1
|
Morris SB, Ocadiz-Ruiz R, Asai N, Malinczak CA, Rasky AJ, Lombardo GK, Velarde EM, Ptaschinski C, Zemans RL, Lukacs NW, Fonseca W. Long-term alterations in lung epithelial cells after EL-RSV infection exacerbate allergic responses through IL-1β-induced pathways. Mucosal Immunol 2024; 17:1072-1088. [PMID: 39069078 PMCID: PMC11610113 DOI: 10.1016/j.mucimm.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Early-life (EL) respiratory infections increase pulmonary disease risk, especially EL-Respiratory Syncytial Virus (EL-RSV) infections linked to asthma. Mechanisms underlying asthma predisposition remain unknown. In this study, we examined the long-term effects on the lung after four weeks post EL-RSV infection. We identified alterations in the lung epithelial cell, with a rise in the percentage of alveolar type 2 epithelial cells (AT2) and a decreased percentage of cells in the AT1 and AT2-AT1 subclusters, as well as upregulation of Bmp2 and Krt8 genes that are associated with AT2-AT1 trans-differentiation, suggesting potential defects in lung repair processes. We identified persistent upregulation of asthma-associated genes, including Il33. EL-RSV-infected mice allergen-challenged exhibited exacerbated allergic response, with significant upregulation of Il33 in the lung and AT2 cells. Similar long-term effects were observed in mice exposed to EL-IL-1β. Notably, treatment with IL-1ra during acute EL-RSV infection mitigated the long-term alveolar alterations and the allergen-exacerbated response. Finally, epigenetic modifications in the promoter of the Il33 gene were detected in AT2 cells harvested from EL-RSV and EL-IL1β groups, suggesting that long-term alteration in the epithelium after RSV infection is dependent on the IL-1β pathway. This study provides insight into the molecular mechanisms of asthma predisposition after RSV infection.
Collapse
Affiliation(s)
- Susan B Morris
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ramon Ocadiz-Ruiz
- Department of Bioengineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nobuhiro Asai
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grace K Lombardo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan M Velarde
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel L Zemans
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Bartman CM, Nesbitt L, Lee KK, Khalfaoui L, Fang Y, Pabelick CM, Prakash YS. BMAL1 sex-specific effects in the neonatal mouse airway exposed to moderate hyperoxia. Physiol Rep 2024; 12:e16122. [PMID: 38942729 PMCID: PMC11213646 DOI: 10.14814/phy2.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Supplemental O2 (hyperoxia) is a critical intervention for premature infants (<34 weeks) but consequently is associated with development of bronchial airway hyperreactivity (AHR) and asthma. Clinical practice shifted toward the use of moderate hyperoxia (<60% O2), but risk for subsequent airway disease remains. In mouse models of moderate hyperoxia, neonatal mice have increased AHR with effects on airway smooth muscle (ASM), a cell type involved in airway tone, bronchodilation, and remodeling. Understanding mechanisms by which moderate O2 during the perinatal period initiates sustained airway changes is critical to drive therapeutic advancements toward treating airway diseases. We propose that cellular clock factor BMAL1 is functionally important in developing mouse airways. In adult mice, cellular clocks target pathways highly relevant to asthma pathophysiology and Bmal1 deletion increases inflammatory response, worsens lung function, and impacts survival outcomes. Our understanding of BMAL1 in the developing lung is limited, but our previous findings show functional relevance of clocks in human fetal ASM exposed to O2. Here, we characterize Bmal1 in our established mouse neonatal hyperoxia model. Our data show that Bmal1 KO deleteriously impacts the developing lung in the context of O2 and these data highlight the importance of neonatal sex in understanding airway disease.
Collapse
Affiliation(s)
- Colleen M. Bartman
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Kenge K. Lee
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Yun‐Hua Fang
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
3
|
Ninke T, Eifer A, Dieterich HJ, Groene P. [Characteristics of the fetal and infant respiratory system : What the pediatric anesthetist should know]. DIE ANAESTHESIOLOGIE 2024; 73:65-74. [PMID: 38189808 DOI: 10.1007/s00101-023-01364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/09/2024]
Abstract
Respiratory complications are the most frequent incidents in pediatric anesthesia after cardiac events. The pediatric respiratory physiology and airway anatomy are responsible for the particular respiratory vulnerability in this stage of life. This article explains the aspects of pulmonary embryogenesis relevant for anesthesia and their impact on the respiration of preterm infants and neonates. The respiratory distress syndrome and bronchopulmonary dysplasia are highlighted as well as the predisposition to apnea of preterm infants and neonates. Due to the anatomical characteristics, the low size ratios and the significantly shorter apnea tolerance, airway management in children frequently represents a challenge. This article gives useful assistance and provides an overview of formulas for calculating the appropriate tube size and depth of insertion. Finally, the pathophysiology and adequate treatment of laryngospasm are explained.
Collapse
Affiliation(s)
- T Ninke
- Klinik für Anaesthesiologie, Campus Innenstadt, LMU Klinikum, LMU München, Nußbaumstraße 20, 80336, München, Deutschland.
| | - A Eifer
- Klinik für Anaesthesiologie, Campus Innenstadt, LMU Klinikum, LMU München, Nußbaumstraße 20, 80336, München, Deutschland
| | - H-J Dieterich
- Klinik für Anaesthesiologie, Campus Innenstadt, LMU Klinikum, LMU München, Nußbaumstraße 20, 80336, München, Deutschland
| | - P Groene
- Klinik für Anaesthesiologie, Campus Innenstadt, LMU Klinikum, LMU München, Nußbaumstraße 20, 80336, München, Deutschland
| |
Collapse
|
4
|
Abstract
Organismal development requires the reproducible unfolding of an ordered sequence of discrete steps (cell fate determination, migration, tissue folding, etc.) in both time and space. Here, we review the mechanisms that grant temporal specificity to developmental steps, including molecular clocks and timers. Individual timing mechanisms must be coordinated with each other to maintain the overall developmental sequence. However, phenotypic novelties can also arise through the modification of temporal patterns over the course of evolution. Two main types of variation in temporal patterning characterize interspecies differences in developmental time: allochrony, where the overall developmental sequence is either accelerated or slowed down while maintaining the relative duration of individual steps, and heterochrony, where the duration of specific developmental steps is altered relative to the rest. New advances in in vitro modeling of mammalian development using stem cells have recently enabled the revival of mechanistic studies of allochrony and heterochrony. In both cases, differences in the rate of basic cellular functions such as splicing, translation, protein degradation, and metabolism seem to underlie differences in developmental time. In the coming years, these studies should identify the genetic differences that drive divergence in developmental time between species.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA;
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Noël A, Yilmaz S, Farrow T, Schexnayder M, Eickelberg O, Jelesijevic T. Sex-Specific Alterations of the Lung Transcriptome at Birth in Mouse Offspring Prenatally Exposed to Vanilla-Flavored E-Cigarette Aerosols and Enhanced Susceptibility to Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3710. [PMID: 36834405 PMCID: PMC9967225 DOI: 10.3390/ijerph20043710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Currently, approximately 8 million adult Americans use electronic cigarettes (e-cigs) daily, including women of childbearing age. It is known that more than 10% of women smoke during their pregnancy, and recent surveys show that rates of maternal vaping are similar to rates of maternal cigarette smoking. However, the effects of inhaling e-cig aerosol on the health of fetuses remain unknown. The objective of the present study was to increase our understanding of the molecular effects caused by in utero exposures to e-cig aerosols on developing mouse lungs and, later in life, on the offspring's susceptibility to developing asthma. METHODS Pregnant mice were exposed throughout gestation to either filtered air or vanilla-flavored e-cig aerosols containing 18 mg/mL of nicotine. Male and female exposed mouse offspring were sacrificed at birth, and then the lung transcriptome was evaluated. Additionally, once sub-groups of male offspring mice reached 4 weeks of age, they were challenged with house dust mites (HDMs) for 3 weeks to assess asthmatic responses. RESULTS The lung transcriptomic responses of the mouse offspring at birth showed that in utero vanilla-flavored e-cig aerosol exposure significantly regulated 88 genes in males (62 genes were up-regulated and 26 genes were down-regulated), and 65 genes were significantly regulated in females (17 genes were up-regulated and 48 genes were down-regulated). Gene network analyses revealed that in utero e-cig aerosol exposure affected canonical pathways associated with CD28 signaling in T helper cells, the role of NFAT in the regulation of immune responses, and phospholipase C signaling in males, whereas the dysregulated genes in the female offspring were associated with NRF2-mediated oxidative stress responses. Moreover, we found that in utero exposures to vanilla-flavored e-cig aerosol exacerbated HDM-induced asthma in 7-week-old male mouse offspring compared to respective in utero air + HDM controls. CONCLUSIONS Overall, these data demonstrate that in utero e-cig aerosol exposure alters the developing mouse lung transcriptome at birth in a sex-specific manner and provide evidence that the inhalation of e-cig aerosols is detrimental to the respiratory health of offspring by increasing the offspring' susceptibility to developing lung diseases later in life.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sultan Yilmaz
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tori Farrow
- Department of Environmental Toxicology, Southern University and A & M College, Baton Rouge, LA 70813, USA
| | | | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tomislav Jelesijevic
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Chen H, Chen X, Hu L, Ye C, Zhang J, Cheng G, Yang L, Lu Y, Dong X, Zhou W. Rare-variant Collapsing Analyses Identified Risk Genes for Neonatal Acute Respiratory Distress Syndrome. Comput Struct Biotechnol J 2022; 20:5047-5053. [PMID: 36187926 PMCID: PMC9486038 DOI: 10.1016/j.csbj.2022.08.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/03/2022] Open
Abstract
Background Results Conclusions
Collapse
|
7
|
Issah Y, Naik A, Tang SY, Forrest K, Brooks TG, Lahens N, Theken KN, Mermigos M, Sehgal A, Worthen GS, FitzGerald GA, Sengupta S. Loss of circadian protection against influenza infection in adult mice exposed to hyperoxia as neonates. eLife 2021; 10:e61241. [PMID: 33650487 PMCID: PMC7924938 DOI: 10.7554/elife.61241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Adverse early-life exposures have a lasting negative impact on health. Neonatal hyperoxia that is a risk factor for bronchopulmonary dysplasia confers susceptibility to influenza A virus (IAV) infection later in life. Given our previous findings that the circadian clock protects against IAV, we asked if the long-term impact of neonatal hyperoxia vis-à-vis IAV infection includes circadian disruption. Here, we show that neonatal hyperoxia abolishes the clock-mediated time of day protection from IAV in mice, independent of viral burden through host tolerance pathways. We discovered that the lung intrinsic clock (and not the central or immune clocks) mediated this dysregulation. Loss of circadian protein, Bmal1, in alveolar type 2 (AT2) cells recapitulates the increased mortality, loss of temporal gating, and other key features of hyperoxia-exposed animals. Our data suggest a novel role for the circadian clock in AT2 cells in mediating long-term effects of early-life exposures to the lungs.
Collapse
Affiliation(s)
- Yasmine Issah
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Amruta Naik
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Soon Y Tang
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
| | - Kaitlyn Forrest
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Thomas G Brooks
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Lahens
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
| | - Katherine N Theken
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
- Systems Pharmacology University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Mara Mermigos
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Amita Sehgal
- Chronobiology and Sleep Institute, University of PennsylvaniaPhiladelphiaUnited States
- Department of Neuroscience, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - George S Worthen
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Garret A FitzGerald
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
- Systems Pharmacology University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
- Chronobiology and Sleep Institute, University of PennsylvaniaPhiladelphiaUnited States
| | - Shaon Sengupta
- The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Institute of Translational Medicine and Therapeutics (ITMAT), University of PennsylvaniaPhiladelphiaUnited States
- Chronobiology and Sleep Institute, University of PennsylvaniaPhiladelphiaUnited States
- Department of Pediatrics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| |
Collapse
|
8
|
Bartman CM, Matveyenko A, Pabelick C, Prakash YS. Cellular clocks in hyperoxia effects on [Ca 2+] i regulation in developing human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 320:L451-L466. [PMID: 33404366 PMCID: PMC8294620 DOI: 10.1152/ajplung.00406.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 01/06/2023] Open
Abstract
Supplemental O2 (hyperoxia) is necessary for preterm infant survival but is associated with development of bronchial airway hyperreactivity and childhood asthma. Understanding early mechanisms that link hyperoxia to altered airway structure and function are key to developing advanced therapies. We previously showed that even moderate hyperoxia (50% O2) enhances intracellular calcium ([Ca2+]i) and proliferation of human fetal airway smooth muscle (fASM), thereby facilitating bronchoconstriction and remodeling. Here, we introduce cellular clock biology as a novel mechanism linking early oxygen exposure to airway biology. Peripheral, intracellular clocks are a network of transcription-translation feedback loops that produce circadian oscillations with downstream targets highly relevant to airway function and asthma. Premature infants suffer circadian disruption whereas entrainment strategies improve outcomes, highlighting the need to understand relationships between clocks and developing airways. We hypothesized that hyperoxia impacts clock function in fASM and that the clock can be leveraged to attenuate deleterious effects of O2 on the developing airway. We report that human fASM express core clock machinery (PER1, PER2, CRY1, ARNTL/BMAL1, CLOCK) that is responsive to dexamethasone (Dex) and altered by O2. Disruption of the clock via siRNA-mediated PER1 or ARNTL knockdown alters store-operated calcium entry (SOCE) and [Ca2+]i response to histamine in hyperoxia. Effects of O2 on [Ca2+]i are rescued by driving expression of clock proteins, via effects on the Ca2+ channels IP3R and Orai1. These data reveal a functional fASM clock that modulates [Ca2+]i regulation, particularly in hyperoxia. Harnessing clock biology may be a novel therapeutic consideration for neonatal airway diseases following prematurity.
Collapse
Affiliation(s)
- Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Christina Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Bartman CM, Prakash YS. Bringing the cellular clock into understanding lung disease: it's time, period! Am J Physiol Lung Cell Mol Physiol 2020; 319:L273-L276. [PMID: 32639868 DOI: 10.1152/ajplung.00320.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
|