1
|
Huo J, Yang HQ. Electrophysiological analysis of cardiac K ATP channel. BIOPHYSICS REPORTS 2025; 11:77-86. [PMID: 40308939 PMCID: PMC12035747 DOI: 10.52601/bpr.2024.240023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/23/2024] [Indexed: 05/02/2025] Open
Abstract
ATP-sensitive potassium (KATP) channels are integral components in excitable cells, particularly in cardiomyocytes, serving as critical regulators of cellular metabolism and electrical excitability. In instances of prolonged oxygen deprivation or heightened metabolic requirements, the opening of KATP channels enables potassium efflux by virtue of a diminished ATP/ADP ratio. This process aids in maintaining membrane potential stability, thereby mitigating excessive excitability and cellular contraction, ultimately contributing significantly to cardiac protection. The accurate isolation of intact single cardiomyocytes and the electrophysiological evaluation of KATP channels are pivotal processes in research on KATP channels in cardiomyocytes in vitro. Here, we present a comprehensive protocol not only for the efficient isolation of viable cardiomyocytes from the adult mouse through the Langendorff perfusion method, but also for the recording of KATP channel currents in single cardiomyocytes employing patch clamp technique.
Collapse
Affiliation(s)
- Jianyi Huo
- Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hua-Qian Yang
- Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
2
|
Antonacci M, Maqoud F, Di Turi A, Miciaccia M, Perrone MG, Scilimati A, Tricarico D. KATP Channel Inhibitors Reduce Cell Proliferation Through Upregulation of H3K27ac in Diffuse Intrinsic Pontine Glioma: A Functional Expression Investigation. Cancers (Basel) 2025; 17:358. [PMID: 39941728 PMCID: PMC11816144 DOI: 10.3390/cancers17030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma [DIPG] is a fatal pediatric disease characterized by a post-translational modification, a replacement of lysine by methionine in position 27 of the N-terminal [H3K27M] tail of histone 3 isoform-1 [H3.1] or histone 3 isoform-3 [H3.3], respectively, expressed in the DIPG-36 and DIPG-50 cells. We investigated the role of cation channels in DIPG cells for the first time and the effects of ATP-sensitive K+[KATP] and TRPV1 channel modulators. METHODS Experiments were performed using "in vitro" cytotoxic assays combined with the patch clamp technique, RT-PCR, Western blot, and flow cytometry assays. RESULTS The most effective anti-proliferative drugs were repaglinide and glibenclamide after short and long-term incubation [6-96 h]. These drugs reduced macroscopic currents of the DIPG cells recorded in whole-cell patch clamp. Repaglinide concentration dependently enhanced the target protein H3K27ac in Western blotting after 48 h of incubation. This drug reduced cell diameter and enhanced cleaved caspase-3 in DIPG cells; total AKT/mTOR levels and phospho-mTOR were downregulated in DIPG-36. CONCLUSIONS KATP and TRPV1 channels are functionally expressed, and sulphonylureas are effective antiproliferative upregulating H3K27ac with apoptosis in DIPG cells and the sub-micromolar concentrations in DIPG-50.
Collapse
Affiliation(s)
- Marina Antonacci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.A.); (F.M.); (A.D.T.); (M.M.); (M.G.P.)
| | - Fatima Maqoud
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.A.); (F.M.); (A.D.T.); (M.M.); (M.G.P.)
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology Saverio de Bellis, I.R.C.C.S. Research Hospital, 70013 Castellana Grotte, Italy
| | - Annamaria Di Turi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.A.); (F.M.); (A.D.T.); (M.M.); (M.G.P.)
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.A.); (F.M.); (A.D.T.); (M.M.); (M.G.P.)
| | - Maria Grazia Perrone
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.A.); (F.M.); (A.D.T.); (M.M.); (M.G.P.)
| | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.A.); (F.M.); (A.D.T.); (M.M.); (M.G.P.)
| | - Domenico Tricarico
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.A.); (F.M.); (A.D.T.); (M.M.); (M.G.P.)
| |
Collapse
|
3
|
Yin B, Yu X, Fu X, Liu X, Xiao J, Yu L, Nie Y, Zhang Y. Expression and influence of KATP in umbilical artery smooth muscle cells of patients with hypertensive disorders of pregnancy. Sci Rep 2024; 14:7517. [PMID: 38553483 PMCID: PMC10980746 DOI: 10.1038/s41598-024-57885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
The objective of this study is to investigate the expression and influence of adenosine triphosphate-sensitive potassium channel (KATP) in human umbilical arterial smooth muscle cells (HUASMCs) of patients with hypertensive disorders of pregnancy (HDP). Western blotting was used to detect the protein expression levels of KATP inwardly rectifying potassium channel (Kir)6.1 and sulphonylurea receptor (SUR)2B subunits in HUASMCs from patients with normal parturients (NP), gestational hypertension (GH), chronic hypertension (CH), preeclampsia (PE) and chronic hypertension with superimposed preeclampsia (CHSP), respectively. There was no significant difference in the protein expression of Kir6.1 subunit in NP group, GH group, CH group, PE group and CHSP group (P > 0.05). The protein expression of SUR2B subunit was gradually decreased in NP group, GH group, CH group, PE group and CHSP group, with statistically significant difference among the groups (P < 0.05). The altered expression level of KATP SUR2B subunit may be involved in the pathogenesis of HDP. The severity of HDP may be related to the degree of decrease of SUR2B subunit.
Collapse
Affiliation(s)
- Benlan Yin
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, No.8, Kangcheng Road, Luzhou, 646000, Sichuan, China
| | - Xiaotong Yu
- Department of Clinical Medicine, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou, Sichuan, China
| | - Xiaodong Fu
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, No.8, Kangcheng Road, Luzhou, 646000, Sichuan, China
| | - Xiyuan Liu
- Department of Clinical Medicine, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou, Sichuan, China
| | - Jing Xiao
- Department of Clinical Medicine, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou, Sichuan, China
| | - Linli Yu
- Department of Clinical Medicine, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou, Sichuan, China
| | - Yunying Nie
- Department of Clinical Medicine, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou, Sichuan, China
| | - Yujiao Zhang
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, No.8, Kangcheng Road, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Khoshavi Najafabadi F, Sadraei H, Mehranfard N, Ghasemi M. Motor Dysfunction of Gastric Antral Smooth Muscle in Diabetic Rats: Contribution of ATP-Dependent Potassium Channels. Adv Biomed Res 2023; 12:199. [PMID: 37694236 PMCID: PMC10492619 DOI: 10.4103/abr.abr_44_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 09/12/2023] Open
Abstract
Background The goal of the current research was to further elucidate the role of adenosine triphosphate (ATP)-sensitive potassium (KATP) channels in the motility and contractility force of gastric smooth muscle of diabetic rats. Materials and Methods Male Wistar rats (190-230 g) were grouped into control and streptozotocin (STZ)-induced diabetes (55 mg/kg) rats. Thirty days later, gastric muscle contractility was measured using a myograph and a force transducer of antral segments immersed in a tissue bath. Gastric emptying response was measured through feeding of standard pellet. Furthermore, the expression of KATP channel subunits in antral smooth muscle was determined by western blot technique. Results The amplitude of KCl-evoked twitch contractions of diabetic antral strips was about 25% more than control (P < 0.05). Application of minoxidil, a KATP channel opener, dose dependently decreased the force of twitch contractions in both normal and diabetic antral strips. Application of 10 μM glibenclamide, a KATP channel blocker, did not antagonize the minoxidil-induced relaxation of antral strips. Diabetic gastric emptying was faster than normal, although not significant. Despite the relaxant effect of minoxidil on gastric emptying rate in normal rats (P < 0.05), this effect was not observed in diabetic rats. Also, glibenclamide increased gastric emptying and antagonized minoxidil-induced relaxation in normal rats (P < 0.05). Furthermore, the expression of KATP Kir6.1 and SUR2B subunits was substantially reduced in antral smooth muscle in diabetic condition (P < 0.01). Conclusion These results propose that KATP channels may contribute to the development of gastric motility disorders in diabetes.
Collapse
Affiliation(s)
- Fatameh Khoshavi Najafabadi
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Sadraei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Abstract
Pericytes, attached to the surface of capillaries, play an important role in regulating local blood flow. Using optogenetic tools and genetically encoded reporters in conjunction with confocal and multiphoton imaging techniques, the 3D structure, anatomical organization, and physiology of pericytes have recently been the subject of detailed examination. This work has revealed novel functions of pericytes and morphological features such as tunneling nanotubes in brain and tunneling microtubes in heart. Here, we discuss the state of our current understanding of the roles of pericytes in blood flow control in brain and heart, where functions may differ due to the distinct spatiotemporal metabolic requirements of these tissues. We also outline the novel concept of electro-metabolic signaling, a universal mechanistic framework that links tissue metabolic state with blood flow regulation by pericytes and vascular smooth muscle cells, with capillary KATP and Kir2.1 channels as primary sensors. Finally, we present major unresolved questions and outline how they can be addressed.
Collapse
Affiliation(s)
- Thomas A Longden
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Guiling Zhao
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ashwini Hariharan
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - W Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Wang Z, Bian W, Yan Y, Zhang DM. Functional Regulation of K ATP Channels and Mutant Insight Into Clinical Therapeutic Strategies in Cardiovascular Diseases. Front Pharmacol 2022; 13:868401. [PMID: 35837280 PMCID: PMC9274113 DOI: 10.3389/fphar.2022.868401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
ATP-sensitive potassium channels (KATP channels) play pivotal roles in excitable cells and link cellular metabolism with membrane excitability. The action potential converts electricity into dynamics by ion channel-mediated ion exchange to generate systole, involved in every heartbeat. Activation of the KATP channel repolarizes the membrane potential and decreases early afterdepolarization (EAD)-mediated arrhythmias. KATP channels in cardiomyocytes have less function under physiological conditions but they open during severe and prolonged anoxia due to a reduced ATP/ADP ratio, lessening cellular excitability and thus preventing action potential generation and cell contraction. Small active molecules activate and enhance the opening of the KATP channel, which induces the repolarization of the membrane and decreases the occurrence of malignant arrhythmia. Accumulated evidence indicates that mutation of KATP channels deteriorates the regulatory roles in mutation-related diseases. However, patients with mutations in KATP channels still have no efficient treatment. Hence, in this study, we describe the role of KATP channels and subunits in angiocardiopathy, summarize the mutations of the KATP channels and the functional regulation of small active molecules in KATP channels, elucidate the potential mechanisms of mutant KATP channels and provide insight into clinical therapeutic strategies.
Collapse
Affiliation(s)
- Zhicheng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weikang Bian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yufeng Yan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Watamura N, Kakiya N, Nilsson P, Tsubuki S, Kamano N, Takahashi M, Hashimoto S, Sasaguri H, Saito T, Saido TC. Somatostatin-evoked Aβ catabolism in the brain: Mechanistic involvement of α-endosulfine-K ATP channel pathway. Mol Psychiatry 2022; 27:1816-1828. [PMID: 34737456 PMCID: PMC9095489 DOI: 10.1038/s41380-021-01368-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is characterized by the deposition of amyloid β peptide (Aβ) in the brain. The neuropeptide somatostatin (SST) regulates Aβ catabolism by enhancing neprilysin (NEP)-catalyzed proteolytic degradation. However, the mechanism by which SST regulates NEP activity remains unclear. Here, we identified α-endosulfine (ENSA), an endogenous ligand of the ATP-sensitive potassium (KATP) channel, as a negative regulator of NEP downstream of SST signaling. The expression of ENSA is significantly increased in AD mouse models and in patients with AD. In addition, NEP directly contributes to the degradation of ENSA, suggesting a substrate-dependent feedback loop regulating NEP activity. We also discovered the specific KATP channel subtype that modulates NEP activity, resulting in the Aβ levels altered in the brain. Pharmacological intervention targeting the particular KATP channel attenuated Aβ deposition, with impaired memory function rescued via the NEP activation in our AD mouse model. Our findings provide a mechanism explaining the molecular link between KATP channel and NEP activation, and give new insights into alternative strategies to prevent AD.
Collapse
Affiliation(s)
- Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Naomasa Kakiya
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Karolinska Institutet, Center for Alzheimer Research, Dept. of Neurobiology, Care Science and Society, Division for Neurogeriatrics, Visionsgatan 4, Solna, 171-64, Sweden
| | - Satoshi Tsubuki
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mika Takahashi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
8
|
Yu T, Zhang L, Wang Y, Shen X, Lin L, Tang Y. Effect of visfatin on K ATP channel upregulation in colonic smooth muscle cells in diabetic colon dysmotility. Aging (Albany NY) 2022; 14:1292-1306. [PMID: 35113808 PMCID: PMC8876906 DOI: 10.18632/aging.203871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The mechanisms of diabetes-related gastrointestinal dysmotility remains unclear. This study aimed to investigate the effect and mechanisms of proinflammatory adipokine visfatin (VF) in the contractile dysfunction of diabetic rat colonic smooth muscle. Twenty Sprague-Dawley rats were randomly divided into control and type 2 diabetes mellitus groups. VF levels in the serum and colonic muscle tissues were tested, the time of the bead ejection and contractility of colonic smooth muscle strips were measured, and the expression of ATP-sensitive potassium (KATP) channels in the colonic muscle tissues was analyzed. In vitro, we tested VF's effects on intracellular reactive oxygen species (ROS) levels, NF-κB's nuclear transcription, KATP channel expression, intracellular Ca2+ concentrations, and myosin light chain (MLC) phosphorylation in colonic smooth muscle cells (CSMCs). The effects of NAC (ROS inhibitor) and BAY 11-7082 (NF-κB inhibitor) on KATP expression were also tested. Diabetic rats showed elevated VF levels in serum and colonic muscle tissues, a delayed distal colon ejection response time, weakened contractility of colonic smooth muscle strips, and increased KATP channel expression in colonic muscle tissues. VF significantly inhibited the contractility of colonic smooth muscle strips from normal rats. In cultured CSMCs, VF caused ROS overload, increased NF-κB nuclear transcription activity and increased expression of Kir6.1, eventually reducing intracellular Ca2+ levels and MLC phosphorylation. NAC and BAY 11-7082 inhibited the VF-induced Kir6.1 upregulation. In conclusion, VF may cause contractile dysfunction of CSMCs by upregulating the expression of the Kir6.1 subunit of KATP channels via the ROS/NF-κB pathway and interfering with Ca2+ signaling.
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lin Zhang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210029, Jiangsu Province, China
| | - Yan Wang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiaoxue Shen
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yurong Tang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|