1
|
Kumari S, Singh P, Singh R. Repeated Silica exposures lead to Silicosis severity via PINK1/PARKIN mediated mitochondrial dysfunction in mice model. Cell Signal 2024; 121:111272. [PMID: 38944258 DOI: 10.1016/j.cellsig.2024.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND OBJECTIVES Silicosis, one of the occupational health illnesses is caused by inhalation of crystalline silica. Deposition of extracellular matrix and fibroblast proliferation in lungs are linked to silicosis development. Mitochondrial dysfunction plays critical role in some diseases, but how these processes progress and regulated in silicosis, remains limited. Detailed study of silica induced pulmonary fibrosis in mouse model, its progression and severity may be helpful in designing future therapeutic strategies. METHODS In present study, mice model of silicosis has been developed after repeated silica exposures which may closely resemble clinical symptoms of silicosis in human. In addition to efficiently mimicking the acute/chronic transformation processes of silicosis, this is practical and efficient in terms of time and output, which avoids mechanical injury to the upper respiratory tract due to surgical interventions. Sonicated sterile silica suspension (120 mg/kg) was administered through intranasal route thrice a week at regular intervals (21, 28 and 35 days). RESULTS Presence of minute to larger silicotic nodules in H&E-stained lung sections were observed in all silica induced model groups. Enhanced ECM deposition was noted in MT stained lung sections of silica exposure groups as compared to control which were confirmed by significantly higher MMP9 expression levels and hydroxyproline content in silica 35 days group. Increase in Reactive oxygen species (ROS), inflammatory cell recruitment mainly, neutrophils and macrophage were observed in all three silica exposure groups. Transmission electron microscopic analysis has confirmed presence of many aberrant shaped mitochondria (swollen, round shape) in 35 days model where autophagosomes were minimum. Western blot analysis of mitophagy and autophagy markers such as Pink1, Parkin, Cytochrome c, SQSTM1/p62, the ratio of light chain LC3B II/LC3B I was found higher in 21 and 28 days which were significantly reduced in 35 days silica model. CONCLUSIONS Higher MMP9 activity and MMP9 /TIMP1 ratio demonstrate excessive extracellular matrix damage and deposition in 35 days model. Significantly reduced expressions of autophagy and mitophagy markers have also confirmed progression in fibrosis severity and its association with repeated silica exposures in 35 days model group.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Payal Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Faherty L, Zhang WZ, Salih MM, Robinson EK, Perez E, Kim K, Carpenter S, Cloonan SM. Transcriptomic analysis reveals distinct effects of cigarette smoke on murine airspace and bone-marrow derived macrophages. Respir Res 2024; 25:322. [PMID: 39182076 PMCID: PMC11344945 DOI: 10.1186/s12931-024-02939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an inflammatory airway disease characterized by emphysema and chronic bronchitis and a leading cause of mortality worldwide. COPD is commonly associated with several comorbid diseases which contribute to exacerbated patient outcomes. Cigarette smoke (CS) is the most prominent risk factor for COPD development and progression and is known to be detrimental to numerous effector functions of lung resident immune cells, including phagocytosis and cytokine production. However, how CS mediates the various pathologies distant from the lung in COPD, and whether CS has a similar biological effect on systemic immune cells remains unknown. METHODS C57BL/6 mice were exposed to 8 weeks of CS as an experimental model of COPD. Bone marrow cells were isolated from both CS-exposed and room air (RA) control mice and differentiated to bone marrow-derived macrophages (BMDMs). Airspace macrophages (AMs) were isolated from the same CS-exposed and RA mice and bulk RNA-Seq performed. The functional role of differentially expressed genes was assessed through gene ontology analyses. Ingenuity Pathway Analysis was used to determine the activation states of canonical pathways and upstream regulators enriched in differentially expressed genes in both cell types, and to compare the differences between the two cell types. RESULTS CS induced transcriptomic changes in BMDMs, including an upregulation of genes in sirtuin signalling and oxidative phosphorylation pathways and a downregulation of genes involved in histone and lysine methylation. In contrast, CS induced decreased expression of genes involved in pathogen response, phagosome formation, and immune cell trafficking in AMs. Little overlap was observed in differentially expressed protein-coding genes in BMDMs compared to AMs and their associated pathways, highlighting the distinct effects of CS on immune cells in different compartments. CONCLUSIONS CS exposure can induce transcriptomic remodelling in BMDMs which is distinct to that of AMs. Our study highlights the ability of CS exposure to affect immune cell populations distal to the lung and warrants further investigation into the functional effects of these changes and the ensuing role in driving multimorbid disease.
Collapse
Affiliation(s)
- Lynne Faherty
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - William Z Zhang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Mays M Salih
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Elektra K Robinson
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Elizabeth Perez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Suzanne M Cloonan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- Tallaght University Hospital, Dublin, Ireland.
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Raja A, Zelikoff JT, Jaimes EA. A contemporary review of nephrotoxicity and e-cigarette use. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Liu WC, Chuang HC, Chou CL, Lee YH, Chiu YJ, Wang YL, Chiu HW. Cigarette Smoke Exposure Increases Glucose-6-phosphate Dehydrogenase, Autophagy, Fibrosis, and Senescence in Kidney Cells In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5696686. [PMID: 35387262 PMCID: PMC8977288 DOI: 10.1155/2022/5696686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Cigarette smoke (CS) is a risk factor for chronic obstructive pulmonary disease. We attempted to investigate fully the possible effects of CS on kidney cells. We found that the viability of a human kidney proximal tubular epithelial cell line (HK-2 cells) was decreased after treatment with CS extract (CSE). In particular, the effects of CSE at low concentrations did not change the expression of apoptosis and necrosis. Furthermore, CSE increased autophagy- and fibrosis-related proteins in HK-2 cells. Senescence-related proteins and the senescence-associated secretory phenotype (SASP) increased after HK-2 cells were treated with CSE. In addition, both RNA sequencing and gene set enrichment analysis data revealed that glucose-6-phosphate dehydrogenase (G6PD) in the reactive oxygen species (ROS) pathway is responsible for the changes in CSE-treated HK-2 cells. CSE increased G6PD expression and its activity. Moreover, the inhibition of G6PD activity increased senescence in HK-2 cells. The inhibition of autophagy reinforced senescence in the CSE-treated cells. In a mouse model of CS exposure, CS caused kidney damage, including tubular injury and glomerulosclerosis. CS increased fibrosis, autophagy, and G6PD expression in kidney tissue sections. In conclusion, CS induced G6PD expression, autophagy, fibrosis, and senescence in kidney cells. G6PD has a protective role in CS-induced nephrotoxicity.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Division of Nephrology, Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Yu-Jhe Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Wen Chiu
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
5
|
Ji X, Lin L, Fan J, Li Y, Wei Y, Shen S, Su L, Shafer A, Bjaanæs MM, Karlsson A, Planck M, Staaf J, Helland Å, Esteller M, Zhang R, Chen F, Christiani DC. Epigenome-wide three-way interaction study identifies a complex pattern between TRIM27, KIAA0226, and smoking associated with overall survival of early-stage NSCLC. Mol Oncol 2022; 16:717-731. [PMID: 34932879 PMCID: PMC8807353 DOI: 10.1002/1878-0261.13167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
The interaction between DNA methylation of tripartite motif containing 27 (cg05293407TRIM27 ) and smoking has previously been identified to reveal histologically heterogeneous effects of TRIM27 DNA methylation on early-stage non-small-cell lung cancer (NSCLC) survival. However, to understand the complex mechanisms underlying NSCLC progression, we searched three-way interactions. A two-phase study was adopted to identify three-way interactions in the form of pack-year of smoking (number of cigarettes smoked per day × number of years smoked) × cg05293407TRIM27 × epigenome-wide DNA methylation CpG probe. Two CpG probes were identified with FDR-q ≤ 0.05 in the discovery phase and P ≤ 0.05 in the validation phase: cg00060500KIAA0226 and cg17479956EXT2 . Compared to a prediction model with only clinical information, the model added 42 significant three-way interactions using a looser criterion (discovery: FDR-q ≤ 0.10, validation: P ≤ 0.05) had substantially improved the area under the receiver operating characteristic curve (AUC) of the prognostic prediction model for both 3-year and 5-year survival. Our research identified the complex interaction effects among multiple environment and epigenetic factors, and provided therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Xinyu Ji
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Lijuan Lin
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Juanjuan Fan
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Yi Li
- Department of BiostatisticsUniversity of MichiganAnn ArborMIUSA
| | - Yongyue Wei
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
- China International Cooperation Center for Environment and Human HealthNanjing Medical UniversityNanjingChina
| | - Sipeng Shen
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Li Su
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Andrea Shafer
- Pulmonary and Critical Care DivisionDepartment of MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Maria Moksnes Bjaanæs
- Department of Cancer GeneticsInstitute for Cancer ResearchOslo University HospitalOsloNorway
| | - Anna Karlsson
- Division of OncologyDepartment of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden
| | - Maria Planck
- Division of OncologyDepartment of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden
| | - Johan Staaf
- Division of OncologyDepartment of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden
| | - Åslaug Helland
- Department of Cancer GeneticsInstitute for Cancer ResearchOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Manel Esteller
- Josep Carreras Leukaemia Research InstituteBarcelonaSpain
- Centro de Investigacion Biomedica en Red CancerMadridSpain
- Institucio Catalana de Recerca i Estudis AvançatsBarcelonaSpain
- Physiological Sciences DepartmentSchool of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
| | - Ruyang Zhang
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
- China International Cooperation Center for Environment and Human HealthNanjing Medical UniversityNanjingChina
| | - Feng Chen
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
- China International Cooperation Center for Environment and Human HealthNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCancer CenterCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - David C. Christiani
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
- Pulmonary and Critical Care DivisionDepartment of MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
6
|
Schlemmer F, Zysman M, Ribeiro Baptista B, Audureau E, Covali Noroc A, Ridoux A, Derumeaux G, Adnot S, Maitre B, le Corvoisier P, Lanone S, Boczkowski J, Boyer L. Beclin-1 increases with obstructive sleep apnea severity. Sleep Med 2021; 81:474-476. [PMID: 33872948 DOI: 10.1016/j.sleep.2021.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 01/04/2023]
Abstract
Obstructive sleep apnea is a common chronic disorder that leads to chronic intermittent hypoxia described as an important factor contributing to the pathogenesis of OSA-related comorbidities. Besides, recent data suggest that intermittent hypoxia can induce adaptative cardiovascular pathways inducing a relative resistance to ischemic insults. Adaptative pathways induced by hypoxia could implicate autophagic processes and Beclin-1, one of the first mammalian autophagy effectors. Thus, activation of autophagy could protect against cardiovascular events in patients with OSA and could be considered as biomarker of a better prognosis.
Collapse
Affiliation(s)
- Frédéric Schlemmer
- Univ Paris Est Créteil, INSERM, IMRB, FHU Senec, F-94010, Créteil, France; AP-HP, Hôpital Henri Mondor, Unité de Pneumologie, F-94010, Créteil, France
| | - Maéva Zysman
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Team 2, F-33604, Pessac, France; CHU de Bordeaux, Département de Pneumologie, F-33604, Pessac, France
| | - Bruno Ribeiro Baptista
- Univ Paris Est Créteil, INSERM, IMRB, FHU Senec, F-94010, Créteil, France; CHU de Nancy, Département de Pneumologie, F-54500, Vandoeuvre-lès-Nancy, France
| | - Etienne Audureau
- AP-HP, Hôpital Henri Mondor, Département de Santé Publique, Unité de Recherche Clinique (URC-Mondor), IMRB EA7376, Clinical Epidemiology and Aging (CEpiA), F-94010, Créteil, France
| | - Ala Covali Noroc
- AP-HP, Hôpital Henri Mondor, Département de Physiologie-Explorations Fonctionnelles, F-94010, Créteil, France
| | - Audrey Ridoux
- Univ Paris Est Créteil, INSERM, IMRB, FHU Senec, F-94010, Créteil, France
| | - Geneviève Derumeaux
- Univ Paris Est Créteil, INSERM, IMRB, FHU Senec, F-94010, Créteil, France; AP-HP, Hôpital Henri Mondor, Département de Physiologie-Explorations Fonctionnelles, F-94010, Créteil, France
| | - Serge Adnot
- Univ Paris Est Créteil, INSERM, IMRB, FHU Senec, F-94010, Créteil, France; AP-HP, Hôpital Henri Mondor, Département de Physiologie-Explorations Fonctionnelles, F-94010, Créteil, France
| | - Bernard Maitre
- Univ Paris Est Créteil, INSERM, IMRB, FHU Senec, F-94010, Créteil, France; Centre Hospitalier Intercommunal, Département de Pneumologie et Pathologie Professionnelle, Créteil, France
| | - Philippe le Corvoisier
- Univ Paris Est Créteil, INSERM, IMRB, FHU Senec, F-94010, Créteil, France; AP-HP, Hôpital Henri Mondor, Unité de Pneumologie, F-94010, Créteil, France; Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Team 2, F-33604, Pessac, France; CHU de Bordeaux, Département de Pneumologie, F-33604, Pessac, France; CHU de Nancy, Département de Pneumologie, F-54500, Vandoeuvre-lès-Nancy, France; AP-HP, Hôpital Henri Mondor, Département de Santé Publique, Unité de Recherche Clinique (URC-Mondor), IMRB EA7376, Clinical Epidemiology and Aging (CEpiA), F-94010, Créteil, France; AP-HP, Hôpital Henri Mondor, Département de Physiologie-Explorations Fonctionnelles, F-94010, Créteil, France; Centre Hospitalier Intercommunal, Département de Pneumologie et Pathologie Professionnelle, Créteil, France; Department VERDI, Inserm, CIC1430, AP-HP, Henri Mondor Hospital, F-94000, Creteil, France
| | - Sophie Lanone
- Univ Paris Est Créteil, INSERM, IMRB, FHU Senec, F-94010, Créteil, France
| | - Jorge Boczkowski
- Univ Paris Est Créteil, INSERM, IMRB, FHU Senec, F-94010, Créteil, France
| | - Laurent Boyer
- Univ Paris Est Créteil, INSERM, IMRB, FHU Senec, F-94010, Créteil, France; AP-HP, Hôpital Henri Mondor, Département de Physiologie-Explorations Fonctionnelles, F-94010, Créteil, France.
| |
Collapse
|
7
|
Huang Q, Li CD, Yang YR, Qin XF, Wang JJ, Zhang X, Du XN, Yang X, Wang Y, Li L, Mu M, Lv Z, Cui Y, Huang K, Corrigan CJ, Wang W, Ying S. Role of the IL-33/ST2 axis in cigarette smoke-induced airways remodelling in chronic obstructive pulmonary disease. Thorax 2021; 76:thoraxjnl-2020-214712. [PMID: 33589512 DOI: 10.1136/thoraxjnl-2020-214712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Efficient therapy and potential prophylaxis are confounded by current ignorance of the pathogenesis of airway remodelling and blockade in COPD. OBJECTIVE To explore the role of the IL-33/ST2 axis in cigarette smoke (CS) exposure-induced airways remodelling. METHODS C57BL/6, BALB/c and IL-1RL1 -/- mice exposed to CS were used to establish an animal surrogate of COPD (air-exposed=5~8, CS-exposed=6~12). Hallmarks of remodelling were measured in mice. Cigarette smoke extract (CSE)-induced proliferation and protein production in vitro by fibroblasts in the presence of anti-interleukin-33 (anti-IL-33) or hST2 antibodies were measured. Expression of IL-33 and ST2 and other remodelling hallmarks were measured, respectively, in bronchoalveolar lavage fluid (BALF) (controls=20, COPD=20), serum (controls=59, COPD=90) and lung tissue sections (controls=11, COPD=7) from patients with COPD and controls. RESULTS Wild-type mice exposed to CS elevated expression of hallmarks of tissue remodelling in the lungs and also in the heart, spleen and kidneys, which were significantly abrogated in the IL-1RL1 -/- mice. Fibroblasts exposed to CSE, compared with control, exhibited early cellular translocation of IL-33, accompanied by proliferation and elevated protein synthesis, all inhabitable by blockade of IL-33/ST2 signalling. Expression of IL-33 and ST2 and hallmarks of tissue remodelling were significantly and proportionally elevated in BALF, serum and tissue samples from patients with COPD. CONCLUSIONS Exposure to CS induces remodelling changes in multiple organs. The data support the hypothesis that CS-induced lung collagen deposition is at least partly a result of CS-induced IL-33 translocation and release from local fibroblasts.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chen Duo Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Ran Yang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao Feng Qin
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Jing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao Nan Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xia Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lun Li
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mi Mu
- Department of Respiratory Medicine, the Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kewu Huang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chris J Corrigan
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Zhang L, Soni S, Hekimoglu E, Berkelhamer S, Çataltepe S. Impaired Autophagic Activity Contributes to the Pathogenesis of Bronchopulmonary Dysplasia. Evidence from Murine and Baboon Models. Am J Respir Cell Mol Biol 2020; 63:338-348. [PMID: 32374619 DOI: 10.1165/rcmb.2019-0445oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common and serious complication associated with preterm birth. The pathogenesis of BPD is incompletely understood, and there is an unmet clinical need for effective treatments. The role of autophagy as a potential cytoprotective mechanism in BPD remains to be fully elucidated. In the present study, we investigated the role and regulation of autophagy in experimental models of BPD. Regulation and cellular distribution of autophagic activity during postnatal lung development and in neonatal hyperoxia-induced lung injury (nHILI) were assessed in the autophagy reporter transgenic GFP-LC3 (GFP-microtubule-associated protein 1A/1B-light chain 3) mouse model. Autophagic activity and its regulation were also examined in a baboon model of BPD. The role of autophagy in nHILI was determined by assessing lung morphometry, injury, and inflammation in autophagy-deficient Beclin 1 heterozygous knockout mice (Becn1+/-). Autophagic activity was induced during alveolarization in control murine lungs and localized primarily to alveolar type II cells and macrophages. Hyperoxia exposure of neonatal murine lungs and BPD in baboon lungs resulted in impaired autophagic activity in association with insufficient AMPK (5'-AMP-activated protein kinase) and increased mTORC1 (mTOR complex 1) activation. Becn1+/- lungs displayed impaired alveolarization, increased alveolar septal thickness, greater neutrophil accumulation, and increased IL-1β concentrations when exposed to nHILI. Becn1+/- alveolar macrophages isolated from nHILI-exposed mice displayed increased expression of proinflammatory genes. In conclusion, basal autophagy is induced during alveolarization and disrupted during progression of nHILI in mice and BPD in baboons. Becn1+/- mice are more susceptible to nHILI, suggesting that preservation of autophagic activity may be an effective protective strategy in BPD.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Neonatology, First Affiliated Hospital of China Medical University, ShenYang, LiaoNing, China; and
| | - Sourabh Soni
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elvin Hekimoglu
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sara Berkelhamer
- Division of Newborn Medicine, State University of New York at Buffalo, Buffalo, New York
| | - Sule Çataltepe
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Bhatia D, Capili A, Choi ME. Mitochondrial dysfunction in kidney injury, inflammation, and disease: Potential therapeutic approaches. Kidney Res Clin Pract 2020; 39:244-258. [PMID: 32868492 PMCID: PMC7530368 DOI: 10.23876/j.krcp.20.082] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are energy-producing organelles that not only satisfy the high metabolic demands of the kidney but sense and respond to kidney injury-induced oxidative stress and inflammation. Kidneys are rich in mitochondria. Mitochondrial dysfunction plays a critical role in the progression of acute kidney injury and chronic kidney disease. Mitochondrial responses to specific stimuli are highly regulated and synergistically modulated by tightly interconnected processes, including mitochondrial dynamics (fission, fusion) and mitophagy. The counterbalance between these processes is essential in maintaining a healthy network of mitochondria. Recent literature suggests that alterations in mitochondrial dynamics are implicated in kidney injury and the progression of kidney diseases. A decrease in mitochondrial fusion promotes fission-induced mitochondrial fragmentation, but a reduction in mitochondrial fission produces excessive mitochondrial elongation. The removal of dysfunctional mitochondria by mitophagy is crucial for their quality control. Defective mitochondrial function disrupts cellular redox potential and can cause cell death. Mitochondrial DNA derived from damaged cells also act as damage-associated molecular patterns to recruit immune cells and the inflammatory response can further exaggerate kidney injury. This review provides a comprehensive overview of the role of mitochondrial dysfunction in acute kidney injury and chronic kidney disease. We discuss the processes that control mitochondrial stress responses to kidney injury and review recent advances in understanding the role of mitochondrial dysfunction in inflammation and tissue damage through the use of different experimental models of kidney disease. We also describe potential mitochondria-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Allyson Capili
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Mary E. Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
- Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
10
|
Gustafsson ÅB. Autophagy: A savior in cigarette smoke-induced cardiac injury. J Mol Cell Cardiol 2020; 148:120-121. [PMID: 32920011 DOI: 10.1016/j.yjmcc.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
11
|
Chen J, Liu J, Lei Y, Liu M. Potential ameliorative effects of epigallocatechin-3-gallate against cigarette smoke exposure induced renal and hepatic deficits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110202. [PMID: 31945511 DOI: 10.1016/j.ecoenv.2020.110202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The environmental pollution caused by cigarette smoke (CS) seriously endangers people's health. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea. In this study, rats were exposed to CS for 90 days. Kidney function was evaluated by detecting the levels of serum creatinine and blood urea nitrogen. Liver function was evaluated by detecting the activities of alanine aminotransferase and aspartate transaminase. The renal and hepatic oxidative stress and inflammation were assessed by detecting the levels of malondialdehyde, reduced glutathione, antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and proinflammatory cytokines. Organ fibrosis was evaluated by observing collagen deposition via masson staining, by examining the hydroxyproline level, by measuring the mRNA levels of fibrosis-associated genes collagen (Col)-1A1 and Col-3A1, as well as by assessing the activity of profibrotic TGF-β1 pathway. Additionally, renal and hepatic epithelial-mesenchymal transition (EMT) were evaluated. It was observed that EGCG ameliorated the renal and hepatic oxidative stress, inflammation, EMT, as well as inhibited the activation of TGF-β1 signaling pathway induced by CS. These results showed that EGCG could attenuate CS-induced renal and hepatic fibrosis.
Collapse
Affiliation(s)
- Jinglou Chen
- The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China; Medical College, Jianghan University, Wuhan, China.
| | - Jianhua Liu
- The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China; Medical College, Jianghan University, Wuhan, China
| | - Yongfang Lei
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Liu
- The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China.
| |
Collapse
|
12
|
Racanelli AC, Choi AMK, Choi ME. Autophagy in chronic lung disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:135-156. [PMID: 32620240 DOI: 10.1016/bs.pmbts.2020.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of chronic lung disease occurs as a consequence of multiple cellular events that involve an initial insult which often leads to the development of chronic inflammation, and the dysregulation of cellular proliferation and cell death mechanisms. Multiple cell types in the lung are key to the respiratory and protective/barrier functions necessary to manage the chronic exposures to environmental, mechanical, and oxidative stressors. Autophagy is essential to lung development and homeostasis, as well as the prevention and development of disease. The cellular process involves the collection and removal of unwanted organelles and proteins through lysosomal degradation. In recent years, investigations have addressed the roles of autophagy and selective autophagy in numerous chronic lung diseases. Here, we highlight recent advances on the role of autophagy in the pathogenesis of asthma, chronic obstructive pulmonary disease and emphysema, pulmonary arterial hypertension, and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Alexandra C Racanelli
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States; NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States; NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Mary E Choi
- NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States; Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
13
|
Li P, Shi M, Maique J, Shaffer J, Yan S, Moe OW, Hu MC. Beclin 1/Bcl-2 complex-dependent autophagy activity modulates renal susceptibility to ischemia-reperfusion injury and mediates renoprotection by Klotho. Am J Physiol Renal Physiol 2020; 318:F772-F792. [PMID: 31984794 PMCID: PMC7099499 DOI: 10.1152/ajprenal.00504.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Klotho- and beclin 1-driven autophagy extends life. We examined the role of beclin 1 in modifying acute kidney injury (AKI) and whether beclin 1 mediates Klotho's known renoprotective action in AKI. AKI was induced by ischemia-reperfusion injury in mice with different levels of autophagy activity by genetic manipulation: wild-type (WT) mice with normal beclin 1 expression and function, mice with normal beclin 1 levels but high activity through knockin of gain-of-function mutant beclin 1 (Becn1F121A), mice with low beclin 1 levels and activity caused by heterozygous global deletion of beclin 1 (Becn1+/-), or mice with extremely low beclin 1 activity from knockin of the mutant constitutively active beclin 1 inhibitor Bcl-2 (Bcl2AAA). Klotho was increased by transgenic overexpression (Tg-Kl) or recombinant Klotho protein administration. After ischemia-reperfusion injury, Becn1F121A mice (high autophagy) had milder AKI and Becn1+/- and Bcl2AAA mice (low autophagy) had more severe AKI than WT mice. Tg-Kl mice had milder AKI, but its renoprotection was partially attenuated in Becn1+/-;Tg-Kl mice and was significantly reduced, although not completely abolished, in Bcl2AAA;Tg-Kl mice. Recombinant Klotho protein conferred more renoprotection from AKI in WT mice than in Becn1+/- or Bcl2AAA mice. Klotho reduced beclin 1/Bcl-2 protein complexes and increased autophagy activity, but this effect was less prominent in mice or cells with Bcl2AAA. Transfected Bcl2AAA or Becn1F123A decreased or increased autophagy activity and rendered cells more susceptible or more resistant to oxidative cytotoxicity, respectively. In conclusion, beclin 1 confers renoprotection by activating autophagy. Klotho protects the kidney partially via disruption of beclin 1/Bcl-2 interactions and enhancement of autophagy activity.
Collapse
Affiliation(s)
- Peng Li
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jenny Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joy Shaffer
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shirley Yan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Zhang WZ, Rice MC, Hoffman KL, Oromendia C, Barjaktarevic IZ, Wells JM, Hastie AT, Labaki WW, Cooper CB, Comellas AP, Criner GJ, Krishnan JA, Paine R, Hansel NN, Bowler RP, Barr RG, Peters SP, Woodruff PG, Curtis JL, Han MK, Ballman KV, Martinez FJ, Choi AM, Nakahira K, Cloonan SM, Choi ME. Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort. JCI Insight 2020; 5:133984. [PMID: 31895696 DOI: 10.1172/jci.insight.133984] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDMitochondrial dysfunction, a proposed mechanism of chronic obstructive pulmonary disease (COPD) pathogenesis, is associated with the leakage of mitochondrial DNA (mtDNA), which may be detected extracellularly in various bodily fluids. Despite evidence for the increased prevalence of chronic kidney disease in COPD subjects and for mitochondrial dysfunction in the kidneys of murine COPD models, whether urine mtDNA (u-mtDNA) associates with measures of disease severity in COPD is unknown.METHODSCell-free u-mtDNA, defined as copy number of mitochondrially encoded NADH dehydrogenase-1 (MTND1) gene, was measured by quantitative PCR and normalized to urine creatinine in cell-free urine samples from participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort. Urine albumin/creatinine ratios (UACR) were measured in the same samples. Associations between u-mtDNA, UACR, and clinical disease parameters - including FEV1 % predicted, clinical measures of exercise tolerance, respiratory symptom burden, and chest CT measures of lung structure - were examined.RESULTSU-mtDNA and UACR levels were measured in never smokers (n = 64), smokers without airflow obstruction (n = 109), participants with mild/moderate COPD (n = 142), and participants with severe COPD (n = 168). U-mtDNA was associated with increased respiratory symptom burden, especially among smokers without COPD. Significant sex differences in u-mtDNA levels were observed, with females having higher u-mtDNA levels across all study subgroups. U-mtDNA associated with worse spirometry and CT emphysema in males only and with worse respiratory symptoms in females only. Similar associations were not found with UACR.CONCLUSIONU-mtDNA levels may help to identify distinct clinical phenotypes and underlying pathobiological differences in males versus females with COPD.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov ( NCT01969344).FUNDINGUS NIH, National Heart, Lung and Blood Institute, supplemented by contributions made through the Foundation for the NIH and the COPD Foundation from AstraZeneca/MedImmune, Bayer, Bellerophon Therapeutics, Boehringer-Ingelheim Pharmaceuticals Inc., Chiesi Farmaceutici S.p.A., Forest Research Institute Inc., GlaxoSmithKline, Grifols Therapeutics Inc., Ikaria Inc., Novartis Pharmaceuticals Corporation, Nycomed GmbH, ProterixBio, Regeneron Pharmaceuticals Inc., Sanofi, Sunovion, Takeda Pharmaceutical Company, and Theravance Biopharma and Mylan.
Collapse
Affiliation(s)
- William Z Zhang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Michelle C Rice
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, and
| | - Katherine L Hoffman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Clara Oromendia
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Igor Z Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, California, USA
| | - J Michael Wells
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Annette T Hastie
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Christopher B Cooper
- Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, California, USA
| | - Alejandro P Comellas
- Division of Pulmonary and Critical Care, University of Iowa, Iowa City, Iowa, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care Medicine, National Jewish Health, Denver, Colorado, USA
| | - R Graham Barr
- Columbia University Medical Center, New York, New York, USA
| | - Stephen P Peters
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Prescott G Woodruff
- Division of Pulmonary and Critical Care Medicine, UCSF, School of Medicine, San Francisco, California, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.,Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Meilan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Karla V Ballman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA
| | - Mary E Choi
- New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA.,Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, and
| | | |
Collapse
|
15
|
Bhatia D, Chung KP, Nakahira K, Patino E, Rice MC, Torres LK, Muthukumar T, Choi AM, Akchurin OM, Choi ME. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 2019; 4:132826. [PMID: 31639106 DOI: 10.1172/jci.insight.132826] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022] Open
Abstract
Mitophagy, by maintaining mitochondrial quality control, plays a key role in maintaining kidney function and is impaired in pathologic states. Macrophages are well known for their pathogenic role in kidney fibrosis. Here, we report that PINK1/Parkin-mediated mitophagy in macrophages is compromised in experimental and human kidney fibrosis. We demonstrate downregulation of mitophagy regulators mitofusin-2 (MFN2) and Parkin downstream of PINK1 in kidney fibrosis. Loss of either Pink1 or Prkn promoted renal extracellular matrix accumulation and frequency of profibrotic/M2 macrophages. Pink1-/- or Prkn-/- BM-derived macrophages (BMDMs) showed enhanced expression of rictor. Mitochondria from TGF-β1-treated Pink1-/- BMDMs exhibited increased superoxide levels, along with reduced respiration and ATP production. In addition, mitophagy in macrophages involves PINK1-mediated phosphorylation of downstream MFN2, MFN2-facilitated recruitment of Parkin to damaged mitochondria, and macrophage-specific deletion of Mfn2 aggravates kidney fibrosis. Moreover, mitophagy regulators were downregulated in human CKD kidney and TGF-β1-treated human renal macrophages, whereas Mdivi1 treatment suppressed mitophagy mediators and promoted fibrotic response. Taken together, our study is the first to our knowledge to demonstrate that macrophage mitophagy plays a protective role against kidney fibrosis via regulating the PINK1/MFN2/Parkin-mediated pathway.
Collapse
Affiliation(s)
| | - Kuei-Pin Chung
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,National Taiwan University Hospital, Taipei, Taiwan
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | - Lisa K Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension and.,NewYork-Presbyterian Hospital, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,NewYork-Presbyterian Hospital, New York, New York, USA
| | - Oleh M Akchurin
- NewYork-Presbyterian Hospital, New York, New York, USA.,Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Mary E Choi
- Division of Nephrology and Hypertension and.,NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
16
|
Abstract
Autophagy is a cellular homeostatic program for the turnover of cellular organelles and proteins, in which double-membraned vesicles (autophagosomes) sequester cytoplasmic cargos, which are subsequently delivered to the lysosome for degradation. Emerging evidence implicates autophagy as an important modulator of human disease. Macroautophagy and selective autophagy (e.g., mitophagy, aggrephagy) can influence cellular processes, including cell death, inflammation, and immune responses, and thereby exert both adaptive and maladaptive roles in disease pathogenesis. Autophagy has been implicated in acute kidney injury, which can arise in response to nephrotoxins, sepsis, and ischemia/reperfusion, and in chronic kidney diseases. The latter includes comorbidities of diabetes and recent evidence for chronic obstructive pulmonary disease-associated kidney injury. Roles of autophagy in polycystic kidney disease and kidney cancer have also been described. Targeting the autophagy pathway may have therapeutic benefit in the treatment of kidney disorders.
Collapse
Affiliation(s)
- Mary E Choi
- Joan and Sanford I. Weill Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY 10065, USA; .,NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| |
Collapse
|
17
|
Molecular Interactions Between Reactive Oxygen Species and Autophagy in Kidney Disease. Int J Mol Sci 2019; 20:ijms20153791. [PMID: 31382550 PMCID: PMC6696055 DOI: 10.3390/ijms20153791] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are highly reactive signaling molecules that maintain redox homeostasis in mammalian cells. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of ROS, culminating in oxidative stress and the associated oxidative damage of cellular components. ROS and oxidative stress play a vital role in the pathogenesis of acute kidney injury and chronic kidney disease, and it is well documented that increased oxidative stress in patients enhances the progression of renal diseases. Oxidative stress activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular oxidized and damaged macromolecules and dysfunctional organelles. In this review, we report the current understanding of the molecular regulation of autophagy in response to oxidative stress in general and in the pathogenesis of kidney diseases. We summarize how the molecular interactions between ROS and autophagy involve ROS-mediated activation of autophagy and autophagy-mediated reduction of oxidative stress. In particular, we describe how ROS impact various signaling pathways of autophagy, including mTORC1-ULK1, AMPK-mTORC1-ULK1, and Keap1-Nrf2-p62, as well as selective autophagy including mitophagy and pexophagy. Precise elucidation of the molecular mechanisms of interactions between ROS and autophagy in the pathogenesis of renal diseases may identify novel targets for development of drugs for preventing renal injury.
Collapse
|