1
|
Feng J, Wang L, Yang X, Chen Q. The systemic oxidative stress index predicts clinical outcomes of esophageal squamous cell carcinoma receiving neoadjuvant immunochemotherapy. Front Immunol 2025; 16:1535507. [PMID: 39958338 PMCID: PMC11825508 DOI: 10.3389/fimmu.2025.1535507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
Background Strong correlations have been shown between systemic oxidative stress (SOS) and the occurrence, metastasis, and prognosis of many types of cancers. It is yet unknown how SOS levels relate to the prognosis of esophageal squamous cell carcinoma (ESCC). The current research aims to explore the prognostic role of systemic oxidative stress index (SOSI) on ESCC receiving neoadjuvant immunochemotherapy (nICT). Methods Retrospective recruitment was used to identify 224 nICT-treated ESCC patients. In order to determine the integrative score of SOSI, logistic regression analyses were utilized to screen independent risk variables, with disease-free survival (DFS) serving as the dependent variable. Given the non-linear relationship between SOSI and DFS, the best threshold was determined using a restricted cubic spline (RCS) model. Independent variable determination was executed using a cox regression analysis. For prognostic prediction, a risk categorization method based on recursive partitioning analysis (RPA) was also created. Results Four SOS-related indicators, including albumin, creatinine, blood urea nitrogen, and direct bilirubin, were used to establish the SOSI. The ideal threshold of SOSI, shown by the non-linear relationship between DFS and SOSI (P<0.001), was used to compare between two groups. As a potential prognostic factor for those nICT-treated ESCC patients, SOSI showed a strong correlation with both DFS and overall survival (OS). Patients with low SOSI had better DFS (55.1% vs. 85.5%, P<0.001) and OS (72.6% vs. 79.1%, P=0.013). Then, a new staging that included TNM and SOSI based on RPA algorithms was produced. In terms of prognostication, the RPA model performed significantly better than TNM classification. Conclusion SOSI is a simple and useful score based on available SOS-related indices. In ESCC receiving nICT, low SOSI is found to be an important factor of better prognosis.
Collapse
Affiliation(s)
- Jifeng Feng
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Liang Wang
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xun Yang
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qixun Chen
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Choi SJ, Choi HS, Kim H, Lee JM, Kim SH, Yoon JH, Keum B, Kim HJ, Chun HJ, Park YH. Gastric Cancer and Intestinal Metaplasia: Differential Metabolic Landscapes and New Pathways to Diagnosis. Int J Mol Sci 2024; 25:9509. [PMID: 39273456 PMCID: PMC11395121 DOI: 10.3390/ijms25179509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Gastric cancer (GC) is the fifth most common cause of cancer-related death worldwide. Early detection is crucial for improving survival rates and treatment outcomes. However, accurate GC-specific biomarkers remain unknown. This study aimed to identify the metabolic differences between intestinal metaplasia (IM) and GC to determine the pathways involved in GC. A metabolic analysis of IM and tissue samples from 37 patients with GC was conducted using ultra-performance liquid chromatography with tandem mass spectrometry. Overall, 665 and 278 significant features were identified in the aqueous and 278 organic phases, respectively, using false discovery rate analysis, which controls the expected proportion of false positives among the significant results. sPLS-DA revealed a clear separation between IM and GC samples. Steroid hormone biosynthesis, tryptophan metabolism, purine metabolism, and arginine and proline metabolism were the most significantly altered pathways. The intensity of 11 metabolites, including N1, N2-diacetylspermine, creatine riboside, and N-formylkynurenine, showed significant elevation in more advanced GC. Based on pathway enrichment analysis and cancer stage-specific alterations, we identified six potential candidates as diagnostic biomarkers: aldosterone, N-formylkynurenine, guanosine triphosphate, arginine, S-adenosylmethioninamine, and creatine riboside. These metabolic differences between IM and GC provide valuable insights into gastric carcinogenesis. Further validation is needed to develop noninvasive diagnostic tools and targeted therapies to improve the outcomes of patients with GC.
Collapse
Affiliation(s)
- Seong Ji Choi
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyuk Soon Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyunil Kim
- EN BIO, Cheongju-si 28494, Republic of Korea
| | - Jae Min Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seung Han Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jai Hoon Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Bora Keum
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyo Jung Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hoon Jai Chun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | | |
Collapse
|
3
|
Dalal B, Tada T, Patel DP, Pine SR, Khan M, Oike T, Kanke Y, Parker AL, Haznadar M, Toulabi L, Krausz KW, Robles AI, Bowman ED, Gonzalez FJ, Harris CC. Urinary Metabolite Diagnostic and Prognostic Liquid Biopsy Biomarkers of Lung Cancer in Nonsmokers and Tobacco Smokers. Clin Cancer Res 2024; 30:3592-3602. [PMID: 38837903 PMCID: PMC11325153 DOI: 10.1158/1078-0432.ccr-24-0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/23/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE Nonsmokers account for 10% to 13% of all lung cancer cases in the United States. Etiology is attributed to multiple risk factors including exposure to secondhand smoking, asbestos, environmental pollution, and radon, but these exposures are not within the current eligibility criteria for early lung cancer screening by low-dose CT (LDCT). EXPERIMENTAL DESIGN Urine samples were collected from two independent cohorts comprising 846 participants (exploratory cohort) and 505 participants (validation cohort). The cancer urinary biomarkers, creatine riboside (CR) and N-acetylneuraminic acid (NANA), were analyzed and quantified using liquid chromatography-mass spectrometry to determine if nonsmoker cases can be distinguished from sex and age-matched controls in comparison with tobacco smoker cases and controls, potentially leading to more precise eligibility criteria for LDCT screening. RESULTS Urinary levels of CR and NANA were significantly higher and comparable in nonsmokers and tobacco smoker cases than population controls in both cohorts. Receiver operating characteristic analysis for combined CR and NANA levels in nonsmokers of the exploratory cohort resulted in better predictive performance with the AUC of 0.94, whereas the validation cohort nonsmokers had an AUC of 0.80. Kaplan-Meier survival curves showed that high levels of CR and NANA were associated with increased cancer-specific death in nonsmokers as well as tobacco smoker cases in both cohorts. CONCLUSIONS Measuring CR and NANA in urine liquid biopsies could identify nonsmokers at high risk for lung cancer as candidates for LDCT screening and warrant prospective studies of these biomarkers.
Collapse
Affiliation(s)
- Bhavik Dalal
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Takeshi Tada
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Daxesh P Patel
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sharon R Pine
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mohammed Khan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Takahiro Oike
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yasuyuki Kanke
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Amelia L Parker
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Majda Haznadar
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Leila Toulabi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
4
|
Ren F, Fei Q, Qiu K, Zhang Y, Zhang H, Sun L. Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation. J Exp Clin Cancer Res 2024; 43:96. [PMID: 38561776 PMCID: PMC10985944 DOI: 10.1186/s13046-024-03026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer stands as the most prevalent form of cancer globally, posing a significant threat to human well-being. Due to the lack of effective and accurate early diagnostic methods, many patients are diagnosed with advanced lung cancer. Although surgical resection is still a potential means of eradicating lung cancer, patients with advanced lung cancer usually miss the best chance for surgical treatment, and even after surgical resection patients may still experience tumor recurrence. Additionally, chemotherapy, the mainstay of treatment for patients with advanced lung cancer, has the potential to be chemo-resistant, resulting in poor clinical outcomes. The emergence of liquid biopsies has garnered considerable attention owing to their noninvasive nature and the ability for continuous sampling. Technological advancements have propelled circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), tumor metabolites, tumor-educated platelets (TEPs), and tumor-associated antigens (TAA) to the forefront as key liquid biopsy biomarkers, demonstrating intriguing and encouraging results for early diagnosis and prognostic evaluation of lung cancer. This review provides an overview of molecular biomarkers and assays utilized in liquid biopsies for lung cancer, encompassing CTCs, ctDNA, non-coding RNA (ncRNA), EVs, tumor metabolites, TAAs and TEPs. Furthermore, we expound on the practical applications of liquid biopsies, including early diagnosis, treatment response monitoring, prognostic evaluation, and recurrence monitoring in the context of lung cancer.
Collapse
Affiliation(s)
- Fei Ren
- Department of Geriatrics, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Qian Fei
- Department of Oncology, Shengjing Hospital of China Medical University, Shen Yang, 110000, China
| | - Kun Qiu
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Yuanjie Zhang
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shen Yang, 110000, China.
| | - Lei Sun
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China.
| |
Collapse
|
5
|
Zhao M, Lei Y, Zhou Y, Sun M, Li X, Zhou Z, Huang J, Li X, Zhao B. Development and investigation of metabolism-associated risk assessment models for patients with viral hepatitis. Front Cell Infect Microbiol 2023; 13:1165647. [PMID: 37065201 PMCID: PMC10095836 DOI: 10.3389/fcimb.2023.1165647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Dysregulation of metabolism plays an important role in the onset and progression of multiple pathogenic diseases, including viral hepatitis. However, a model to predict viral hepatitis risk by metabolic pathways is still lacking. Thus, we developed two risk assessment models for viral hepatitis based on metabolic pathways identified through univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The first model is designed to assess the progression of the disease by evaluating changes in the Child–Pugh class, hepatic decompensation, and the development of hepatocellular carcinoma. The second model is focused on determining the prognosis of the illness, taking into account the patient’s cancer status. Our models were further validated by Kaplan–Meier plots of survival curves. In addition, we investigated the contribution of immune cells in metabolic processes and identified three distinct subsets of immune cells—CD8+ T cells, macrophages, and NK cells—that have significantly affected metabolic pathways. Specifically, our findings suggest that resting or inactive macrophages and NK cells contribute to maintaining metabolic homeostasis, particularly with regard to lipid and α-amino acid metabolism, thereby potentially reducing the risk of viral hepatitis progression. Moreover, maintaining metabolic homeostasis ensures a balance between killer-proliferative and exhausted CD8+ T cells, which helps in mitigating CD8+ T cell-mediated liver damage while preserving energy reserves. In conclusion, our study offers a useful tool for early disease detection in viral hepatitis patients through metabolic pathway analysis and sheds light on the immunological understanding of the disease through the examination of immune cell metabolic disorders.
Collapse
Affiliation(s)
- Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Lei
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanyan Zhou
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingan Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Xinyu Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- *Correspondence: Bin Zhao, ; ; Xinyu Li,
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Xinyu Li,
| |
Collapse
|
6
|
Parker AL, Bowman E, Zingone A, Ryan BM, Cooper WA, Kohonen-Corish M, Harris CC, Cox TR. Extracellular matrix profiles determine risk and prognosis of the squamous cell carcinoma subtype of non-small cell lung carcinoma. Genome Med 2022; 14:126. [PMID: 36404344 PMCID: PMC9677915 DOI: 10.1186/s13073-022-01127-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma (SqCC) is a subtype of non-small cell lung cancer for which patient prognosis remains poor. The extracellular matrix (ECM) is critical in regulating cell behavior; however, its importance in tumor aggressiveness remains to be comprehensively characterized. METHODS Multi-omics data of SqCC human tumor specimens was combined to characterize ECM features associated with initiation and recurrence. Penalized logistic regression was used to define a matrix risk signature for SqCC tumors and its performance across a panel of tumor types and in SqCC premalignant lesions was evaluated. Consensus clustering was used to define prognostic matreotypes for SqCC tumors. Matreotype-specific tumor biology was defined by integration of bulk RNAseq with scRNAseq data, cell type deconvolution, analysis of ligand-receptor interactions and enriched biological pathways, and through cross comparison of matreotype expression profiles with aging and idiopathic pulmonary fibrosis lung profiles. RESULTS This analysis revealed subtype-specific ECM signatures associated with tumor initiation that were predictive of premalignant progression. We identified an ECM-enriched tumor subtype associated with the poorest prognosis. In silico analysis indicates that matrix remodeling programs differentially activate intracellular signaling in tumor and stromal cells to reinforce matrix remodeling associated with resistance and progression. The matrix subtype with the poorest prognosis resembles ECM remodeling in idiopathic pulmonary fibrosis and may represent a field of cancerization associated with elevated cancer risk. CONCLUSIONS Collectively, this analysis defines matrix-driven features of poor prognosis to inform precision medicine prevention and treatment strategies towards improving SqCC patient outcome.
Collapse
Affiliation(s)
- Amelia L. Parker
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| | - Elise Bowman
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Adriana Zingone
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Brid M. Ryan
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA ,Present address: MiNA Therapeutics, London, UK
| | - Wendy A. Cooper
- grid.413249.90000 0004 0385 0051Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia ,grid.1013.30000 0004 1936 834XSydney Medical School, University of Sydney, Sydney, NSW 2050 Australia ,grid.1029.a0000 0000 9939 5719Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW 2170 Australia
| | - Maija Kohonen-Corish
- grid.417229.b0000 0000 8945 8472Woolcock Institute of Medical Research, Sydney, NSW 2037 Australia ,grid.1005.40000 0004 4902 0432Microbiome Research Centre, School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia ,grid.415306.50000 0000 9983 6924Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Curtis C. Harris
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Thomas R. Cox
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| |
Collapse
|
7
|
Henneberg AL, Opitz CA. Making liver cancer cells go ARGh! EMBO J 2022; 41:e112415. [PMID: 36222348 PMCID: PMC9627661 DOI: 10.15252/embj.2022112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
A recent study by Missiaen et al (2022) uncovers hepatocellular carcinoma (HCC) cells to downregulate urea cycle enzymes and rely on the uptake of exogenous arginine and GCN2 kinase-dependent cell-cycle arrest for survival. These results offer new avenues for combinatorial targeting of liver cancer.
Collapse
Affiliation(s)
- Alessa L Henneberg
- Metabolic Crosstalk in CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BioscienceHeidelberg UniversityHeidelbergGermany
| | - Christiane A Opitz
- Metabolic Crosstalk in CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Neurology Clinic and National Center for Tumor DiseasesHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|