collapse
|
16
|
Matsubara Y, Kiyohara H, Teratani T, Mikami Y, Kanai T. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology 2021; 205:108915. [PMID: 34919906 DOI: 10.1016/j.neuropharm.2021.108915] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The liver is the largest organ in the human body and is responsible for the metabolism and storage of the three principal nutrients: carbohydrates, fats, and proteins. In addition, the liver contributes to the breakdown and excretion of alcohol, medicinal agents, and toxic substances and the production and secretion of bile. In addition to its role as a metabolic centre, the liver has recently attracted attention for its function in the liver-brain axis, which interacts closely with the central nervous system via the autonomic nervous system, including the vagus nerve. The liver-brain axis influences the control of eating behaviour in the central nervous system through stimuli from the liver. Conversely, neural signals from the central nervous system influence glucose, lipid, and protein metabolism in the liver. The liver also receives a constant influx of nutrients and hormones from the intestinal tract and compounds of bacterial origin via the portal system. As a result, the intestinal tract and liver are involved in various immunological interactions. A good example is the co-occurrence of primary sclerosing cholangitis and ulcerative colitis. These heterogeneous roles of the liver-brain axis are mediated via the vagus nerve in an asymmetrical manner. In this review, we provide an overview of these interactions, mainly with the liver but also with the brain and gut.
Collapse
Affiliation(s)
- Yuta Matsubara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
17
|
Yamaguchi A, Teratani T, Chu P, Suzuki T, Taniki N, Mikami Y, Shiba S, Morikawa R, Amiya T, Aoki R, Kanai T, Nakamoto N. Hepatic Adenosine Triphosphate Reduction Through the Short-Chain Fatty Acids-Peroxisome Proliferator-Activated Receptor γ-Uncoupling Protein 2 Axis Alleviates Immune-Mediated Acute Hepatitis in Inulin-Supplemented Mice. Hepatol Commun 2021; 5:1555-1570. [PMID: 34510840 PMCID: PMC8435281 DOI: 10.1002/hep4.1742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 04/24/2021] [Indexed: 02/04/2023] Open
Abstract
How liver tolerance is disrupted in immune-mediated liver injury is currently unclear. There is also insufficient information available regarding susceptibility, precipitation, escalation, and perpetuation of autoimmune hepatitis. To explore how dietary fiber influences hepatic damage, we applied the concanavalin A (ConA)-induced acute immune-mediated liver injury model in mice fed a diet supplemented with 6.8% inulin, a water-soluble fermentable fiber. Twelve hours after ConA administration, inulin-supplemented diet-fed mice demonstrated significantly alleviated hepatic damage histologically and serologically, with down-regulation of hepatic interferon-γ and tumor necrosis factor and reduced myeloperoxidase (MPO)-producing neutrophil infiltration. Preconditioning with an inulin-supplemented diet for 2 weeks significantly reduced hepatic adenosine triphosphate (ATP) content; suramin, a purinergic P2 receptor antagonist, abolished the protective effect. Of note, the portal plasma derived from mice fed the inulin-supplemented diet significantly alleviated ConA-induced immune-mediated liver injury. Mechanistically, increased portal short-chain fatty acid (SCFA) levels, such as those of acetate and butyrate, by inulin supplementation leads to up-regulation of hepatic γ-type peroxisome proliferator-activated receptor (Pparg) and uncoupling protein 2 (Ucp2), which uncouples mitochondrial ATP synthesis downstream of PPARγ. Pparg down-regulating small interfering RNA cancelled the protective effect of inulin supplementation against MPO-producing neutrophil infiltration and the subsequent immune-mediated liver injury, suggesting that the SCFA-PPARγ-UCP2 axis plays a key role in the protective effect by inulin supplementation. Moreover, significant changes in the gut microbiota, including increased operational taxonomic units in genera Akkermansia and Allobaculum, also characterized the protective effect of the inulin-supplemented diet. Conclusion: There is a possible unraveled etiopathophysiological link between the maintenance of liver tolerance and dietary fiber. The SCFA-PPARγ-UCP2 axis may provide therapeutic targets for immune-mediated liver injury in the future.
Collapse
Affiliation(s)
- Akihiro Yamaguchi
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
- Department of Gastroenterology and HepatologyNational Hospital Organization Saitama HospitalSaitamaJapan
| | - Toshiaki Teratani
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Po‐sung Chu
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Takahiro Suzuki
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
- Miyarisan Pharmaceutical Co., Ltd.TokyoJapan
| | - Nobuhito Taniki
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Yohei Mikami
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Shunsuke Shiba
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Rei Morikawa
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Takeru Amiya
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
- Research Unit/Immunology and InflammationSohyaku Innovative Research DivisionMitsubishi Tanabe Pharma CoKanagawaJapan
| | - Ryo Aoki
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
- Institute of Health ScienceEzaki Glico Co., Ltd.OsakaJapan
| | - Takanori Kanai
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineKeio University School of MedicineTokyoJapan
| |
Collapse
|
18
|
Mikami Y, Tsunoda J, Kiyohara H, Taniki N, Teratani T, Kanai T. Vagus nerve-mediated intestinal immune regulation: therapeutic implications for inflammatory bowel diseases. Int Immunol 2021; 34:97-106. [PMID: 34240133 DOI: 10.1093/intimm/dxab039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of inflammatory bowel disease (IBD) involves immunological, genetic and environmental factors. Through its ability to sense environmental stimuli, the autonomic nervous system plays a key role in the development and persistence of IBD. The vagus nerve (VN), which contains sensory and motor neurons, travels throughout the body to innervate the gut and other visceral organs in the thoracic and abdominopelvic cavities. Recent studies show that the VN has anti-inflammatory effects via the release of acetylcholine, in what is known as the cholinergic anti-inflammatory pathway (CAIP). In the gut immune system, the CAIP is proposed to be activated directly by signals from the gut and indirectly by signals from the liver, which receives gut-derived bioactive substances via the portal vein and senses the status of the gut. The gut-brain axis and liver-brain-gut reflex arc regulate a wide variety of peripheral immune cells to maintain homeostasis in the gut. Therefore, targeting the neural reflex by methods such as VN stimulation is now under investigation for suppressing intestinal inflammation associated with IBD. In this review, we describe the role of the VN in the regulation of intestinal immunity, and we discuss novel therapeutic approaches for IBD that target neuroimmune interactions.
Collapse
Affiliation(s)
- Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Junya Tsunoda
- Department of Surgery, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
19
|
Chen T, Li R, Chen P. Gut Microbiota and Chemical-Induced Acute Liver Injury. Front Physiol 2021; 12:688780. [PMID: 34122150 PMCID: PMC8187901 DOI: 10.3389/fphys.2021.688780] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Drug overdose or chemical exposures are the main causes of acute liver injury (ALI). Severe liver injury can develop into liver failure that is an important cause of liver-related mortality in intensive care units in most countries. Pharmacological studies have utilized a variety of comprehensive chemical induction models that recapitulate the natural pathogenesis of acute liver injury. Their mechanism is always based on redox imbalance-induced direct hepatotoxicity and massive hepatocyte cell death, which can trigger immune cell activation and recruitment to the liver. However, the pathogenesis of these models has not been fully stated. Many studies showed that gut microbiota plays a crucial role in chemical-induced liver injury. Hepatotoxicity is likely induced by imbalanced microbiota homeostasis, gut mucosal barrier damage, systemic immune activation, microbial-associated molecular patterns, and bacterial metabolites. Meanwhile, many preclinical studies have shown that supplementation with probiotics can improve chemical-induced liver injury. In this review, we highlight the pathogenesis of gut microorganisms in chemical-induced acute liver injury animal models and explore the protective mechanism of exogenous microbial supplements on acute liver injury.
Collapse
Affiliation(s)
- Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China.,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Kocinaj A, Chaudhury T, Uddin MS, Junaid RR, Ramsden DB, Hondhamuni G, Klamt F, Parsons L, Parsons RB. High Expression of Nicotinamide N-Methyltransferase in Patients with Sporadic Alzheimer's Disease. Mol Neurobiol 2021; 58:1769-1781. [PMID: 33387303 PMCID: PMC7932959 DOI: 10.1007/s12035-020-02259-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/10/2020] [Indexed: 01/11/2023]
Abstract
We have previously shown that the expression of nicotinamide N-methyltransferase (NNMT) is significantly increased in the brains of patients who have died of Parkinson's disease (PD). In this study, we have compared the expression of NNMT in post-mortem medial temporal lobe, hippocampus and cerebellum of 10 Alzheimer's disease (AD) and 9 non-disease control subjects using a combination of quantitative Western blotting, immunohistochemistry and dual-label confocal microscopy coupled with quantitative analysis of colocalisation. NNMT was detected as a single protein of 29 kDa in both AD and non-disease control brains, which was significantly increased in AD medial temporal lobe compared to non-disease controls (7.5-fold, P < 0.026). There was no significant difference in expression in the cerebellum (P = 0.91). NNMT expression in AD medial temporal lobe and hippocampus was present in cholinergic neurones with no glial localisation. Cell-type expression was identical in both non-disease control and AD tissues. These results are the first to show, in a proof-of-concept study using a small patient cohort, that NNMT protein expression is increased in the AD brain and is present in neurones which degenerate in AD. These results suggest that the elevation of NNMT may be a common feature of many neurodegenerative diseases. Confirmation of this overexpression using a larger AD patient cohort will drive the future development of NNMT-targetting therapeutics which may slow or stop the disease pathogenesis, in contrast to current therapies which solely address AD symptoms.
Collapse
Affiliation(s)
- Altin Kocinaj
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| | - Tabassum Chaudhury
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| | - Mohammed S. Uddin
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| | - Rashad R. Junaid
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| | - David B. Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TH UK
| | - Geshanthi Hondhamuni
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ UK
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos St., Porto Alegre, RS 90035-003 Brazil
- National Institute of Science and Technology – Translational Medicine (INCT-TM), Porto Alegre, Brazil
| | - Linda Parsons
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ UK
| | - Richard B. Parsons
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| |
Collapse
|
21
|
Li H, Sun A, Meng T, Zhu Y. Expression and role of ABIN1 in sepsis: In vitro and in vivo studies. Open Med (Wars) 2020; 16:33-40. [PMID: 33364432 PMCID: PMC7729633 DOI: 10.1515/med-2021-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
In this research, we attempted to explain the effect and the related molecular mechanisms of ABIN1 in lipopolysaccharide (LPS)-induced septic mice or RAW264.7 macrophages. LPS was adopted to treat RAW264.7 macrophages for 4 h, and the levels of inflammatory factors were assessed by ELISA. Besides, ABIN1 expression was measured by quantitative reverse transcription polymerase chain reaction. Apparently, LPS enhanced immunoreaction, suggested by increased expression of IL-1β, tumor necrosis factor (TNF)-α, and IL-6. ABIN1 levels were obviously reduced compared to the control. Furthermore, we evaluated the roles of ABIN1-plasmid in immunoreaction and nuclear factor-κB (NF-κB) pathway. We found that ABIN1-plasmid significantly reduced the expression of IL-1β, TNF-α, and IL-6 in LPS-treated cells and inhibited NF-κB pathway activation. Meanwhile, a septic mouse mode was conducted to validate the role of ABIN1 in inflammatory response and organ damage in vivo. These data suggested that ABIN1-plasmid significantly inhibited the secretion of inflammatory cytokines and Cr, BUN, AST, and ALT levels in the serum of LPS-stimulated mice compared to LPS + control-plasmid group, reflecting the relieved inflammation and organ injury. In summary, the present findings indicated that ABIN1 alleviated sepsis by repressing inflammatory response through NF-κB signaling pathway, emphasizing the potential value of ABIN1 as therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Haolan Li
- Department of Infectious Diseases, Zaozhuang Municipal Hospital, Zaozhuang, 277102, China
| | - Aichen Sun
- Department of Orthopaedics, Zaozhuang Municipal Hospital, No. 47 Longtou Road, Zaozhuang, Shandong 277102, China
| | - Taocheng Meng
- Department of ICU, Zaozhuang Municipal Hospital, Zaozhuang 277102, China
| | - Yan Zhu
- Department of ICU, Zaozhuang Municipal Hospital, Zaozhuang 277102, China
| |
Collapse
|
22
|
Zhang P, Hill GR. Interleukin-10 mediated immune regulation after stem cell transplantation: Mechanisms and implications for therapeutic intervention. Semin Immunol 2019; 44:101322. [PMID: 31640914 DOI: 10.1016/j.smim.2019.101322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Abstract
Interleukin-10 (IL-10) is a multi-faceted anti-inflammatory cytokine which plays an essential role in immune tolerance. Indeed, deficiency of IL-10 or its receptor results in aberrant immune responses that lead to immunopathology. Graft-versus-host disease (GVHD) is the limiting complication of allogeneic stem cell transplantation (SCT) and results from an imbalance in pathological versus regulatory immune networks. A number of immune cells exert their immunomodulatory role through secretion of IL-10 or induction of IL-10-secreting cells after SCT. Type-1 regulatory T cells (Tr1 cells) and FoxP3+ regulatory T cells (Tregs) are predominant sources of IL-10 after SCT and the critical role of this cytokine in preventing GVHD is now established. Recently, intriguing interactions among IL-10, immune cells, commensal microbes and host tissues in the gastrointestinal (GI) tract and other barrier surfaces have been uncovered. We now understand that IL-10 secretion is dynamically modulated by the availability of antigen, co-stimulatory signals, cytokines, commensal microbes and their metabolites in the microenvironment. In this review, we provide an overview of the control of IL-10 secretion and signaling after SCT and the therapeutic interventions, with a focus on Tr1 cells.
Collapse
Affiliation(s)
- Ping Zhang
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Medical Oncology, The University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
23
|
Koda Y, Nakamoto N, Chu PS, Ugamura A, Mikami Y, Teratani T, Tsujikawa H, Shiba S, Taniki N, Sujino T, Miyamoto K, Suzuki T, Yamaguchi A, Morikawa R, Sato K, Sakamoto M, Yoshimoto T, Kanai T. Plasmacytoid dendritic cells protect against immune-mediated acute liver injury via IL-35. J Clin Invest 2019; 129:3201-3213. [PMID: 31264967 DOI: 10.1172/jci125863] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is a life-threatening condition, and liver transplantation is the only therapeutic option. Although immune dysregulation is central to its pathogenesis, the precise mechanism remains unclear. Here, we show that the number of peripheral and hepatic plasmacytoid DCs (pDCs) decrease during acute liver injury in both humans and mice. Selective depletion of pDCs in Siglechdtr/+ mice exacerbated concanavalin A-induced acute liver injury. In contrast, adoptively transferred BM-derived pDCs preferentially accumulated in the inflamed liver and protected against liver injury. This protective effect was independent of TLR7 and TLR9 signaling, since a similar effect occurred following transfer of MyD88-deficient pDCs. Alternatively, we found an unexpected immunosuppressive role of pDCs in an IL-35-dependent manner. Both Il12a and Ebi3, heterodimeric components of IL-35, were highly expressed in transferred pDCs and CD4+CD25+ Tregs. However, the protective effect of pDC transfer was completely lost in mice depleted of Tregs by anti-CD25 antibody. Moreover, pDCs derived from IL-35-deficient mice had less of a protective effect both in vivo and in vitro even in the presence of Tregs. These results highlight a unique aspect of pDCs in association with Tregs, serving as a guide for immunotherapeutic options in ALF.
Collapse
Affiliation(s)
- Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Aya Ugamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Shiba
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Yamaguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Rei Morikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|