1
|
Chang J, Liang Y, Sun P, Fang X, Sun Q. Molecular and Cellular Mechanisms Linking Chronic Kidney Disease and Sarcopenia in Aging: An Integrated Perspective. Clin Interv Aging 2025; 20:449-458. [PMID: 40226833 PMCID: PMC11992981 DOI: 10.2147/cia.s516704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
Chronic kidney disease (CKD) and sarcopenia are prevalent conditions among the aging population, contributing significantly to morbidity and mortality. CKD exacerbates sarcopenia through complex molecular and cellular mechanisms, including chronic inflammation, oxidative stress, uremic toxin accumulation, protein-energy wasting, and hormonal dysregulation. This review explores the interplay between CKD and sarcopenia, focusing on key pathways such as mTOR signaling, the AMPK-FOXO axis, and myostatin/activin pathways that regulate muscle protein metabolism. Additionally, mitochondrial dysfunction and impaired autophagy emerge as critical contributors to muscle wasting. Clinical implications include identifying biomarkers such as interleukin-6, tumor necrosis factor-alpha, myostatin, and Klotho for diagnosis and monitoring, while potential therapeutic strategies involve targeting the AMPK/mTOR pathway, enhancing mitochondrial function, and inhibiting myostatin activity. Emerging approaches, including multi-omics technologies and AI-driven personalized treatment models, offer innovative solutions for understanding and managing the CKD-sarcopenia axis. This review underscores the need for integrated therapeutic strategies and multidisciplinary collaboration to mitigate muscle wasting and improve outcomes in CKD patients. By bridging molecular insights with clinical applications, this work aims to inform future research and translational efforts in addressing this critical healthcare challenge.
Collapse
Affiliation(s)
- Jing Chang
- Department of Internal Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Yuer Liang
- Department of Nephrology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Pingping Sun
- Department of Internal Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Xiangyang Fang
- Department of Internal Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Qianmei Sun
- Department of Nephrology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| |
Collapse
|
2
|
Rahbar Saadat Y, Abbasi A, Hejazian SS, Hekmatshoar Y, Ardalan M, Farnood F, Zununi Vahed S. Combating chronic kidney disease-associated cachexia: A literature review of recent therapeutic approaches. BMC Nephrol 2025; 26:133. [PMID: 40069669 PMCID: PMC11895341 DOI: 10.1186/s12882-025-04057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/05/2025] [Indexed: 03/15/2025] Open
Abstract
In 2008, the Society on Sarcopenia, Cachexia, and Wasting Disorders introduced a generic definition for all types of cachexia: "a complex metabolic syndrome associated with the underlying illness characterized by a loss of muscle, with or without fat loss". It is well-known that the presence of inflammatory burden in end-stage renal disease (ESRD) patients may lead to the evolution of cachexia. Since the etiology of cachexia in chronic kidney disease (CKD) is multifactorial, thus the successful treatment must involve several concomitant measures (nutritional interventions, appetite stimulants, and anti-inflammatory pharmacologic agents) to provide integrated effective therapeutic modalities to combat causative factors and alleviate the outcomes of patients. Given the high mortality rate associated with cachexia, developing new therapeutic modalities are prerequisite for ameliorating patients with CKD worldwide. The present review aims to discuss some therapeutic strategies and provide an update on advances in nutritional approaches to counteract cachexia.
Collapse
Affiliation(s)
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Sina Hejazian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Hekmatshoar
- Medical Biology Department, School of Medicine, Altinbas University, Istanbul, Türkiye
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
3
|
Tsai CC, Wang PC, Hsiung T, Fan YH, Wu JT, Kan WC, Shiao CC. Sarcopenia in Chronic Kidney Disease: A Narrative Review from Pathophysiology to Therapeutic Approaches. Biomedicines 2025; 13:352. [PMID: 40002765 PMCID: PMC11852367 DOI: 10.3390/biomedicines13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic kidney disease (CKD) is a progressive condition linked to sarcopenia, a syndrome characterized by loss of skeletal muscle mass and strength, affecting a quarter of CKD patients globally. Sarcopenia has multiple paths through which it can worsen morbidity and mortality as well as decrease the quality of life in CKD, including systemic inflammation, hormonal imbalances, metabolic changes, and dysbiosis of gut microbiota. There is a regional variation in the criteria set for diagnosis, with two main groups being the European Working Group on Sarcopenia in Older People and the Asian Working Group for Sarcopenia. Management regimes such as nutritional optimization, vitamin D, exercise, correction of metabolic acidosis, and modulation of gut microbiota constitute effective intervention strategies. Emerging therapeutic options include anabolic agents, myostatin inhibitors, and anti-inflammatory treatment options. Future advances such as genomics, proteomics, and personalized medicine will open up new avenues for addressing the complex pathophysiology of sarcopenia. Hence, a comprehensive multidisciplinary approach focused on the specific needs of each patient will be vital in reducing the effects of sarcopenia and improving the situation of people with CKD.
Collapse
Affiliation(s)
- Chung-Ching Tsai
- Division of Orthopaedics, Department of Surgery, Camillian Saint Mary’s Hospital Luodong, No. 160, Zhongzheng S. Rd., Luodong Township, Yilan County 26546, Taiwan;
| | - Ping-Chen Wang
- Department of Medical Research and Education, Camillian Saint Mary’s Hospital Luodong, No. 160, Zhongzheng S. Rd., Luodong Township, Yilan County 26546, Taiwan;
| | - Ted Hsiung
- Division of General Surgery, Department of Surgery, Camillian Saint Mary’s Hospital Luodong, No. 160, Zhongzheng S. Rd., Luodong Township, Yilan County 26546, Taiwan; (T.H.); (Y.-H.F.); (J.-T.W.)
| | - Yang-Hsin Fan
- Division of General Surgery, Department of Surgery, Camillian Saint Mary’s Hospital Luodong, No. 160, Zhongzheng S. Rd., Luodong Township, Yilan County 26546, Taiwan; (T.H.); (Y.-H.F.); (J.-T.W.)
| | - Jui-Teng Wu
- Division of General Surgery, Department of Surgery, Camillian Saint Mary’s Hospital Luodong, No. 160, Zhongzheng S. Rd., Luodong Township, Yilan County 26546, Taiwan; (T.H.); (Y.-H.F.); (J.-T.W.)
| | - Wei-Chih Kan
- Department of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan City 71004, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, No. 89, Wenhua 1st St., Rende Dist., Tainan City 71703, Taiwan
| | - Chih-Chung Shiao
- Division of Nephrology, Department of Internal Medicine, Camillian Saint Mary’s Hospital Luodong, No. 160, Zhongzheng S. Rd., Luodong Township, Yilan County 26546, Taiwan
| |
Collapse
|
4
|
Wang M, You L, He X, Peng Y, Wang R, Zhang Z, Shu J, Zhang P, Sun X, Jia L, Xia Z, Ji C, Gao C. Multiomics Analysis Reveals Therapeutic Targets for Chronic Kidney Disease With Sarcopenia. J Cachexia Sarcopenia Muscle 2025; 16:e13696. [PMID: 39911133 PMCID: PMC11799769 DOI: 10.1002/jcsm.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/11/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND The presence of sarcopenia in patients with chronic kidney disease (CKD) is associated with poor prognosis. The mechanism underlying CKD-induced muscle wasting has not yet been fully explored. This study investigates the influence of renal secretions on muscles using multiomics sequencing. METHODS The kidney transcriptome analysis by RNA-seq and protein profiling by tandem mass tag (TMT), serum TMT and muscle TMT were performed in CKD established using 0.2% adenine and control mice. Spp1 recombinant protein was used to study its effect on myotube atrophy in vitro. In animal experiments on CKD, pharmacological inhibition of Spp1 was used to explore the role of Spp1 in skeletal muscle wasting. Transcriptome analysis was performed to identify differentially expressed genes (DEGs) in the gastrocnemius muscle following Spp1 pharmacological inhibition. RESULTS In the renal transcriptome and TMT, 503 and 377 proteins/genes respectively were co-upregulated and co-downregulated. In the serum TMT of CKD and normal control (NC) mice, 22 upregulated and 7 downregulated differentially expressed proteins (DEPs) showed the same expression patterns as those in the kidney transcriptome and TMT analysis. Based on bioinformatics analysis and reported studies, we selected Spp1 for further validation. Spp1 recombinant protein was added to C2C12 myotubes in vitro, and the results indicated that Spp1 significantly increased the protein levels of the muscle atrophy marker (Murf-1) and promoted the smaller myotubes (all p < 0.05). Compared with NC mice, Spp1 mRNA and protein levels were significantly upregulated in the kidneys of CKD mice, and the serum concentration of Spp1 was also markedly increased (all p < 0.05). In animal experiments, pharmacological inhibition of Spp1 increased the weights of gastrocnemius and tibialis anterior muscles (p < 0.05) and improved muscle atrophy phenotype. Transcriptome analysis showed that DEGs in the gastrocnemius muscle following Spp1 pharmacological inhibition were enriched in protein digestion and absorption, glucagon signalling pathway, apelin signalling pathway and ECM-receptor interaction pathway. CONCLUSIONS Our study is the first to establish a regulatory network of kidney-muscle crosstalk to explore the potential mechanism of CKD-related sarcopenia. Employing multiomics analysis, cellular assessment and animal experiments, we have identified that Spp1 could potentialy serve as a promising therapeutic target for CKD patients with sarcopenia.
Collapse
Affiliation(s)
- Meiqiu Wang
- Department of Pediatrics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Lianghui You
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Women and Children's Healthcare InstituteWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Xu He
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yingchao Peng
- Department of Pediatrics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Ren Wang
- Department of PediatricsJinling Hospital, Nanjing Medical UniversityNanjingChina
| | - Zhiqiang Zhang
- Department of PediatricsJinling Hospital, Nanjing Medical UniversityNanjingChina
| | - Jiaping Shu
- Department of PediatricsMedical School of Southeast UniversityNanjingChina
| | - Pei Zhang
- Department of PediatricsJinling HospitalNanjingChina
| | - Xiaoyi Sun
- Department of Pediatrics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - LiLi Jia
- Department of PediatricsJinling HospitalNanjingChina
| | - Zhengkun Xia
- Department of Pediatrics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Chenbo Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Women and Children's Healthcare InstituteWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Chunlin Gao
- Department of Pediatrics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
5
|
Vermeij WP, Alyodawi K, van Galen I, von der Heide JL, Birkisdóttir MB, van't Sant LJ, Ozinga RA, Komninos DS, Smit K, Rijksen YM, Brandt RM, Barnhoorn S, Jaarsma D, Vaiyapuri S, Ritvos O, Huber TB, Kretz O, Patel K. Improved health by combining dietary restriction and promoting muscle growth in DNA repair-deficient progeroid mice. J Cachexia Sarcopenia Muscle 2024; 15:2361-2374. [PMID: 39245994 PMCID: PMC11634475 DOI: 10.1002/jcsm.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/19/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Ageing is a complex multifactorial process, impacting all organs and tissues, with DNA damage accumulation serving as a common underlying cause. To decelerate ageing, various strategies have been applied to model organisms and evaluated for health and lifespan benefits. Dietary restriction (DR, also known as caloric restriction) is a well-established long-term intervention recognized for its universal anti-ageing effects. DR temporarily suppresses growth, and when applied to progeroid DNA repair-deficient mice doubles lifespan with systemic health benefits. Counterintuitively, attenuation of myostatin/activin signalling by soluble activin receptor (sActRIIB), boosts the growth of muscle and, in these animals, prevents muscle wasting, improves kidney functioning, and compresses morbidity. METHODS Here, we investigated a combined approach, applying an anabolic regime (sActRIIB) at the same time as DR to Ercc1Δ/- progeroid mice. Following both single treatments and combined, we monitored global effects on body weight, lifespan and behaviour, and local effects on muscle and tissue weight, muscle morphology and function, and ultrastructural and transcriptomic changes in muscle and kidney. RESULTS Lifespan was mostly influenced by DR (extended from approximately 20 to 40 weeks; P < 0.001), with sActRIIB clearly increasing muscle mass (35-65%) and tetanic force (P < 0.001). The combined regime yielded a stable uniform body weight, but increased compared with DR alone, synergistically improved motor coordination and further delayed the onset and development of balance problems. sActRIIB significantly increased muscle fibre size (P < 0.05) in mice subjected to DR and lowered all signs of muscle damage. Ercc1Δ/- mice showed abnormal neuromuscular junctions. Single interventions by sActRIIB treatment or DR only partially rescued this phenotype, while in the double intervention group, the regularly shaped junctional foldings were maintained. In kidney of Ercc1Δ/- mice, we observed a mild but significant foot process effacement, which was restored by either intervention. Transcriptome analysis also pointed towards reduced levels of DNA damage in muscle and kidney by DR, but not sActRIIB, while these levels retained lower in the double intervention. CONCLUSIONS In muscle, we found synergistic effects of combining sActRIIB with DR, but not in kidney, with an overall better health in the double intervention group. Crucially, the benefits of each single intervention are not lost when administered in combination, but rather strengthened, even when sActRIIB was applied late in life, opening opportunities for translation to human.
Collapse
Affiliation(s)
- Wilbert P. Vermeij
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Khalid Alyodawi
- School of Biological SciencesUniversity of ReadingReadingUK
- College of MedicineWasit UniversityKutIraq
| | - Ivar van Galen
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Jennie L. von der Heide
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Hamburg Center for Kidney Health (HCKH)HamburgGermany
| | - María B. Birkisdóttir
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Lisanne J. van't Sant
- Department of NeuroscienceErasmus University Medical Center RotterdamRotterdamNetherlands
| | - Rutger A. Ozinga
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Daphne S.J. Komninos
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Kimberly Smit
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Yvonne M.A. Rijksen
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
- Oncode InstituteUtrechtNetherlands
| | - Renata M.C. Brandt
- Department of Molecular Genetics, Erasmus MC Cancer InstituteErasmus University Medical Center RotterdamRotterdamNetherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus MC Cancer InstituteErasmus University Medical Center RotterdamRotterdamNetherlands
| | - Dick Jaarsma
- Department of NeuroscienceErasmus University Medical Center RotterdamRotterdamNetherlands
| | | | - Olli Ritvos
- Department of PhysiologyUniversity of HelsinkiHelsinkiFinland
| | - Tobias B. Huber
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Hamburg Center for Kidney Health (HCKH)HamburgGermany
| | - Oliver Kretz
- III. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Hamburg Center for Kidney Health (HCKH)HamburgGermany
| | - Ketan Patel
- School of Biological SciencesUniversity of ReadingReadingUK
| |
Collapse
|
6
|
Kuhlmann MK, Fleig S. [Nutrition for patients on dialysis]. Dtsch Med Wochenschr 2024; 149:1431-1442. [PMID: 39504979 DOI: 10.1055/a-2199-8816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Dietary recommendations for patients on dialysis are changing as our understanding of enteral microbiotal metabolism and bioavailability of nutrients from food improves.A diet low in phosphate and potassium is recommended for patients on hemodialysis. However, the absolute content does not reflect bioavailability: How much phosphate or potassium is taken up depends on food source (plant vs. animal) and to which grade it is processed. While both are nearly 100% bioavailable from industrially processed foods (additives such as dipotassium-phosphate and other salts), a much lower proportion is taken up from unprocessed plant foods high in fibre (ca. 20-40%). The DIET-HD study showed no significant association between dietary potassium and serum potassium in > 8 000 dialysis patients; and those with the highest low-processed, fresh plant-food consumption have the best survival. Dietary fibre improves colon transit time and thereby lessens symptoms of constipation. A diet low in sodium improves blood pressure and volume management in dialysis patients. The energy and protein requirements on dialysis are high: 25-35 kcal and 1-1,2 g protein per kg body weight per day (in relation to "ideal" body weight, if patient is overweight). Protein energy wasting is associated with higher stages of kidney disease, and malnutrition is associated with worse survival on dialysis. Nutritional status should be assessed on a regular basis using validated scores, and malnutrition should be addressed and treated.
Collapse
Affiliation(s)
- Martin K Kuhlmann
- Klinik für Innere Medizin, Vivantes Klinikum im Friedrichshain, Berlin
| | - Susanne Fleig
- Klinik für Nieren- und Hochdruckkrankheiten, Uniklinik RWTH Aachen, Aachen, Deutschland
| |
Collapse
|
7
|
Chan GCK, Kalantar-Zadeh K, Ng JKC, Tian N, Burns A, Chow KM, Szeto CC, Li PKT. Frailty in patients on dialysis. Kidney Int 2024; 106:35-49. [PMID: 38705274 DOI: 10.1016/j.kint.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
Frailty is a condition that is frequently observed among patients undergoing dialysis. Frailty is characterized by a decline in both physiological state and cognitive state, leading to a combination of symptoms, such as weight loss, exhaustion, low physical activity level, weakness, and slow walking speed. Frail patients not only experience a poor quality of life, but also are at higher risk of hospitalization, infection, cardiovascular events, dialysis-associated complications, and death. Frailty occurs as a result of a combination and interaction of various medical issues in patients who are on dialysis. Unfortunately, frailty has no cure. To address frailty, a multifaceted approach is necessary, involving coordinated efforts from nephrologists, geriatricians, nurses, allied health practitioners, and family members. Strategies such as optimizing nutrition and chronic kidney disease-related complications, reducing polypharmacy by deprescription, personalizing dialysis prescription, and considering home-based or assisted dialysis may help slow the decline of physical function over time in subjects with frailty. This review discusses the underlying causes of frailty in patients on dialysis and examines the methods and difficulties involved in managing frailty among this group.
Collapse
Affiliation(s)
- Gordon Chun-Kau Chan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine & Therapeutics, Prince of Wales Hospital, Hong Kong, China
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, Harbor-University of California, Los Angeles Medical Center, Torrance, California, USA
| | - Jack Kit-Chung Ng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine & Therapeutics, Prince of Wales Hospital, Hong Kong, China
| | - Na Tian
- Department of Nephrology, General Hospital of Ning Xia Medical University, Yin Chuan, China
| | - Aine Burns
- Division of Nephrology, University College London, Royal Free Hospital, London, UK
| | - Kai-Ming Chow
- Carol & Richard Yu Peritoneal Dialysis Research Centre, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine & Therapeutics, Prince of Wales Hospital, Hong Kong, China
| | - Cheuk-Chun Szeto
- Carol & Richard Yu Peritoneal Dialysis Research Centre, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine & Therapeutics, Prince of Wales Hospital, Hong Kong, China; Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Philip Kam-Tao Li
- Carol & Richard Yu Peritoneal Dialysis Research Centre, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine & Therapeutics, Prince of Wales Hospital, Hong Kong, China.
| |
Collapse
|
8
|
Oleksak P, Nepovimova E, Valko M, Alwasel S, Alomar S, Kuca K. Comprehensive analysis of prohibited substances and methods in sports: Unveiling trends, pharmacokinetics, and WADA evolution. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104447. [PMID: 38636744 DOI: 10.1016/j.etap.2024.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
This review systematically compiles sports-related drugs, substances, and methodologies based on the most frequently detected findings from prohibited lists published annually by the World Anti-Doping Agency (WADA) between 2003 and 2021. Aligned with structure of the 2023 prohibited list, it covers all proscribed items and details the pharmacokinetics and pharmacodynamics of five representatives from each section. Notably, it explores significant metabolites and metabolic pathways associated with these substances. Adverse analytical findings are summarized in tables for clarity, and the prevalence is visually represented through charts. The review includes a concise historical overview of doping and WADA's role, examining modifications in the prohibited list for an understanding of evolving anti-doping measures.
Collapse
Affiliation(s)
- Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suliman Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain.
| |
Collapse
|
9
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
10
|
Williams MJ, Halabi CM, Patel HM, Joseph Z, McCommis K, Weinheimer C, Kovacs A, Lima F, Finck B, Malluche H, Hruska KA. In chronic kidney disease altered cardiac metabolism precedes cardiac hypertrophy. Am J Physiol Renal Physiol 2024; 326:F751-F767. [PMID: 38385175 PMCID: PMC11386984 DOI: 10.1152/ajprenal.00416.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.
Collapse
Affiliation(s)
- Matthew J Williams
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Carmen M Halabi
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Hiral M Patel
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Zachary Joseph
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Kyle McCommis
- Geriatrics and Nutritional Science Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Carla Weinheimer
- Cardiology Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Attila Kovacs
- Cardiology Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Florence Lima
- Renal Division, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Brian Finck
- Geriatrics and Nutritional Science Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Hartmut Malluche
- Renal Division, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Keith A Hruska
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
- Renal Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Cell Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
11
|
Lair B, Lac M, Frassin L, Brunet M, Buléon M, Feuillet G, Maslo C, Marquès M, Monbrun L, Bourlier V, Montastier E, Viguerie N, Tavernier G, Laurens C, Moro C. Common mouse models of chronic kidney disease are not associated with cachexia. Commun Biol 2024; 7:346. [PMID: 38509307 PMCID: PMC10954638 DOI: 10.1038/s42003-024-06021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The 5/6 nephrectomy and adenine-induced nephropathy mouse models have been extensively used to study Chronic Kidney Disease (CKD)-related cachexia. One common caveat of these CKD models is the cross-sectional nature of comparisons made versus controls. We here performed a comprehensive longitudinal assessment of body composition and energy metabolism in both models. The most striking finding is that weight loss is largely driven by reduced food intake which promotes rapid loss of lean and fat mass. However, in both models, mice catch up weight and lean mass a few days after the surgery or when they are switched back to standard chow diet. Muscle force and mass are fully recovered and no sign of cachexia is observed. Our data demonstrate that the time-course of kidney failure and weight loss are unrelated in these common CKD models. These data highlight the need to reconsider the relative contribution of direct and indirect mechanisms to muscle wasting observed in CKD.
Collapse
Affiliation(s)
- Benjamin Lair
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Marlène Lac
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Lucas Frassin
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Manon Brunet
- Team Renal Fibrosis and Chronic Kidney Diseases, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Marie Buléon
- Team Renal Fibrosis and Chronic Kidney Diseases, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Guylène Feuillet
- Team Renal Fibrosis and Chronic Kidney Diseases, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Claire Maslo
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Marie Marquès
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Laurent Monbrun
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Virginie Bourlier
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Emilie Montastier
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Nathalie Viguerie
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Geneviève Tavernier
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Claire Laurens
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Cedric Moro
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France.
| |
Collapse
|
12
|
Xianyu Z, Correia C, Ung CY, Zhu S, Billadeau DD, Li H. The Rise of Hypothesis-Driven Artificial Intelligence in Oncology. Cancers (Basel) 2024; 16:822. [PMID: 38398213 PMCID: PMC10886811 DOI: 10.3390/cancers16040822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is a complex disease involving the deregulation of intricate cellular systems beyond genetic aberrations and, as such, requires sophisticated computational approaches and high-dimensional data for optimal interpretation. While conventional artificial intelligence (AI) models excel in many prediction tasks, they often lack interpretability and are blind to the scientific hypotheses generated by researchers to enable cancer discoveries. Here we propose that hypothesis-driven AI, a new emerging class of AI algorithm, is an innovative approach to uncovering the complex etiology of cancer from big omics data. This review exemplifies how hypothesis-driven AI is different from conventional AI by citing its application in various areas of oncology including tumor classification, patient stratification, cancer gene discovery, drug response prediction, and tumor spatial organization. Our aim is to stress the feasibility of incorporating domain knowledge and scientific hypotheses to craft the design of new AI algorithms. We showcase the power of hypothesis-driven AI in making novel cancer discoveries that can be overlooked by conventional AI methods. Since hypothesis-driven AI is still in its infancy, open questions such as how to better incorporate new knowledge and biological perspectives to ameliorate bias and improve interpretability in the design of AI algorithms still need to be addressed. In conclusion, hypothesis-driven AI holds great promise in the discovery of new mechanistic and functional insights that explain the complexity of cancer etiology and potentially chart a new roadmap to improve treatment regimens for individual patients.
Collapse
Affiliation(s)
- Zilin Xianyu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
| | - Shizhen Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Daniel D. Billadeau
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
| |
Collapse
|
13
|
Chrysopoulou M, Rinschen MM. Metabolic Rewiring and Communication: An Integrative View of Kidney Proximal Tubule Function. Annu Rev Physiol 2024; 86:405-427. [PMID: 38012048 DOI: 10.1146/annurev-physiol-042222-024724] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The kidney proximal tubule is a key organ for human metabolism. The kidney responds to stress with altered metabolite transformation and perturbed metabolic pathways, an ultimate cause for kidney disease. Here, we review the proximal tubule's metabolic function through an integrative view of transport, metabolism, and function, and embed it in the context of metabolome-wide data-driven research. Function (filtration, transport, secretion, and reabsorption), metabolite transformation, and metabolite signaling determine kidney metabolic rewiring in disease. Energy metabolism and substrates for key metabolic pathways are orchestrated by metabolite sensors. Given the importance of renal function for the inner milieu, we also review metabolic communication routes with other organs. Exciting research opportunities exist to understand metabolic perturbation of kidney and proximal tubule function, for example, in hypertension-associated kidney disease. We argue that, based on the integrative view outlined here, kidney diseases without genetic cause should be approached scientifically as metabolic diseases.
Collapse
Affiliation(s)
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark;
- III. Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Troutman AD, Arroyo E, Sheridan EM, D'Amico DJ, Brandt PR, Hinrichs R, Chen X, Lim K, Avin KG. Skeletal muscle atrophy in clinical and preclinical models of chronic kidney disease: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2024; 15:21-35. [PMID: 38062879 PMCID: PMC10834351 DOI: 10.1002/jcsm.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 02/03/2024] Open
Abstract
Patients with chronic kidney disease (CKD) are often regarded as experiencing wasting of muscle mass and declining muscle strength and function, collectively termed sarcopenia. The extent of skeletal muscle wasting in clinical and preclinical CKD populations is unclear. We evaluated skeletal muscle atrophy in preclinical and clinical models of CKD, with multiple sub-analyses for muscle mass assessment methods, CKD severity, sex and across the different preclinical models of CKD. We performed a systematic literature review of clinical and preclinical studies that measured muscle mass/size using the following databases: Ovid Medline, Embase and Scopus. A random effects meta-analysis was utilized to determine standard mean difference (SMD; Hedges' g) between healthy and CKD. Heterogeneity was evaluated using the I2 statistic. Preclinical study quality was assessed via the Systematic Review Centre for Laboratory Animal Experimentation and clinical studies quality was assessed via the Newcastle-Ottawa Scale. This study was registered in PROSPERO (CRD42020180737) prior to initiation of the search. A total of 111 studies were included in this analysis using the following subgroups: 106 studies in the primary CKD analysis, 18 studies that accounted for diabetes and 7 kidney transplant studies. Significant atrophy was demonstrated in 78% of the preclinical studies and 49% of the clinical studies. The random effects model demonstrated a medium overall SMD (SMD = 0.58, 95% CI = 0.52-0.64) when combining clinical and preclinical studies, a medium SMD for the clinical population (SMD = 0.48, 95% CI = 0.42-0.55; all stages) and a large SMD for preclinical CKD (SMD = 0.95, 95% CI = 0.76-1.14). Further sub-analyses were performed based upon assessment methods, disease status and animal model. Muscle atrophy was reported in 49% of the clinical studies, paired with small mean differences. Preclinical studies reported significant atrophy in 78% of studies, with large mean differences. Across multiple clinical sub-analyses such as severity of CKD, dialysis modality and diabetes, a medium mean difference was found. Sub-analyses in both clinical and preclinical studies found a large mean difference for males and medium for females suggesting sex-specific implications. Muscle atrophy differences varied based upon assessment method for clinical and preclinical studies. Limitations in study design prevented conclusions to be made about the extent of muscle loss with disease progression, or the impact of dialysis. Future work would benefit from the use of standardized measurement methods and consistent clinical staging to improve our understanding of atrophy changes in CKD progression, and analysis of biological sex differences.
Collapse
Affiliation(s)
- Ashley D Troutman
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
| | - Eliott Arroyo
- Department of Medicine, Division of Nephrology & Hypertension, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizabeth M Sheridan
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
| | - Duncan J D'Amico
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
| | - Peyton R Brandt
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
| | - Rachel Hinrichs
- University Library, Indiana University-Purdue University Indianapolis, Indiana, USA
| | - Xiwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Kenneth Lim
- Department of Medicine, Division of Nephrology & Hypertension, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keith G Avin
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
- Department of Medicine, Division of Nephrology & Hypertension, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Tsai MT, Ou SM, Lee KH, Lin CC, Li SY. Circulating Activin A, Kidney Fibrosis, and Adverse Events. Clin J Am Soc Nephrol 2024; 19:169-177. [PMID: 37983094 PMCID: PMC10861103 DOI: 10.2215/cjn.0000000000000365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Identification of reliable biomarkers to assess kidney fibrosis severity is necessary for patients with CKD. Activin A, a member of the TGF- β superfamily, has been suggested as a biomarker for kidney fibrosis. However, its precise utility in this regard remains to be established. METHODS We investigated the correlation between plasma activin A levels, kidney fibrosis severity, and the incidence of major adverse kidney events in patients who underwent native kidney biopsies at a tertiary medical center. We performed RNA sequencing and histological analyses on kidney biopsy specimens to assess activin A expression. In vitro experiments were also conducted to explore the potential attenuation of TGF- β -induced fibroblast activation through activin A inhibition. RESULTS A total of 339 patients with biopsy-confirmed kidney diseases were enrolled. Baseline eGFR was 36 ml/min per 1.73 m 2 , and the urine protein/creatinine ratio was 2.9 mg/mg. Multivariable logistic regression analysis revealed a significant association between plasma activin A levels and the extent of tubulointerstitial fibrosis. Our RNA sequencing data demonstrated a positive correlation between kidney INHBA expression and plasma activin A levels. Furthermore, the histological analysis showed that myofibroblasts were the primary activin A-positive interstitial cells in diseased kidneys. During a median follow-up of 22 months, 113 participants experienced major adverse kidney events. Cox proportional hazards analysis initially found a positive association between plasma activin A levels and kidney event risk, but it became insignificant after adjusting for confounders. In cultured fibroblasts, knockdown of activin A significantly attenuated TGF- β -induced fibroblast-myofibroblast conversion. CONCLUSIONS Plasma activin A levels correlate with kidney fibrosis severity and adverse outcomes in various kidney disorders.
Collapse
Affiliation(s)
- Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuo-Ming Ou
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuo-Hua Lee
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Szu-yuan Li
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
16
|
Jung HY, Ryu JH, Kim MG, Huh KH, Lee KW, Jung HY, Kang KP, Ro H, Han S, Yang J. Association of Serum Activin Levels with Allograft Outcomes in Patients with Kidney Transplant: Results from the KNOW-KT. Am J Nephrol 2024; 55:245-254. [PMID: 38198780 DOI: 10.1159/000536198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Serum activin A has been reported to contribute to vascular calcification and kidney fibrosis in chronic kidney disease. We aimed to investigate whether higher serum activin levels were associated with poor allograft outcomes in patients with kidney transplantation (KT). METHODS A total of 860 KT patients from KNOW-KT (Korean Cohort Study for Outcome in Patients with Kidney Transplantation) were analyzed. We measured serum activin levels pre-KT and 1 year after KT. The primary outcome was the composite of a ≥50% decline in estimated glomerular filtration rate and graft failure. Multivariable cause-specific hazard model was used to analyze association of 1-year activin levels with the primary outcome. The secondary outcome was coronary artery calcification score (CACS) at 5 years after KT. RESULTS During the median follow-up of 6.7 years, the primary outcome occurred in 109 (12.7%) patients. The serum activin levels at 1 year were significantly lower than those at pre-KT (488.2 ± 247.3 vs. 704.0 ± 349.6). When patients were grouped based on the median activin level at 1 year, the high-activin group had a 1.91-fold higher risk (95% CI, 1.25-2.91) for the primary outcome compared to the low-activin group. A one-standard deviation increase in activin levels as a continuous variable was associated with a 1.36-fold higher risk (95% CI, 1.16-1.60) for the primary outcome. Moreover, high activin levels were significantly associated with 1.56-fold higher CACS (95% CI, 1.12-2.18). CONCLUSION Post-transplant activin levels were independently associated with allograft functions as well as coronary artery calcification in KT patients.
Collapse
Affiliation(s)
- Hui-Yun Jung
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Jung-Hwa Ryu
- Department of Internal Medicine, Ewha Womans University Medical Center, Seoul, Republic of Korea
| | - Myung-Gyu Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu Ha Huh
- Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Sungkyunkwan University, Seoul Samsung Medical Center, Seoul, Republic of Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Kyung Pyo Kang
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Han Ro
- Department of Internal Medicine, Gachon University, Gil Hospital, Incheon, Republic of Korea
| | - Seungyeup Han
- Department of Internal Medicine, Keimyung University, Dongsan Medical Center, Daegu, Republic of Korea
| | - Jaeseok Yang
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
17
|
Ung CY, Correia C, Li H, Adams CM, Westendorf JJ, Zhu S. Multiorgan locked-state model of chronic diseases and systems pharmacology opportunities. Drug Discov Today 2024; 29:103825. [PMID: 37967790 PMCID: PMC11109989 DOI: 10.1016/j.drudis.2023.103825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
With increasing human life expectancy, the global medical burden of chronic diseases is growing. Hence, chronic diseases are a pressing health concern and will continue to be in decades to come. Chronic diseases often involve multiple malfunctioning organs in the body. An imminent question is how interorgan crosstalk contributes to the etiology of chronic diseases. We conceived the locked-state model (LoSM), which illustrates how interorgan communication can give rise to body-wide memory-like properties that 'lock' healthy or pathological conditions. Next, we propose cutting-edge systems biology and artificial intelligence strategies to decipher chronic multiorgan locked states. Finally, we discuss the clinical implications of the LoSM and assess the power of systems-based therapies to dismantle pathological multiorgan locked states while improving treatments for chronic diseases.
Collapse
Affiliation(s)
- Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Christopher M Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Shizhen Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Koehler S, Huber TB. Insights into human kidney function from the study of Drosophila. Pediatr Nephrol 2023; 38:3875-3887. [PMID: 37171583 PMCID: PMC10584755 DOI: 10.1007/s00467-023-05996-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
Biological and biomedical research using Drosophila melanogaster as a model organism has gained recognition through several Nobel prizes within the last 100 years. Drosophila exhibits several advantages when compared to other in vivo models such as mice and rats, as its life cycle is very short, animal maintenance is easy and inexpensive and a huge variety of transgenic strains and tools are publicly available. Moreover, more than 70% of human disease-causing genes are highly conserved in the fruit fly. Here, we explain the use of Drosophila in nephrology research and describe two kidney tissues, Malpighian tubules and the nephrocytes. The latter are the homologous cells to mammalian glomerular podocytes and helped to provide insights into a variety of signaling pathways due to the high morphological similarities and the conserved molecular make-up between nephrocytes and podocytes. In recent years, nephrocytes have also been used to study inter-organ communication as links between nephrocytes and the heart, the immune system and the muscles have been described. In addition, other tissues such as the eye and the reproductive system can be used to study the functional role of proteins being part of the kidney filtration barrier.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Nordholm A, Sørensen IMH, Bjergfelt SS, Fuchs A, Kofoed KF, Landler NE, Biering-Sørensen T, Carlson N, Feldt-Rasmussen B, Christoffersen C, Bro S. Plasma activin A rises with declining kidney function and is independently associated with mortality in patients with chronic kidney disease. Clin Kidney J 2023; 16:2712-2720. [PMID: 38046005 PMCID: PMC10689128 DOI: 10.1093/ckj/sfad238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 12/05/2023] Open
Abstract
Background Plasma (p-)activin A is elevated in chronic kidney disease-mineral and bone disorder (CKD-MBD). Activin A inhibition ameliorates CKD-MBD complications (vascular calcification and bone disease) in rodent CKD models. We examined whether p-activin A was associated with major adverse cardiovascular events (MACE), all-cause mortality and CKD-MBD complications in CKD patients. Methods The study included 916 participants (741 patients and 175 controls) from the prospective Copenhagen CKD cohort. Comparisons of p-activin A with estimated glomerular filtration rate (eGFR), coronary and thoracic aorta Agatston scores, and bone mineral density (BMD) were evaluated by univariable linear regression using Spearman's rank correlation, analysis of covariance and ordinal logistic regression with adjustments. Association of p-activin A with rates of MACE and all-cause mortality was evaluated by the Aalen-Johansen or Kaplan-Meier estimator, with subsequent multiple Cox regression analyses. Results P-activin A was increased by CKD stage 3 (124-225 pg/mL, P < .001) and correlated inversely with eGFR (r = -0.53, P < 0.01). P-activin A was associated with all-cause mortality [97 events, hazard ratio 1.55 (95% confidence interval 1.04; 2.32), P < 0.05] after adjusting for age, sex, diabetes mellitus (DM) and eGFR. Median follow-up was 4.36 (interquartile range 3.64-4.75) years. The association with MACE was not significant after eGFR adjustment. Agatston scores and BMD were not associated with p-activin A. Conclusion P-activin A increased with declining kidney function and was associated with all-cause mortality independently of age, sex, DM and eGFR. No association with MACE, vascular calcification or BMD was demonstrated.
Collapse
Affiliation(s)
- Anders Nordholm
- Department of Nephrology, Rigshospitalet, Copenhagen, Denmark
- Department of Nephrology, Herlev & Gentofte Hospital, Copenhagen, Denmark
| | | | - Sasha S Bjergfelt
- Department of Nephrology, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Fuchs
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Klaus F Kofoed
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nino E Landler
- Department of Cardiology, Herlev & Gentofte Hospital, Copenhagen, Denmark
| | - Tor Biering-Sørensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Herlev & Gentofte Hospital, Copenhagen, Denmark
| | | | - Bo Feldt-Rasmussen
- Department of Nephrology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Susanne Bro
- Department of Nephrology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
20
|
Tanaka M, Okada H, Hashimoto Y, Kumagai M, Yamaoka M, Nishimura H, Fukui M. Trunk muscle quality and quantity are associated with renal volume in nondiabetic people. Clin Kidney J 2023; 16:2597-2604. [PMID: 38046018 PMCID: PMC10689130 DOI: 10.1093/ckj/sfad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 12/05/2023] Open
Abstract
Background Renal disease is a major problem in terms of community health and the economy. Skeletal muscle is involved in crosstalk with the kidney. We therefore investigated the relationship between muscle quality and quantity, and renal parenchymal volume (RPV). Methods The association between the parameters of skeletal muscle and RPV/body surface area (BSA) was analyzed by computed tomography in 728 middle-aged participants without kidney disease or diabetes mellitus in a cross-sectional study. A retrospective cohort study of 68 participants was undertaken to analyze the association between changes in RPV/BSA and muscle parameters. Parameter change was calculated as follows: parameter at the follow-up examination/parameter at the baseline examination. The normal attenuation muscle (NAM) and low attenuation muscle (LAM) were identified by Hounsfield Unit thresholds of +30 to +150, and -29 to +29, respectively. Results Positive correlations were found between estimated glomerular filtration rate and RPV/BSA (r = 0.451, P < .0001). Multiple regression analyses revealed that the NAM index was positively related to RPV/BSA (β = 0.458, P < .0001), whereas the LAM index was negatively related to RPV/BSA (β = -0.237, P < .0001). In this cohort study, a change in the LAM index was independently associated with a change in RPV/BSA (β = -0.349, P = .0032). Conclusion Both trunk muscle quantity and quality were associated with renal volume related to renal function in nondiabetic people. An increase in low quality muscle volume might be related to a decrease in renal volume.
Collapse
Affiliation(s)
- Muhei Tanaka
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
- Department of Diabetes and Metabolism, Saiseikai Suita Hospital, Osaka, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | | | - Muneaki Kumagai
- Medical Corporation Soukenkai, Nishimura Clinic, Kyoto, Japan
| | - Miyoko Yamaoka
- Medical Corporation Soukenkai, Nishimura Clinic, Kyoto, Japan
| | | | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
21
|
Mannaa M, Pfennigwerth P, Fielitz J, Gollasch M, Boschmann M. Mammalian target of rapamycin inhibition impacts energy homeostasis and induces sex-specific body weight loss in humans. J Cachexia Sarcopenia Muscle 2023; 14:2757-2767. [PMID: 37897143 PMCID: PMC10751400 DOI: 10.1002/jcsm.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Previous data from a 2-year randomized controlled trial (CRAD001ADE12) indicated that mammalian target of rapamycin (mTOR) inhibition by everolimus slowed cyst growth in patients with autosomal-dominant polycystic kidney disease (ADPKD). During the trial, we noted body weight loss in some patients, particularly in women. We hypothesized that everolimus causes body weight reduction by reduced food intake and/or metabolic changes, which could lead to cachexia. METHODS Within a sub-analysis of the CRAD001ADE12 trial, body weight course was investigated regarding sex-specific differences in 433 adult ADPKD patients (everolimus, n = 215; placebo, n = 218). One hundred four out of 111 patients who participated in the clinical trial centre in Berlin were evaluated under everolimus/placebo therapy (on drug: everolimus, n = 48; placebo, n = 56) and after therapy (off drug: everolimus, n = 15; placebo, n = 18). Eating habits and nutrient/caloric intake were evaluated by validated questionnaires. Systemic and local metabolism was evaluated in four patients after an oral glucose load (OGL) by using calorimetry and adipose/muscle tissue microdialysis. RESULTS Within the 2-year CRAD001ADE12 trial, a significant body weight loss was observed in female patients on everolimus versus placebo (P = 0.0029). Data of the Berlin Cohort revealed that weight loss was greater in women on everolimus versus men (P < 0.01). After 9 months, women and men had lost 2.6 ± 3.8 and 0.8 ± 1.5 kg (P < 0.05) in body weight, respectively, and after 21 months, they had lost 4.1 ± 6.6 and 1.0 ± 3.3 kg (P < 0.05), respectively. On everolimus, caloric intake was significantly lower in women versus men (1510 ± 128 vs. 2264 ± 216 kcal/day, P < 0.05), caused mainly by a lower fat and protein intake in women versus men. Cognitive restraints, disinhibition and hunger remained unchanged. In a subgroup of patients resting metabolic rate was unchanged whereas OGL-induced thermogenesis was reduced (7 ± 2 vs. 11 ± 2 kcal, P < 0.05). Fasting and OGL-induced fat oxidation was increased (P < 0.05) on versus off everolimus. In adipose tissue, fasting lipolytic activity was increased, but lipolytic activity was inhibited similarly after the OGL on versus off everolimus, respectively. In skeletal muscle, postprandial glucose uptake and aerobic glycolysis was reduced in patients on everolimus. CONCLUSIONS mTOR inhibition by everolimus induces body weight reduction, specifically in female patients. This effect is possibly caused by a centrally mediated reduced food (fat and protein) intake and by centrally/peripherally mediated increased fat oxidation (systemic) and mobilization (adipose tissue). Glucose uptake and oxidation might be reduced in skeletal muscle. This could lead to cachexia and, possibly, muscle wasting. Therefore, our results have important implications for patients recieving immune-suppressive mTOR inhibition therapy.
Collapse
Affiliation(s)
- Marwan Mannaa
- Department of Internal Medicine and GeriatricsUniversitätsmedizin GreifswaldGreifswaldGermany
| | - Pia Pfennigwerth
- Experimental and Clinical Research Center, a co‐operation between Charité – Universitätsmedizin and the Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Jens Fielitz
- Klinik und Poliklinik für Innere Medizin BUniversitätsmedizin GreifswaldGreifswaldGermany
- DZHK (German Center for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
| | - Maik Gollasch
- Department of Internal Medicine and GeriatricsUniversitätsmedizin GreifswaldGreifswaldGermany
- Department of Nephrology and Medical Intensive CareCharité – Universitätsmedizin BerlinBerlinGermany
| | - Michael Boschmann
- Experimental and Clinical Research Center, a co‐operation between Charité – Universitätsmedizin and the Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| |
Collapse
|
22
|
Price SR, Mitch WE, Garibotto G. Muscle Atrophy in CKD: A Historical Perspective of Advancements in Its Understanding. J Ren Nutr 2023; 33:S88-S92. [PMID: 36183901 DOI: 10.1053/j.jrn.2022.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/21/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE This perspective reviews the seminal clinical and experimental observations that led to today's current mechanistic model of muscle protein loss (wasting) in patients with chronic kidney disease (CKD). RESULTS AND CONCLUSION Early International Society of Renal Nutrition and Metabolism (ISRNM) meetings facilitated discussions and hypotheses about the causes of muscle wasting in CKD. It became widely recognized that wasting is common and correlated with increased risks of mortality and morbidity. Although anorexia and dietary restrictions contribute to muscle loss, several features of CKD-associated wasting cannot be explained by malnutrition alone. The protein catabolism-inducing actions of metabolic acidosis, inflammation, insulin resistance, endocrine disorders and uremic toxins were progressively identified. Continued research to understand the interactions of inflammation, anabolic resistance, mitochondrial dysfunction, exercise, and nutrition on muscle protein turnover in patients with CKD will hopefully accelerate discoveries and treatments to ameliorate muscle wasting as well as the progression of CKD.
Collapse
Affiliation(s)
- S Russ Price
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina; Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, North Carolina.
| | - William E Mitch
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
23
|
Lasaad S, Walter C, Rafael C, Morla L, Doucet A, Picard N, Blanchard A, Fromes Y, Matot B, Crambert G, Cheval L. GDF15 mediates renal cell plasticity in response to potassium depletion in mice. Acta Physiol (Oxf) 2023; 239:e14046. [PMID: 37665159 DOI: 10.1111/apha.14046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE To understand the mechanisms involved in the response to a low-K+ diet (LK), we investigated the role of the growth factor GDF15 and the ion pump H,K-ATPase type 2 (HKA2) in this process. METHODS Male mice of different genotypes (WT, GDF15-KO, and HKA2-KO) were fed an LK diet for different periods of time. We analyzed GDF15 levels, metabolic and physiological parameters, and the cellular composition of collecting ducts. RESULTS Mice fed an LK diet showed a 2-4-fold increase in plasma and urine GDF15 levels. Compared to WT mice, GDF15-KO mice rapidly developed hypokalemia due to impaired renal adaptation. This is related to their 1/ inability to increase the number of type A intercalated cells (AIC) and 2/ absence of upregulation of H,K-ATPase type 2 (HKA2), the two processes responsible for K+ retention. Interestingly, we showed that the GDF15-mediated proliferative effect on AIC was dependent on the ErbB2 receptor and required the presence of HKA2. Finally, renal leakage of K+ induced a reduction in muscle mass in GDF15-KO mice fed LK diet. CONCLUSIONS In this study, we showed that GDF15 and HKA2 are linked and play a central role in the response to K+ restriction by orchestrating the modification of the cellular composition of the collecting duct.
Collapse
Affiliation(s)
- Samia Lasaad
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Christine Walter
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Chloé Rafael
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Luciana Morla
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Alain Doucet
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Nicolas Picard
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, Lyon, France
| | - Anne Blanchard
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Unité Métabolisme et Physiologie Rénale, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d'Investigation Clinique, Paris, France
| | - Yves Fromes
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Béatrice Matot
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Lydie Cheval
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Unité Métabolisme et Physiologie Rénale, Paris, France
| |
Collapse
|
24
|
Tezze C, Sandri M, Tessari P. Anabolic Resistance in the Pathogenesis of Sarcopenia in the Elderly: Role of Nutrition and Exercise in Young and Old People. Nutrients 2023; 15:4073. [PMID: 37764858 PMCID: PMC10535169 DOI: 10.3390/nu15184073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The development of sarcopenia in the elderly is associated with many potential factors and/or processes that impair the renovation and maintenance of skeletal muscle mass and strength as ageing progresses. Among them, a defect by skeletal muscle to respond to anabolic stimuli is to be considered. Common anabolic stimuli/signals in skeletal muscle are hormones (insulin, growth hormones, IGF-1, androgens, and β-agonists such epinephrine), substrates (amino acids such as protein precursors on top, but also glucose and fat, as source of energy), metabolites (such as β-agonists and HMB), various biochemical/intracellular mediators), physical exercise, neurogenic and immune-modulating factors, etc. Each of them may exhibit a reduced effect upon skeletal muscle in ageing. In this article, we overview the role of anabolic signals on muscle metabolism, as well as currently available evidence of resistance, at the skeletal muscle level, to anabolic factors, from both in vitro and in vivo studies. Some indications on how to augment the effects of anabolic signals on skeletal muscle are provided.
Collapse
Affiliation(s)
- Caterina Tezze
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Paolo Tessari
- Department of Medicine, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
25
|
Simões E Silva AC, Oliveira EA, Cheung WW, Mak RH. Redox Signaling in Chronic Kidney Disease-Associated Cachexia. Antioxidants (Basel) 2023; 12:antiox12040945. [PMID: 37107320 PMCID: PMC10136196 DOI: 10.3390/antiox12040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Redox signaling alterations contribute to chronic kidney disease (CKD)-associated cachexia. This review aims to summarize studies about redox pathophysiology in CKD-associated cachexia and muscle wasting and to discuss potential therapeutic approaches based on antioxidant and anti-inflammatory molecules to restore redox homeostasis. Enzymatic and non-enzymatic systems of antioxidant molecules have been studied in experimental models of kidney diseases and patients with CKD. Oxidative stress is increased by several factors present in CKD, including uremic toxins, inflammation, and metabolic and hormone alterations, leading to muscle wasting. Rehabilitative nutritional and physical exercises have shown beneficial effects for CKD-associated cachexia. Anti-inflammatory molecules have also been tested in experimental models of CKD. The importance of oxidative stress has been shown by experimental studies in which antioxidant therapies ameliorated CKD and its associated complications in the 5/6 nephrectomy model. Treatment of CKD-associated cachexia is a challenge and further studies are necessary to investigate potential therapies involving antioxidant therapy.
Collapse
Affiliation(s)
- Ana Cristina Simões E Silva
- Department of Pediatrics, Division of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Eduardo A Oliveira
- Department of Pediatrics, Division of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Wai W Cheung
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert H Mak
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Pan Y, Zhou T, Dong X, Wu L, Wang P, Wang S, Zhang A. Urotensin II can Induce Skeletal Muscle Atrophy Associated with Upregulating Ubiquitin-Proteasome System and Inhibiting the Differentiation of Satellite Cells in CRF Mice. Calcif Tissue Int 2023; 112:603-612. [PMID: 36892588 DOI: 10.1007/s00223-023-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Skeletal muscle wasting and atrophy is highly prevalent in chronic renal failure (CRF) and increases the risk of mortality. According to our previous study, we speculate that urotensin II (UII) can induce skeletal muscle atrophy by upregulating ubiquitin-proteasome system(UPS) in CRF. C2C12 mouse myoblast cells were differentiated into myotubes, and myotubes were exposed to different concentrations of UII. Myotube diameters, myosin heavy chain(MHC), p-Fxo03A, skeletal muscle-specific E3 ubiquitin ligases such as muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx/atrogin1) were detected. Three animal models (the sham operation mice as normal control (NC) group, wild-type C57BL/6 mice with 5/6 nephrectomy (WT CRF) group, UII receptor gene knock out (UT KO) mice with 5/6 nephrectomy (UT KO CRF) group) were designed. Cross-sectional area (CSA) of skeletal muscle tissues in three animal models were measured, and western blot detected protein of UII, p-Fxo03A, MAFbx and MuRF1, and immunofluorescence assays explored the satellite cell marker of Myod1 and Pax7, and PCR arrays detected the muscle protein degradation genes, protein synthesis genes and the genes which were involved in muscle components. UII could decrease mouse myotube diameters, and upregulate dephosphorylated Fxo03A protein. MAFbx and MuRF1 were higher in WT CRF group than that in NC group, but after UII receptor gene was knocked out (UT KO CRF), their expressions were downregulated. UII could inhibit the expression of Myod1 but not Pax7 in animal study. We first demonstrate that skeletal muscle atrophy induced by UII associated with upregulating ubiquitin-proteasome system and inhibiting the differentiation of satellite cells in CRF mice.
Collapse
Affiliation(s)
- Yajing Pan
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Ting Zhou
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Xingtong Dong
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Leiyun Wu
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Peiwen Wang
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Shiyuan Wang
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Aihua Zhang
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China.
| |
Collapse
|
27
|
Koppe L, Mak RH. Is There a Need to "Modernize" and "Simplify" the Diagnostic Criteria of Protein-Energy Wasting? Semin Nephrol 2023; 43:151403. [PMID: 37541069 DOI: 10.1016/j.semnephrol.2023.151403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Protein energy wasting(PEW) is a term that most nephrologists used to define nutritional disorders in patients with acute kidney injury and chronic kidney disease. Although this nomenclature is well implemented in the field of nephrology, the use of other terms such as cachexia or malnutritionin the majority of chronic diseases can induce confusion regarding the definition and interpretation of these terms. There is ample evidence in the literature that the pathways involved in cachexia/malnutrition and PEW are common. However, in kidney diseases, there are pathophysiological conditions such as accumulation of uremic toxins, and the use of dialysis, which may induce a phenotypic specificity justifying the original term PEW. In light of the latest epidemiologic studies, the criteria for PEW used in 2008 probably need to be updated. The objective of this review is to summarize the main mechanisms involved in cachexia/malnutrition and PEW. We discuss the need to modernize and simplify the current definition and diagnostic criteria of PEW. We consider the interest of proposing a specific nomenclature of PEW for children and elderly patients with kidney diseases.
Collapse
Affiliation(s)
- Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France; University Lyon, Cardiovasculaire, Métabolisme, Diabète et Nutrition Laboratory, Institut National des Sciences Appliquées-Lyon, Institut National de la Santé et de la Recherche Médicale U1060, l'Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Claude Bernard Lyon 1, Villeurbanne, France.
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California San Diego, La Jolla, California
| |
Collapse
|
28
|
Abstract
Muscle wasting (ie, atrophy) is a serious consequence of chronic kidney disease (CKD) that reduces muscle strength and function. It reduces the quality of life for CKD patients and increases the risks of comorbidities and mortality. Current treatment strategies to prevent or reverse skeletal muscle loss are limited owing to the broad and systemic nature of the initiating signals and the multifaceted catabolic mechanisms that accelerate muscle protein degradation and impair protein synthesis and repair pathways. Recent evidence has shown how organs such as muscle, adipose, and kidney communicate with each other through interorgan exchange of proteins and RNAs during CKD. This crosstalk changes cell functions in the recipient organs and represents an added dimension in the complex processes that are responsible for muscle atrophy in CKD. This complexity creates challenges for the development of effective therapies to ameliorate muscle wasting and weakness in patients with CKD.
Collapse
Affiliation(s)
- Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA
| | - S Russ Price
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC; Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC.
| |
Collapse
|
29
|
Huang Y, Wang B, Hassounah F, Price SR, Klein J, Mohamed TMA, Wang Y, Park J, Cai H, Zhang X, Wang XH. The impact of senescence on muscle wasting in chronic kidney disease. J Cachexia Sarcopenia Muscle 2023; 14:126-141. [PMID: 36351875 PMCID: PMC9891952 DOI: 10.1002/jcsm.13112] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Muscle wasting is a common complication of chronic kidney disease (CKD) that is associated with higher mortality. Although the mechanisms of myofibre loss in CKD has been widely studied, the contribution of muscle precursor cell (MPC) senescence remains poorly understood. Senescent MPCs no longer proliferate and can produce proinflammatory factors or cytokines. In this study, we tested the hypothesis that the senescence associated secretory phenotype (SASP) of MPCs contributes to CKD-induced muscle atrophy and weakness. METHODS CKD was induced in mice by 5/6th nephrectomy. Kidney function, muscle size, and function were measured, and markers of atrophy, inflammation, and senescence were evaluated using immunohistochemistry, immunoblots, or qPCR. To study the impact of senescence, a senolytics cocktail of dasatinib + quercetin (D&Q) was given orally to mice for 8 weeks. To investigate CKD-induced senescence at the cellular level, primary MPCs were incubated with serum from CKD or control subjects. The roles of specific proteins in MPC senescence were studied using adenoviral transduction, siRNA, and plasmid transfection. RESULTS In the hindlimb muscles of CKD mice, (i) the senescence biomarker SA-β-gal was sharply increased (~30-fold); (ii) the DNA damage response marker γ-H2AX was increased 1.9-fold; and (iii) the senescence pathway markers p21 and p16INK4a were increased 1.99-fold and 2.82-fold, respectively (all values, P < 0.05), whereas p53 was unchanged. γ-H2AX, p21, and p16INK4A were negatively correlated at P < 0.05 with gastrocnemius weight, suggesting a causal relationship with muscle atrophy. Administration of the senolytics cocktail to CKD mice for 8 weeks eliminated the disease-related elevation of p21, p16INK4a , and γ-H2AX, abolished positive SA-β-gal, and depressed the high levels of the SASP cytokines, TNF-α, IL-6, IL-1β, and IFN (all values, P < 0.05). Skeletal muscle weight, myofibre cross-sectional area, and grip function were improved in CKD mice receiving D&Q. Markers of protein degradation, inflammation, and MPCs dysfunction were also attenuated by D&Q treatment compared with the vehicle treatment in 5/6th nephrectomy mice (all values, P < 0.05). Uraemic serum induced senescence in cultured MPCs. Overexpression of FoxO1a in MPCs increased the number of p21+ senescent cells, and p21 siRNA prevented uraemic serum-induced senescence (P < 0.05). CONCLUSIONS Senescent MPCs are likely to contribute to the development of muscle wasting during CKD by producing inflammatory cytokines. Limiting senescence with senolytics ameliorated muscle wasting and improved muscle strength in vivo and restored cultured MPC functions. These results suggest potential new therapeutic targets to improve muscle health and function in CKD.
Collapse
Affiliation(s)
- Ying Huang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease, Changsha, China
| | - Bin Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Faten Hassounah
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - S Russ Price
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Janet Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Tamer M A Mohamed
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Yanhua Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Nephrology Section, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Hui Cai
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Nephrology Section, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Xuemei Zhang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
30
|
Ke B, Shen W, Song J, Fang X. MG53: A potential therapeutic target for kidney disease. Pharmacol Res Perspect 2023; 11:e01049. [PMID: 36583464 PMCID: PMC9801490 DOI: 10.1002/prp2.1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Ensuring cell survival and tissue regeneration by maintaining cellular integrity is important to the pathophysiology of many human diseases, including kidney disease. Mitsugumin 53 (MG53) is a member of the tripartite motif-containing (TRIM) protein family that plays an essential role in repairing cell membrane injury and improving tissue regeneration. In recent years, an increasing number of studies have demonstrated that MG53 plays a renoprotective role in kidney diseases. Moreover, with the beneficial effects of the recombinant human MG53 (rhMG53) protein in the treatment of kidney diseases in different animal models, rhMG53 shows significant therapeutic potential in kidney disease. In this review, we elucidate the role of MG53 and its molecular mechanism in kidney disease to provide new approaches to the treatment of kidney disease.
Collapse
Affiliation(s)
- Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital to Nanchang University, Nanchang, China
| | - Jianling Song
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
32
|
Owen A, Patel JM, Parekh D, Bangash MN. Mechanisms of Post-critical Illness Cardiovascular Disease. Front Cardiovasc Med 2022; 9:854421. [PMID: 35911546 PMCID: PMC9334745 DOI: 10.3389/fcvm.2022.854421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prolonged critical care stays commonly follow trauma, severe burn injury, sepsis, ARDS, and complications of major surgery. Although patients leave critical care following homeostatic recovery, significant additional diseases affect these patients during and beyond the convalescent phase. New cardiovascular and renal disease is commonly seen and roughly one third of all deaths in the year following discharge from critical care may come from this cluster of diseases. During prolonged critical care stays, the immunometabolic, inflammatory and neurohumoral response to severe illness in conjunction with resuscitative treatments primes the immune system and parenchymal tissues to develop a long-lived pro-inflammatory and immunosenescent state. This state is perpetuated by persistent Toll-like receptor signaling, free radical mediated isolevuglandin protein adduct formation and presentation by antigen presenting cells, abnormal circulating HDL and LDL isoforms, redox and metabolite mediated epigenetic reprogramming of the innate immune arm (trained immunity), and the development of immunosenescence through T-cell exhaustion/anergy through epigenetic modification of the T-cell genome. Under this state, tissue remodeling in the vascular, cardiac, and renal parenchymal beds occurs through the activation of pro-fibrotic cellular signaling pathways, causing vascular dysfunction and atherosclerosis, adverse cardiac remodeling and dysfunction, and proteinuria and accelerated chronic kidney disease.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jaimin M. Patel
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Mansoor N. Bangash
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Mansoor N. Bangash
| |
Collapse
|
33
|
Muscle Wasting in Chronic Kidney Disease: Mechanism and Clinical Implications—A Narrative Review. Int J Mol Sci 2022; 23:ijms23116047. [PMID: 35682722 PMCID: PMC9181340 DOI: 10.3390/ijms23116047] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Muscle wasting, known to develop in patients with chronic kidney disease (CKD), is a deleterious consequence of numerous complications associated with deteriorated renal function. Muscle wasting in CKD mainly involves dysregulated muscle protein metabolism and impaired muscle cell regeneration. In this narrative review, we discuss the cardinal role of the insulin-like growth factor 1 and myostatin signaling pathways, which have been extensively investigated using animal and human studies, as well as the emerging concepts in microRNA- and gut microbiota-mediated regulation of muscle mass and myogenesis. To ameliorate muscle loss, therapeutic strategies, including nutritional support, exercise programs, pharmacological interventions, and physical modalities, are being increasingly developed based on advances in understanding its underlying pathophysiology.
Collapse
|
34
|
Bataille S, Dou L, Bartoli M, Sallée M, Aniort J, Ferkak B, Chermiti R, McKay N, Da Silva N, Burtey S, Poitevin S. Mechanisms of myostatin and activin A accumulation in chronic kidney disease. Nephrol Dial Transplant 2022; 37:1249-1260. [PMID: 35333341 DOI: 10.1093/ndt/gfac136] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Myostatin and activin A induce muscle wasting by activating the ubiquitin proteasome system and inhibiting the Akt/mTOR pathway. In chronic kidney disease (CKD), myostatin and activin A plasma concentrations are increased, but it is not clear if there is an increased production or a decreased renal clearance. METHODS We measured myostatin and activin A concentrations in 232 CKD patients and studied their correlation with estimated glomerular filtration rate (eGFR). We analyzed the myostatin gene (MSTN) expression in muscle biopsies of hemodialysis (HD) patients. We then measured circulating myostatin and activin A in plasma and the Mstn and Inhba expression in muscles, kidney, liver and heart of two CKD mice models (adenine and 5/6th nephrectomy models). Finally, we analyzed whether the uremic toxin indoxyl sulfate (IS) increased Mstn expression in mice and cultured muscle cells. RESULTS In patients, myostatin and activin A were inversely correlated with eGFR. MSTN expression was lower in HD patients' muscles (vastus lateralis) than in controls. In mice with CKD, myostatin and activin A blood concentrations were increased. Mstn was not up-regulated in CKD mice tissues. Inha was up-regulated in kidney and heart. Exposure to IS did not induce Mstn up-regulation in mice muscles and in cultured myoblasts and myocytes. CONCLUSION During CKD, myostatin and activin A blood concentrations are increased. Myostatin is not overproduced, suggesting only an impaired renal clearance, but activin A is over produced in kidney and heart. We propose to add myostatin and activin A to the list of uremic toxins.
Collapse
Affiliation(s)
- Stanislas Bataille
- Phocean Nephrology Institute, Clinique Bouchard, ELSAN, Marseille, France.,Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, MMG, INSERM, Marseille, France
| | - Marion Sallée
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | - Julien Aniort
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Bohrane Ferkak
- Service d'Evaluation Médicale, AP-HM, Marseille, France.,Aix Marseille Univ, EA 3279 Self-perceived Health Assessment Research Unit, Marseille, France
| | - Rania Chermiti
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Nathalie McKay
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | | | - Stéphane Burtey
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | | |
Collapse
|
35
|
Wang XH, Mitch WE, Price SR. Pathophysiological mechanisms leading to muscle loss in chronic kidney disease. Nat Rev Nephrol 2022; 18:138-152. [PMID: 34750550 DOI: 10.1038/s41581-021-00498-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Loss of muscle proteins is a deleterious consequence of chronic kidney disease (CKD) that causes a decrease in muscle strength and function, and can lead to a reduction in quality of life and increased risk of morbidity and mortality. The effectiveness of current treatment strategies in preventing or reversing muscle protein losses is limited. The limitations largely stem from the systemic nature of diseases such as CKD, which stimulate skeletal muscle protein degradation pathways while simultaneously activating mechanisms that impair muscle protein synthesis and repair. Stimuli that initiate muscle protein loss include metabolic acidosis, insulin and IGF1 resistance, changes in hormones, cytokines, inflammatory processes and decreased appetite. A growing body of evidence suggests that signalling molecules secreted from muscle can enter the circulation and subsequently interact with recipient organs, including the kidneys, while conversely, pathological events in the kidney can adversely influence protein metabolism in skeletal muscle, demonstrating the existence of crosstalk between kidney and muscle. Together, these signals, whether direct or indirect, induce changes in the levels of regulatory and effector proteins via alterations in mRNAs, microRNAs and chromatin epigenetic responses. Advances in our understanding of the signals and processes that mediate muscle loss in CKD and other muscle wasting conditions will support the future development of therapeutic strategies to reduce muscle loss.
Collapse
Affiliation(s)
- Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA, USA
| | - William E Mitch
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - S Russ Price
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA. .,Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
36
|
|
37
|
Untangling the fibers of sarcopenia: activin A in chronic kidney disease-associated muscle wasting. Kidney Int 2021; 101:211-213. [PMID: 34718004 DOI: 10.1016/j.kint.2021.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022]
|
38
|
Perens EA, Hoffman HM, Mak RH. Activin A Signaling Provides an Interorgan Link Between Kidney and Muscle in CKD-Associated Muscle Wasting. Am J Kidney Dis 2021; 79:302-304. [PMID: 34653537 DOI: 10.1053/j.ajkd.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Elliot A Perens
- Department of Pediatrics, Rady Children's Hospital, University of California-San Diego, San Diego, California
| | - Hal M Hoffman
- Department of Pediatrics, Rady Children's Hospital, University of California-San Diego, San Diego, California
| | - Robert H Mak
- Department of Pediatrics, Rady Children's Hospital, University of California-San Diego, San Diego, California.
| |
Collapse
|
39
|
Esposito P, Verzola D, Picciotto D, Cipriani L, Viazzi F, Garibotto G. Myostatin/Activin-A Signaling in the Vessel Wall and Vascular Calcification. Cells 2021; 10:2070. [PMID: 34440838 PMCID: PMC8393536 DOI: 10.3390/cells10082070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
A current hypothesis is that transforming growth factor-β signaling ligands, such as activin-A and myostatin, play a role in vascular damage in atherosclerosis and chronic kidney disease (CKD). Myostatin and activin-A bind with different affinity the activin receptors (type I or II), activating distinct intracellular signaling pathways and finally leading to modulation of gene expression. Myostatin and activin-A are expressed by different cell types and tissues, including muscle, kidney, reproductive system, immune cells, heart, and vessels, where they exert pleiotropic effects. In arterial vessels, experimental evidence indicates that myostatin may mostly promote vascular inflammation and premature aging, while activin-A is involved in the pathogenesis of vascular calcification and CKD-related mineral bone disorders. In this review, we discuss novel insights into the biology and physiology of the role played by myostatin and activin in the vascular wall, focusing on the experimental and clinical data, which suggest the involvement of these molecules in vascular remodeling and calcification processes. Moreover, we describe the strategies that have been used to modulate the activin downward signal. Understanding the role of myostatin/activin signaling in vascular disease and bone metabolism may provide novel therapeutic opportunities to improve the treatment of conditions still associated with high morbidity and mortality.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Daniela Verzola
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| | - Daniela Picciotto
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Leda Cipriani
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Giacomo Garibotto
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| |
Collapse
|
40
|
Activin A in CKD-associated muscle wasting. Nat Rev Nephrol 2021; 17:511. [PMID: 34158634 DOI: 10.1038/s41581-021-00455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|