1
|
Dupont S, Lebas H, Mavouna S, Pascal E, Perrot A, Cogo A, Bourrienne M, Farkh C, Solo Nomenjanahary M, Ollivier V, Zemali F, Nieswandt B, Loyau S, Jandrot‐Perrus M, Camerer E, Desilles J, Mazighi M, Boulaftali Y, Ho‐Tin‐Noé B. Comparative Effects of Glenzocimab and Eptifibatide on Bleeding Severity in 2 Mouse Models of Intracranial Hemorrhage. J Am Heart Assoc 2025; 14:e034207. [PMID: 39818980 PMCID: PMC12074769 DOI: 10.1161/jaha.123.034207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Antiplatelet drugs represent potential candidates for protecting the penumbral microcirculation during cerebral ischemia and improving the benefits of arterial recanalization in ischemic stroke. Yet while the efficacy of such adjuvant strategies has been shown to be highly time dependent, antiplatelet therapy at the acute phase of ischemic stroke cannot be envisioned until the diagnosis of stroke and its ischemic nature have been confirmed because of the presumed risk of worsening bleeding in case of intracranial hemorrhage (ICH). Here, we investigated this risk for 2 antiplatelet drugs currently being tested in clinical trials for ischemic stroke, glenzocimab and eptifibatide, in 2 mouse models of ICH. METHODS AND RESULTS The severity of ICH was assessed in mice humanized for glycoprotein VI treated or not with glenzocimab or eptifibatide at effective dose, in a model of primary ICH caused by unilateral striatal injection of collagenase type VII, and in a model of hyperglycemia-induced hemorrhagic transformation of cerebral ischemia-reperfusion injury. Glenzocimab had no impact on bleeding severity in either model of ICH. Conversely, eptifibatide caused a significant increase in intracranial bleeding in both models, and a drastic increase in death after hyperglycemia-induced hemorrhagic transformation of cerebral ischemia-reperfusion injury. CONCLUSIONS Unlike eptifibatide, glenzocimab is safe in the setting of ICH. These results suggest that glenzocimab could be administered upon suspicion of ischemic stroke, before assessment of its ischemic nature, thus opening the way to hastening of treatment initiation.
Collapse
Affiliation(s)
- Sébastien Dupont
- Université Paris Cité, Inserm, UMRS‐1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
| | - Héloïse Lebas
- Université Paris Cité, Inserm, UMRS‐1148, Laboratory for Vascular Translational ScienceParisFrance
| | - Sabrina Mavouna
- Université Paris Cité, Inserm, UMRS‐1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
| | - Eloïse Pascal
- Université Paris Cité, Inserm, UMRS‐1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
| | - Astride Perrot
- Université Paris Cité, Inserm, UMRS‐1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
| | - Adrien Cogo
- Université Paris Cité, Inserm, UMRS‐1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
| | - Marie‐Charlotte Bourrienne
- Université Paris Cité, Inserm, UMRS‐1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
| | - Carine Farkh
- Université Paris Cité, Inserm, UMRS‐1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
| | | | - Véronique Ollivier
- Université Paris Cité, Inserm, UMRS‐1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
| | - Fatima Zemali
- Université Paris Cité, Inserm, UMRS‐1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital, University of WürzburgWürzburgGermany
| | - Stéphane Loyau
- Université Paris Cité, Inserm, UMRS‐1148, Laboratory for Vascular Translational ScienceParisFrance
| | - Martine Jandrot‐Perrus
- Université Paris Cité, Inserm, UMRS‐1148, Laboratory for Vascular Translational ScienceParisFrance
| | | | - Jean‐Philippe Desilles
- Université Paris Cité, Inserm, UMRS‐1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
- Interventional Neuroradiology Department and Biological resources centerRothschild Foundation hospitalParisFrance
- Department of NeurologyHôpital Lariboisière, APHP Nord, FHU NeurovascParisFrance
| | - Mikael Mazighi
- Université Paris Cité, Inserm, UMRS‐1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
- Interventional Neuroradiology Department and Biological resources centerRothschild Foundation hospitalParisFrance
- Department of NeurologyHôpital Lariboisière, APHP Nord, FHU NeurovascParisFrance
- Institut Universitaire de FranceParisFrance
| | - Yacine Boulaftali
- Université Paris Cité, Inserm, UMRS‐1148, Laboratory for Vascular Translational ScienceParisFrance
| | - Benoît Ho‐Tin‐Noé
- Université Paris Cité, Inserm, UMRS‐1144, Optimisation Thérapeutique en NeuropsychopharmacologieParisFrance
| |
Collapse
|
2
|
Wang K, Wang S, Margolis S, Cho JM, Zhu E, Dupuy A, Yin J, Park SK, Magyar CE, Adeyiga OB, Jensen KS, Belperio JA, Passam F, Zhao P, Hsiai TK. Rapid prediction of acute thrombosis via nanoengineered immunosensors with unsupervised clustering for multiple circulating biomarkers. SCIENCE ADVANCES 2024; 10:eadq6778. [PMID: 39661669 PMCID: PMC11633740 DOI: 10.1126/sciadv.adq6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
The recent SARS-CoV-2 pandemic underscores the need for rapid and accurate prediction of clinical thrombotic events. Here, we developed nanoengineered multichannel immunosensors for rapid detection of circulating biomarkers associated with thrombosis, including C-reactive protein (CRP), calprotectin, soluble platelet selectin (sP-selectin), and D-dimer. We fabricated the immunosensors using fiber laser engraving of carbon nanotubes and CO2 laser cutting of microfluidic channels, along with the electrochemical deposition of gold nanoparticles to conjugate with biomarker-specific aptamers and antibody. Using unsupervised clustering based on four biomarker concentrations, we predicted thrombotic events in 49 of 53 patients. The four-biomarker combination yielded an area under the receiver operating characteristic curve (AUC) of 0.95, demonstrating high sensitivity and specificity for acute thrombosis prediction compared to the AUC values for individual biomarkers: CRP (0.773), calprotectin (0.711), sP-selectin (0.683), and D-dimer (0.739). Thus, a nanoengineered multichannel platform with unsupervised clustering provides accurate and efficient methods for predicting thrombosis, guiding personalized medicine.
Collapse
Affiliation(s)
- Kaidong Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Shaolei Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel Margolis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Dupuy
- Department of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
- Central Clinical School, Faculty Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Clara E. Magyar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Oladunni B. Adeyiga
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kristin Schwab Jensen
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - John A. Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Freda Passam
- Department of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
- Central Clinical School, Faculty Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peng Zhao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tzung K. Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
3
|
De Filippis V, Acquasaliente L, Pierangelini A, Marin O. Chemical Synthesis and Structure-Activity Relationship Studies of the Coagulation Factor Xa Inhibitor Tick Anticoagulant Peptide from the Hematophagous Parasite Ornithodoros moubata. Biomimetics (Basel) 2024; 9:485. [PMID: 39194464 DOI: 10.3390/biomimetics9080485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Tick Anticoagulant Peptide (TAP), a 60-amino acid protein from the soft tick Ornithodoros moubata, inhibits activated coagulation factor X (fXa) with almost absolute specificity. Despite TAP and Bovine Pancreatic Trypsin Inhibitor (BPTI) (i.e., the prototype of the Kunitz-type protease inhibitors) sharing a similar 3D fold and disulphide bond topology, they have remarkably different amino acid sequence (only ~24% sequence identity), thermal stability, folding pathways, protease specificity, and even mechanism of protease inhibition. Here, fully active and correctly folded TAP was produced in reasonably high yields (~20%) by solid-phase peptide chemical synthesis and thoroughly characterised with respect to its chemical identity, disulphide pairing, folding kinetics, conformational dynamics, and fXa inhibition. The versatility of the chemical synthesis was exploited to perform structure-activity relationship studies on TAP by incorporating non-coded amino acids at positions 1 and 3 of the inhibitor. Using Hydrogen-Deuterium Exchange Mass Spectrometry, we found that TAP has a remarkably higher conformational flexibility compared to BPTI, and propose that these different dynamics could impact the different folding pathway and inhibition mechanisms of TAP and BPTI. Hence, the TAP/BPTI pair represents a nice example of divergent evolution, while the relative facility of TAP synthesis could represent a good starting point to design novel synthetic analogues with improved pharmacological profiles.
Collapse
Affiliation(s)
- Vincenzo De Filippis
- Laboratory of Protein Chemistry & Molecular Haematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Laura Acquasaliente
- Laboratory of Protein Chemistry & Molecular Haematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Andrea Pierangelini
- Laboratory of Protein Chemistry & Molecular Haematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, School of Medicine, University of Padova, Via Trieste 75, 35121 Padua, Italy
| |
Collapse
|
4
|
Song Y, Bienvenu LA, Bongcaron V, Prijaya SA, Maluenda AC, Walsh APG, McFayden JD, Pietersz GA, Peter K, Wang X. Platelet-targeted thromboprophylaxis with a human serum albumin fusion drug: Preventing thrombosis and reducing cardiac ischemia/reperfusion injurywithout bleeding complications. Theranostics 2024; 14:3267-3281. [PMID: 38855181 PMCID: PMC11155409 DOI: 10.7150/thno.97517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 06/11/2024] Open
Abstract
Background: Myocardial infarction (MI) as a consequence of atherosclerosis-associated acute thrombosis is a leading cause of death and disability globally. Antiplatelet and anticoagulant drugs are standard therapies in preventing and treating MI. However, all clinically used drugs are associated with bleeding complications, which ultimately limits their use in patients with a high risk of bleeding. We have developed a new recombinant drug, targ-HSA-TAP, that combines targeting and specific inhibition of activated platelets as well as anticoagulation. This drug is designed and tested for a prolonged circulating half-life, enabling unique thromboprophylaxis without bleeding complications. Methods: Targ-HSA-TAP combines a single-chain antibody (scFv) that targets activated glycoprotein IIb/IIIa on activated platelets, human serum albumin (HSA) for prolonged circulation, and tick anticoagulant peptide (TAP) for coagulation FX inhibition. A non-binding scFv is employed as a non-targeting control (non-targ-HSA-TAP). Its efficacy was investigated in vivo using murine models of acute thrombosis and cardiac ischemia-reperfusion (I/R) injury. Results: Our experiments confirmed the targeting specificity of targ-HSA-TAP to activated platelets and demonstrated effective prevention of platelet aggregation and thrombus formation, as well as FXa inhibition in vitro. Thromboprophylactic administration of targ-HSA-TAP subcutaneously in mice prevented occlusion of the carotid artery after ferric chloride injury as compared to non-targ-HSA-TAP and PBS-control treated mice. By comparing the therapeutic outcomes between targ-TAP and targ-HSA-TAP, we demonstrate the significant improvements brought by the HSA fusion in extending the drug's half-life and enhancing its therapeutic window for up to 16 h post-administration. Importantly, tail bleeding time was not prolonged with targ-HSA-TAP in contrast to the clinically used anticoagulant enoxaparin. Furthermore, in a murine model of cardiac I/R injury, mice administered targ-HSA-TAP 10 h before injury demonstrated preserved cardiac function, with significantly higher ejection fraction and fractional shortening, as compared to the non-targ-HSA-TAP and PBS control groups. Advanced strain analysis revealed reduced myocardial deformation and histology confirmed a reduced infarct size in targ-HSA-TAP treated mice compared to control groups. Conclusion: The inclusion of HSA represents a significant advancement in the design of targeted therapeutic agents for thromboprophylaxis. Our activated platelet-targeted targ-HSA-TAP is a highly effective antithrombotic drug with both anticoagulant and antiplatelet effects while retaining normal hemostasis. The long half-life of targ-HSA-TAP provides the unique opportunity to use this antithrombotic drug for more effective, long-lasting and safer anti-thrombotic prophylaxis. In cases where MI occurs, this prophylactic strategy reduces thrombus burden and effectively reduces cardiac I/R injury.
Collapse
Affiliation(s)
- Yuyang Song
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
| | - Laura A. Bienvenu
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translational and Implementation, La Trobe University, Melbourne, Australia
| | - Viktoria Bongcaron
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Shania A. Prijaya
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ana C. Maluenda
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Aidan P. G. Walsh
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - James D. McFayden
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A. Pietersz
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translational and Implementation, La Trobe University, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Ham H, Xu Y, Haller CA, Dai E, Stancanelli E, Liu J, Chaikof EL. Design of an Ultralow Molecular Weight Heparin That Resists Heparanase Biodegradation. J Med Chem 2023; 66:2194-2203. [PMID: 36706244 DOI: 10.1021/acs.jmedchem.2c02118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heparanase, an endo-β-d-glucuronidase produced by a variety of cells and tissues, cleaves the glycosidic linkage between glucuronic acid (GlcA) and a 3-O- or 6-O-sulfated glucosamine, typified by the disaccharide -[GlcA-GlcNS3S6S]-, which is found within the antithrombin-binding domain of heparan sulfate or heparin. As such, all current forms of heparin are susceptible to degradation by heparanase with neutralization of anticoagulant properties. Here, we have designed a heparanase-resistant, ultralow molecular weight heparin as the structural analogue of fondaparinux that does not contain an internal GlcA residue but otherwise displays potent anticoagulant activity. This heparin oligosaccharide was synthesized following a chemoenzymatic scheme and displays nanomolar anti-FXa activity yet is resistant to heparanase digestion. Inhibition of thrombus formation was further demonstrated after subcutaneous administration of this compound in a murine model of venous thrombosis. Thrombus inhibition was comparable to that observed for enoxaparin with a similar effect on bleeding time.
Collapse
Affiliation(s)
- Hyunok Ham
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
| | - Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering at Harvard University; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology; Department of Surgery, Beth Israel Deaconess Medical Center, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
| |
Collapse
|
6
|
Goldin M, Koulas I, Weitz JI, Spyropoulos A. State-of-the-art-mini review: Dual pathway inhibition to reduce arterial and venous thromboembolism. Thromb Haemost 2022; 122:1279-1287. [DOI: 10.1055/a-1778-1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Venous thromboembolism (VTE) and arterial thromboembolism (ATE) are linked by the common mechanism of thrombin generation. Historically these entities have been treated as separate pathophysiologic processes requiring different treatments: VTE, as the formation of fibrin-/coagulation-factor-derived thrombus in low flow vasculature, requiring anticoagulants; versus ATE, as largely platelet-derived thrombus in high flow vasculature, requiring antiplatelet agents. Observational studies have elucidated shared risk factors and co-morbidities predisposing individuals with VTE to ATE, and vice versa, and have bolstered the strategy of dual pathway inhibition (DPI) – the combination of low dose anticoagulants with antiplatelet agents – to reduce thrombotic outcomes on both sides of the vasculature. Randomized clinical trials have evaluated the efficacy and safety of such regimens - mostly rivaroxaban and aspirin - in high-risk groups of patients, including those with recent acute or chronic coronary syndrome, as well as those with peripheral artery disease with or without revascularization. Studies of extended VTE prophylaxis in acutely ill medical patients have also contributed to the evidence evaluating DPI. The totality of available data supports the concept that DPI can reduce major and fatal thromboembolic outcomes, including stroke, myocardial infarction, VTE, and cardiovascular death in key patient cohorts, with acceptable risk of bleeding. Further data are needed to refine which patients derive the best net clinical benefit from such an approach. At the same time, other novel agents such as contact pathway inhibitors that reduce thrombin generation without affecting hemostasis - and thus maximize safety - should be assessed in appropriate populations.
Collapse
Affiliation(s)
- Mark Goldin
- Medicine, Northwell Health, New Hyde Park, United States
| | - Ioannis Koulas
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, United States
| | - Jeffrey I Weitz
- The Thrombosis and Atherosclerosis Research Institute, Hamilton, Canada
- Departments of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Alex Spyropoulos
- Department of Medicine, Northwell Health at Lenox Hill Hospital, Hofstra, Northwell School of Medicine, NY, United States
| |
Collapse
|
7
|
Liu H, Pietersz G, Peter K, Wang X. Nanobiotechnology approaches for cardiovascular diseases: site-specific targeting of drugs and nanoparticles for atherothrombosis. J Nanobiotechnology 2022; 20:75. [PMID: 35135581 PMCID: PMC8822797 DOI: 10.1186/s12951-022-01279-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/21/2022] [Indexed: 02/18/2023] Open
Abstract
Atherosclerosis and atherothrombosis, the major contributors to cardiovascular diseases (CVDs), represent the leading cause of death worldwide. Current pharmacological therapies have been associated with side effects or are insufficient at halting atherosclerotic progression effectively. Pioneering work harnessing the passive diffusion or endocytosis properties of nanoparticles and advanced biotechnologies in creating recombinant proteins for site-specific delivery have been utilized to overcome these limitations. Since CVDs are complex diseases, the most challenging aspect of developing site-specific therapies is the identification of an individual and unique antigenic epitope that is only expressed in lesions or diseased areas. This review focuses on the pathological mechanism of atherothrombosis and discusses the unique targets that are important during disease progression. We review recent advances in site-specific therapy using novel targeted drug-delivery and nanoparticle-carrier systems. Furthermore, we explore the limitations and future perspectives of site-specific therapy for CVDs.
Collapse
Affiliation(s)
- Haikun Liu
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Geoffrey Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Burnet Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia. .,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia. .,Department of Medicine, Monash University, Melbourne, VIC, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Denis CV, Lenting PJ, Wahl D. TaSER: Combining forces to stop the clot. J Thromb Haemost 2022; 20:293-295. [PMID: 35060308 DOI: 10.1111/jth.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Cécile V Denis
- Laboratory for Hemostasis, Inflammation & Thrombosis (HITh), Unité Mixte de Recherche (UMR)-1176, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- Laboratory for Hemostasis, Inflammation & Thrombosis (HITh), Unité Mixte de Recherche (UMR)-1176, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Denis Wahl
- Centre Hospitalier Régional Universitaire de Nancy, Vascular Medicine Division and Regional Competence Center for Rare Vascular and Systemic Autoimmune Diseases, Nancy, France
| |
Collapse
|
9
|
Varghese M, Rokosh RS, Haller CA, Chin SL, Chen J, Dai E, Xiao R, Chaikof EL, Grinstaff MW. Sulfated poly-amido-saccharides (sulPASs) are anticoagulants in vitro and in vivo. Chem Sci 2021; 12:12719-12725. [PMID: 34703558 PMCID: PMC8494039 DOI: 10.1039/d1sc02302k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/18/2021] [Indexed: 01/22/2023] Open
Abstract
Anticoagulant therapeutics are a mainstay of modern surgery and of clotting disorder management such as venous thrombosis, yet performance and supply limitations exist for the most widely used agent - heparin. Herein we report the first synthesis, characterization, and performance of sulfated poly-amido-saccharides (sulPASs) as heparin mimetics. sulPASs inhibit the intrinsic pathway of coagulation, specifically FXa and FXIa, as revealed by ex vivo human plasma clotting assays and serine protease inhibition assays. sulPASs activity positively correlates with molecular weight and degree of sulfation. Importantly, sulPASs are not degraded by heparanases and are non-hemolytic. In addition, their activity is reversed by protamine sulfate, unlike small molecule anticoagulants. In an in vivo murine model, sulPASs extend clotting time in a dose dependent manner with bleeding risk comparable to heparin. These findings support continued development of synthetic anticoagulants to address the clinical risks and shortages associated with heparin.
Collapse
Affiliation(s)
- Maria Varghese
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University Boston MA 02215 USA
| | - Rae S Rokosh
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston MA USA mailto:
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston MA USA mailto:
| | - Stacy L Chin
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University Boston MA 02215 USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston MA USA mailto:
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston MA USA mailto:
| | - Ruiqing Xiao
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University Boston MA 02215 USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston MA USA mailto:
| | - Mark W Grinstaff
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University Boston MA 02215 USA
| |
Collapse
|
10
|
A Recombinant Fusion Construct between Human Serum Albumin and NTPDase CD39 Allows Anti-Inflammatory and Anti-Thrombotic Coating of Medical Devices. Pharmaceutics 2021; 13:pharmaceutics13091504. [PMID: 34575580 PMCID: PMC8466136 DOI: 10.3390/pharmaceutics13091504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Medical devices directly exposed to blood are commonly used to treat cardiovascular diseases. However, these devices are associated with inflammatory reactions leading to delayed healing, rejection of foreign material or device-associated thrombus formation. We developed a novel recombinant fusion protein as a new biocompatible coating strategy for medical devices with direct blood contact. We genetically fused human serum albumin (HSA) with ectonucleoside triphosphate diphosphohydrolase-1 (CD39), a promising anti-thrombotic and anti-inflammatory drug candidate. The HSA-CD39 fusion protein is highly functional in degrading ATP and ADP, major pro-inflammatory reagents and platelet agonists. Their enzymatic properties result in the generation of AMP, which is further degraded by CD73 to adenosine, an anti-inflammatory and anti-platelet reagent. HSA-CD39 is functional after lyophilisation, coating and storage of coated materials for up to 8 weeks. HSA-CD39 coating shows promising and stable functionality even after sterilisation and does not hinder endothelialisation of primary human endothelial cells. It shows a high level of haemocompatibility and diminished blood cell adhesion when coated on nitinol stents or polyvinylchloride tubes. In conclusion, we developed a new recombinant fusion protein combining HSA and CD39, and demonstrated that it has potential to reduce thrombotic and inflammatory complications often associated with medical devices directly exposed to blood.
Collapse
|
11
|
Priya V, Viswanadh MK, Mehata AK, Jain D, Singh SK, Muthu MS. Targeted nanotherapeutics in the prophylaxis and treatment of thrombosis. Nanomedicine (Lond) 2021; 16:1153-1176. [PMID: 33973818 DOI: 10.2217/nnm-2021-0058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Currently available anti-thrombotic therapy for the prophylaxis and treatment of arterial and venous thrombosis includes intravenous administration of anti-thrombotic drugs which lead to severe bleeding risks such as cerebral hemorrhage and stroke. Targeting approaches that utilize nanosystems to reach the thrombus sites are emerging to increase the local effect of anti-thrombotic drugs, as well as to decrease these severe bleeding complications by diminishing the systemic availability of these drugs. This review emphasizes the emerging targeted nanomedicines (liposomes, micelles, polymeric nanoparticles, material bases nanoparticles and other biological vectors) for the prophylaxis and treatment of thrombotic events as well as multifunctional nanomedicines for theranostic applications. Nanomedicine offers a promising platform for a smart, safe, and effective approach for the management of thrombosis.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dharmendra Jain
- Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sanjeev K Singh
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
12
|
Zhang L, Li Z, Ye X, Chen Z, Chen ZS. Mechanisms of thrombosis and research progress on targeted antithrombotic drugs. Drug Discov Today 2021; 26:2282-2302. [PMID: 33895314 DOI: 10.1016/j.drudis.2021.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022]
Abstract
Globally, the incidence of thromboembolic diseases has increased in recent years, accompanied by an increase in patient mortality. Currently, several targeting delivery strategies have been developed to treat thromboembolic diseases. In this review, we discuss the mechanisms of thrombolysis and current anticoagulant drugs, particularly those with targeting capability, highlighting advances in the accurate treatment of thrombolysis with fewer adverse effects. Such approaches include magnetic drug-loading systems combined with molecular imaging to recanalize blood vessels and systems based on chimeric Arg-Gly-Asp (RGD) sequences that can target platelet glycoprotein receptor. With such progress in targeted antithrombotic drugs, targeted thrombolysis treatment shows significant potential benefit for patients.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- Fujian Cancer Hospital, Fujian Provincial Cancer Hospital of Fujian Medical University, Fuzhou 350014, China
| | - Xianren Ye
- Fujian Cancer Hospital, Fujian Provincial Cancer Hospital of Fujian Medical University, Fuzhou 350014, China.
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY 11439, USA.
| |
Collapse
|
13
|
Orian JM, D'Souza CS, Kocovski P, Krippner G, Hale MW, Wang X, Peter K. Platelets in Multiple Sclerosis: Early and Central Mediators of Inflammation and Neurodegeneration and Attractive Targets for Molecular Imaging and Site-Directed Therapy. Front Immunol 2021; 12:620963. [PMID: 33679764 PMCID: PMC7933211 DOI: 10.3389/fimmu.2021.620963] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Platelets are clearly central to thrombosis and hemostasis. In addition, more recently, evidence has emerged for non-hemostatic roles of platelets including inflammatory and immune reactions/responses. Platelets express immunologically relevant ligands and receptors, demonstrate adhesive interactions with endothelial cells, monocytes and neutrophils, and toll-like receptor (TLR) mediated responses. These properties make platelets central to innate and adaptive immunity and potential candidate key mediators of autoimmune disorders. Multiple sclerosis (MS) is the most common chronic autoimmune central nervous system (CNS) disease. An association between platelets and MS was first indicated by the increased adhesion of platelets to endothelial cells. This was followed by reports identifying structural and functional changes of platelets, their chronic activation in the peripheral blood of MS patients, platelet presence in MS lesions and the more recent revelation that these structural and functional abnormalities are associated with all MS forms and stages. Investigations based on the murine experimental autoimmune encephalomyelitis (EAE) MS model first revealed a contribution to EAE pathogenesis by exacerbation of CNS inflammation and an early role for platelets in EAE development via platelet-neuron and platelet-astrocyte associations, through sialated gangliosides in lipid rafts. Our own studies refined and extended these findings by identifying the critical timing of platelet accumulation in pre-clinical EAE and establishing an initiating and central rather than merely exacerbating role for platelets in disease development. Furthermore, we demonstrated platelet-neuron associations in EAE, coincident with behavioral changes, but preceding the earliest detectable autoreactive T cell accumulation. In combination, these findings establish a new paradigm by asserting that platelets play a neurodegenerative as well as a neuroinflammatory role in MS and therefore, that these two pathological processes are causally linked. This review will discuss the implications of these findings for our understanding of MS, for future applications for imaging toward early detection of MS, and for novel strategies for platelet-targeted treatment of MS.
Collapse
Affiliation(s)
- Jacqueline M Orian
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Claretta S D'Souza
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Pece Kocovski
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Guy Krippner
- Medicinal Chemistry, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Matthew W Hale
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.,Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Science, La Trobe University, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Stevens H, McFadyen J, Chan N. Advances in the Management of Acute Venous Thromboembolism and New Therapeutic Agents. Semin Respir Crit Care Med 2021; 42:218-232. [PMID: 33601429 DOI: 10.1055/s-0041-1723953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Important advances in the understanding and management of venous thromboembolism (VTE) have enhanced our ability to diagnose, prevent, and treat VTE. In this narrative review, we discuss how recent advances in the understanding and management of VTE are changing practice, highlight ongoing unmet needs in VTE management, and outline how novel therapeutic targets with little or no influence on hemostasis may help address these unmet needs.
Collapse
Affiliation(s)
- Hannah Stevens
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.,Department of Clinical Haematology, Alfred Hospital, Melbourne, Victoria, Australia
| | - James McFadyen
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.,Department of Clinical Haematology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Noel Chan
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Peyron I, Kizlik‐Masson C, Dubois M, Atsou S, Ferrière S, Denis CV, Lenting PJ, Casari C, Christophe OD. Camelid-derived single-chain antibodies in hemostasis: Mechanistic, diagnostic, and therapeutic applications. Res Pract Thromb Haemost 2020; 4:1087-1110. [PMID: 33134775 PMCID: PMC7590285 DOI: 10.1002/rth2.12420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Hemostasis is a complex process involving the concerted action of molecular and vascular components. Its basic understanding as well as diagnostic and therapeutic aspects have greatly benefited from the use of monoclonal antibodies. Interestingly, camelid-derived single-domain antibodies (sdAbs), also known as VHH or nanobodies, have become available during the previous 2 decades as alternative tools in this regard. Compared to classic antibodies, sdAbs are easier to produce and their small size facilitates their engineering and functionalization. It is not surprising, therefore, that sdAbs are increasingly used in hemostasis-related research. In addition, they have the capacity to recognize unique epitopes unavailable to full monoclonal antibodies. This property can be used to develop novel diagnostic tests identifying conformational variants of hemostatic proteins. Examples include sdAbs that bind active but not globular von Willebrand factor or free factor VIIa but not tissue factor-bound factor VIIa. Finally, sdAbs have a high therapeutic potential, exemplified by caplacizumab, a homodimeric sdAb targeting von Willebrand factor that is approved for the treatment of thrombotic thrombocytopenic purpura. In this review, the various applications of sdAbs in thrombosis and hemostasis-related research, diagnostics, and therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ivan Peyron
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | | - Marie‐Daniéla Dubois
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
- EA 7525 VPMCUniversité des AntillesSchoelcherMartiniqueFrance
| | - Sénadé Atsou
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Stephen Ferrière
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Cécile V. Denis
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Peter J. Lenting
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Caterina Casari
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | |
Collapse
|
16
|
Bienvenu LA, Maluenda A, McFadyen JD, Searle AK, Yu E, Haller C, Chaikof EL, Peter K, Wang X. Combined Antiplatelet/Anticoagulant Drug for Cardiac Ischemia/Reperfusion Injury. Circ Res 2020; 127:1211-1213. [PMID: 32806996 DOI: 10.1161/circresaha.120.317450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Laura A Bienvenu
- Atherothrombosis and Vascular Biology Laboratory (L.A.B., A.M., J.D.M., A.K.S., E.Y., K.P.).,Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (L.A.B., A.M., A.K.S., E.Y., X.W.).,Cardiometabolic Health, University of Melbourne, VIC, Australia (L.A.B., J.D.M., K.P., X.W.)
| | - Ana Maluenda
- Atherothrombosis and Vascular Biology Laboratory (L.A.B., A.M., J.D.M., A.K.S., E.Y., K.P.).,Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (L.A.B., A.M., A.K.S., E.Y., X.W.)
| | - James D McFadyen
- Atherothrombosis and Vascular Biology Laboratory (L.A.B., A.M., J.D.M., A.K.S., E.Y., K.P.).,Cardiometabolic Health, University of Melbourne, VIC, Australia (L.A.B., J.D.M., K.P., X.W.).,Medicine, Monash University, Melbourne, VIC, Australia (J.D.M., A.K.S., E.Y., K.P., X.W.)
| | - Amy K Searle
- Atherothrombosis and Vascular Biology Laboratory (L.A.B., A.M., J.D.M., A.K.S., E.Y., K.P.).,Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (L.A.B., A.M., A.K.S., E.Y., X.W.).,Cardiometabolic Health, University of Melbourne, VIC, Australia (L.A.B., J.D.M., K.P., X.W.)
| | - Eefang Yu
- Atherothrombosis and Vascular Biology Laboratory (L.A.B., A.M., J.D.M., A.K.S., E.Y., K.P.).,Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (L.A.B., A.M., A.K.S., E.Y., X.W.).,Medicine, Monash University, Melbourne, VIC, Australia (J.D.M., A.K.S., E.Y., K.P., X.W.)
| | - Carolyn Haller
- Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.H., E.L.C.).,Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA (C.H., E.L.C.)
| | - Elliot L Chaikof
- Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (C.H., E.L.C.).,Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA (C.H., E.L.C.)
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory (L.A.B., A.M., J.D.M., A.K.S., E.Y., K.P.).,Cardiometabolic Health, University of Melbourne, VIC, Australia (L.A.B., J.D.M., K.P., X.W.).,Medicine, Monash University, Melbourne, VIC, Australia (J.D.M., A.K.S., E.Y., K.P., X.W.)
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (L.A.B., A.M., A.K.S., E.Y., X.W.).,Cardiometabolic Health, University of Melbourne, VIC, Australia (L.A.B., J.D.M., K.P., X.W.).,Medicine, Monash University, Melbourne, VIC, Australia (J.D.M., A.K.S., E.Y., K.P., X.W.)
| |
Collapse
|
17
|
Fernando H, McFadyen JD, Palasubramaniam J, Shaw J, Wang X, Stub D, Peter K. Antithrombotic Therapy in Myocardial Infarction: Historic Perils and Current Challenges-A 70-Year Journey. Thromb Haemost 2020; 120:1352-1356. [PMID: 32707594 DOI: 10.1055/s-0040-1714212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
There have been numerous and intriguing advancements in antithrombotic therapy for myocardial infarction since it was described in the earliest issues of Thrombosis and Haemostasis. In this article, we revisit historical breakthroughs and describe the four most challenging contemporary themes relating to antithrombotic therapy in myocardial infarction. In all four, the challenge is to find the best balance of reducing specific levels of ischaemic risks without increasing bleeding risk. The first is the question of the optimal duration of dual antiplatelet therapy (DAPT) after percutaneous coronary intervention (PCI). This includes discussion of monotherapy after a period of DAPT. The second relates to the role of genotype and phenotype-guided individualisation of antiplatelet therapy. There is emerging evidence for a role of pheno/genotyping in identifying individuals at high risk for recurrent ischaemic events or in guiding the timing of cardiac surgery for patients on DAPT. The third addresses the increasing evidence for dual pathway inhibition, for example, with rivaroxaban in addition to aspirin in patients where high ischaemic and low bleeding risk is demonstrated. Finally the fourth highlights the challenge of the most appropriate combination of antiplatelet and anticoagulation therapy for patients with known atrial fibrillation after PCI. In most individuals, oral P2Y12 inhibitor therapy combined with a direct acting oral anticoagulant appears to be the best strategy based on the available evidence. Overall, the progress in antithrombotic therapy achieved over the last seven decades is remarkable, however, there are important issues to address and progress still to be made.
Collapse
Affiliation(s)
- Himawan Fernando
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - James D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia.,Thrombosis and Haemostasis Unit, Department of Clinical Haematology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jathushan Palasubramaniam
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - James Shaw
- Department of Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Dion Stub
- Department of Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia.,Department of Immunology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov 2020; 19:333-352. [PMID: 32132678 DOI: 10.1038/s41573-020-0061-0] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Antiplatelet agents and anticoagulants are a mainstay for the prevention and treatment of thrombosis. However, despite advances in antithrombotic therapy, a fundamental challenge is the side effect of bleeding. Improved understanding of the mechanisms of haemostasis and thrombosis has revealed new targets for attenuating thrombosis with the potential for less bleeding, including glycoprotein VI on platelets and factor XIa of the coagulation system. The efficacy and safety of new agents are currently being evaluated in phase III trials. This Review provides an overview of haemostasis and thrombosis, details the current landscape of antithrombotic agents, addresses challenges with preventing thromboembolic events in patients at high risk and describes the emerging therapeutic strategies that may break the inexorable link between antithrombotic therapy and bleeding risk.
Collapse
|
19
|
Targeting CD39 Toward Activated Platelets Reduces Systemic Inflammation and Improves Survival in Sepsis: A Preclinical Pilot Study. Crit Care Med 2020; 47:e420-e427. [PMID: 30730441 DOI: 10.1097/ccm.0000000000003682] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Sepsis is associated with a systemic inflammatory reaction, which can result in a life-endangering organ dysfunction. Pro-inflammatory responses during sepsis are characterized by increased activation of leukocytes and platelets, formation of platelet-neutrophil aggregates, and cytokine production. Sequestration of platelet-neutrophil aggregates in the microvasculature contributes to tissue damage during sepsis. At present no effective therapeutic strategy to ameliorate these events is available. In this preclinical pilot study, a novel anti-inflammatory approach was evaluated, which targets nucleoside triphosphate hydrolase activity toward activated platelets via a recombinant fusion protein combining a single-chain antibody against activated glycoprotein IIb/IIIa and the extracellular domain of CD39 (targ-CD39). DESIGN Experimental animal study and cell culture study. SETTING University-based experimental laboratory. SUBJECTS Human dermal microvascular endothelial cells 1, human platelets and neutrophils, and C57BL/6NCrl mice. INTERVENTIONS Platelet-leukocyte-endothelium interactions were evaluated under inflammatory conditions in vitro and in a murine lipopolysaccharide-induced sepsis model in vivo. The outcome of polymicrobial sepsis was evaluated in a murine cecal ligation and puncture model. To evaluate the anti-inflammatory potential of activated platelet targeted nucleoside triphosphate hydrolase activity, we employed a potato apyrase in vitro and in vivo, as well as targ-CD39 and as a control, nontarg-CD39 in vivo. MEASUREMENTS AND MAIN RESULTS Under conditions of sepsis, agents with nucleoside triphosphate hydrolase activity decreased platelet-leukocyte-endothelium interaction, transcription of pro-inflammatory cytokines, microvascular platelet-neutrophil aggregate sequestration, activation marker expression on platelets and neutrophils contained in these aggregates, leukocyte extravasation, and organ damage. Targ-CD39 had the strongest effect on these variables and retained hemostasis in contrast to nontarg-CD39 and potato apyrase. Most importantly, targ-CD39 improved survival in the cecal ligation and puncture model to a stronger extent then nontarg-CD39 and potato apyrase. CONCLUSIONS Targeting nucleoside triphosphate hydrolase activity (CD39) toward activated platelets is a promising new treatment concept to decrease systemic inflammation and mortality of sepsis. This innovative therapeutic approach warrants further development toward clinical application.
Collapse
|
20
|
Affiliation(s)
- Dermot Cox
- Molecular & Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| |
Collapse
|
21
|
Palasubramaniam J, Wang X, Peter K. Myocardial Infarction-From Atherosclerosis to Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:e176-e185. [PMID: 31339782 DOI: 10.1161/atvbaha.119.312578] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jathushan Palasubramaniam
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| | - Xiaowei Wang
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.)
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| |
Collapse
|
22
|
Wang X, Peter K. Mending the failing heart. Aging (Albany NY) 2019; 11:1605-1606. [PMID: 30886129 PMCID: PMC6461162 DOI: 10.18632/aging.101879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/11/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute Melbourne, Victoria 3004, Australia.,Department of Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute Melbourne, Victoria 3004, Australia.,Department of Medicine, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
23
|
Ngo ATP, Aslan JE, McCarty OJT. Bleeding TAPs out. J Thromb Haemost 2019; 17:247-249. [PMID: 30549218 DOI: 10.1111/jth.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 11/29/2022]
Affiliation(s)
- A T P Ngo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - J E Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - O J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
24
|
Of mice and men: genes relevant to thrombosis and bleeding. Blood 2018; 132:2532-2534. [PMID: 30545893 DOI: 10.1182/blood-2018-10-879700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|