1
|
Chen G, Luo M, Chen W, Zhang Y, Gu Z, Xu M, Zhang Y, Bian J. The primary somatosensory sensory cortex-basolateral amygdala pathway contributes to comorbid depression in spared nerve injury-induced neuropathic pain. Sci Rep 2025; 15:13678. [PMID: 40258918 PMCID: PMC12012082 DOI: 10.1038/s41598-025-97164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
Comorbid depression in chronic pain is a prevalent health problem, yet the underlying neural mechanisms remain largely unexplored. This study identified a dedicated neural circuit connecting the hind limb region of the primary somatosensory cortex (S1HL) to the basolateral amygdala (BLA) that mediated neuropathic pain-induced depression. We demonstrated that depressive-like behaviors in the chronic phase of a mouse neuropathic pain model were associated with heightened activity in the S1HL and BLA. Using viral tracing and RNAscope in situ hybridization, we characterized the circuit architecture of S1HL glutamatergic projections to BLA cholecystokinin (CCK) neurons (S1HLGlu → BLACCK). In vivo fiber photometry calcium imaging revealed that both the S1HL BLA-projecting afferents and the BLA S1HL-innervating neurons exhibited hyperactivity in neuropathic pain-induced depressive states. Chemogenetic inhibition of the S1HL → BLA circuit could block neuropathic pain-induced depressive-like behaviors. In addition, specific knockdown of CCK expression in BLA S1HL-innervating neurons alleviated these depressive-like behaviors. Our findings demonstrated that the cortical-amygdala circuit S1HLGlu → BLACCK drove the transition from chronic pain to depression, thus suggesting a potential neural circuit basis for treating chronic pain-related depressive disorders.
Collapse
Affiliation(s)
- Guo Chen
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Min Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, China
| | - Wentao Chen
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Yu Zhang
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Zuchao Gu
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Miaomiao Xu
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jiang Bian
- Department of Anesthesiology, Panzhihua Central Hospital, Panzhihua, 637000, Sichuan, China.
| |
Collapse
|
2
|
Park J, Kim YG, Kim T, Baek M. Electrical Stimulation of the M1 Activates Somatostatin Interneurons in the S1: Potential Mechanisms Underlying Pain Suppression. eNeuro 2025; 12:ENEURO.0541-24.2025. [PMID: 40228867 PMCID: PMC12043047 DOI: 10.1523/eneuro.0541-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
Chronic pain affects millions globally, yet no universally effective treatment exists. The primary motor cortex (M1) has been a key target for chronic pain therapies, with electrical stimulation of the M1 (eMCS) showing promise. However, the mechanisms underlying M1-mediated analgesic effects are not fully understood. We investigated the role of the primary somatosensory cortex (S1) in M1-mediated analgesia using a neuropathic pain mouse model. In this model, neuropathic pain is associated with increased spontaneous activity of layer V pyramidal neurons (LV-PNs) in the S1, partly attributed to the reduced activity of somatostatin-expressing inhibitory neurons (SST+ INs), which normally suppress LV-PNs. While manipulation of either LV-PNs or SST+ INs has been shown to alleviate pain, the role of S1 in M1-mediated analgesia has not been identified. Using multichannel silicon probes, we applied eMCS to neuropathic mice and observed significant analgesia. Histological analyses revealed that eMCS activated SST+ INs and suppressed hyperactivity of LV-PNs in the S1, suggesting that eMCS suppresses pain by modulating S1 neuronal circuits, alongside other pain-related regions. Notably, eMCS induced long-lasting analgesia, persisting for at least 2 d poststimulation. These findings implicate S1 as a critical mediator of eMCS-induced analgesia and suggest eMCS as a potential durable therapeutic strategy for chronic pain.
Collapse
Affiliation(s)
- Junhee Park
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Yong Geon Kim
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Taehyeon Kim
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Myungin Baek
- Department of Brain Sciences, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
3
|
Xian H, Guo H, Liu YY, Ma SB, Zhao R, Zhang JL, Zhang H, Xie RG, Guo XC, Ren J, Wu SX, Luo C, Cong R. Nociceptor-localized KCC2 suppresses brachial plexus avulsion-induced neuropathic pain and related central sensitization. Cell Biosci 2025; 15:12. [PMID: 39891150 PMCID: PMC11786554 DOI: 10.1186/s13578-025-01354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Lack in understanding of the mechanism on brachial plexus avulsion (BPA)-induced neuropathic pain (NP) is the key factor restricting its treatment. In the current investigation, we focused on the nociceptor-localized K+-Cl- cotransporter 2 (KCC2) to investigate its role in BPA-induced NP and related pain sensitization. A novel mice model of BPA on the middle trunk (C7) was established, and BPA mice showed a significant reduction in mechanical withdrawal threshold of the affected fore- and hind- paws without affecting the motor function through CatWalk Gait analysis. Decreased expression of KCC2 in dorsal root ganglion (DRG) was detected through Western blot and FISH technology after BPA. Overexpression of KCC2 in DRG could reverse the hyperexcitability of DRG neurons and alleviate the pain of BPA mice synchronously. Meanwhile, the calcium response signal of the affected SDH could be significantly reduced through above method using spinal cord fiber photometry. The synthesis and release of brain-derived neurotrophic factor (BDNF) was also proved reduction through overexpression of KCC2 in DRG, which indicates BDNF can also act as the downstream role in this pain state. As in human-derived tissues, we found decreased expression of KCC2 and increased expression of BDNF and TrκB in avulsed roots of BPA patients compared with normal human DRGs. Our results indicate that nociceptor-localized KCC2 can suppress BPA-induced NP, and peripheral sensitization can be regulated to reverse central sensitization by targeting KCC2 in DRG at the peripheral level through BDNF signaling. The consistent results in both humanity and rodents endow great potential to future transformation of clinical practice.
Collapse
Affiliation(s)
- Hang Xian
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Huan Guo
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Rui Zhao
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jian-Lei Zhang
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Hang Zhang
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xu-Cheng Guo
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jie Ren
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Rui Cong
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Volkweis MCC, Tomasi LA, Santos GC, Dagnino APA, Estrázulas M, Campos MM. Induction of orofacial pain potentiates fibromyalgia symptoms in mice: Relevance of nociceptin system. Life Sci 2024; 358:123183. [PMID: 39471900 DOI: 10.1016/j.lfs.2024.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
AIMS Fibromyalgia patients might experience temporomandibular disorder (TMD) as a comorbidity. However, the connection between these two syndromes is not fully understood. Nociceptin (N/OFQ) and NOP receptors are implicated in both conditions, but their relevance in the comorbidity needs investigation. This study featured a comorbidity model of fibromyalgia plus TMD in mice, attempting to evaluate the significance of the N/OFQ-NOP receptor in this paradigm. MATERIALS AND METHODS Female CF-1 mice were submitted to the fibromyalgia model induced by three daily consecutive injections of reserpine (0.25 mg/kg) and received an intra-masseter injection of complete Freund's adjuvant (CFA; 10 μl; diluted 1:1) on day four. KEY FINDINGS There was a rise in nocifensive and depression-like behaviors in the comorbidity group, as evaluated by the Grimace scores and the tail suspension test (TST). This group displayed anxiogenic-like effects in the hole board and the elevated plus maze tests. The comorbidity group showed an increment of c-Fos immunopositivity in the ipsilateral side of CFA injection, in the trigeminal ganglion (TG) and thalamus. The administration of N/OFQ (1 nmol/kg, i.p.) boosted the Grimace scores in the comorbidity group, with no effect for the NOP receptor antagonist UFP-101 (1 nmol/kg, i.p.). Either NOP ligand failed to alter depression or anxiety behavioral changes. Alternatively, pregabalin (30 mg/kg; i.p.) reduced the nociceptive responses and the number of head dips in the hole board. SIGNIFICANCE Data reveal new evidence suggesting that inducing TMD with CFA may worsen fibromyalgia symptoms in reserpine-treated mice, an effect partially regulated by systemic N/OFQ.
Collapse
Affiliation(s)
- Maria C C Volkweis
- PUCRS, Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Luisa A Tomasi
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Curso de Graduação em Farmácia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Gabriella C Santos
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Ana P A Dagnino
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Porto Alegre, RS, Brazil
| | - Marina Estrázulas
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Porto Alegre, RS, Brazil
| | - Maria M Campos
- PUCRS, Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Ma L, Yue L, Liu S, Xu S, Tong J, Sun X, Su L, Cui S, Liu FY, Wan Y, Yi M. A distinct neuronal ensemble of prelimbic cortex mediates spontaneous pain in rats with peripheral inflammation. Nat Commun 2024; 15:7922. [PMID: 39256428 PMCID: PMC11387830 DOI: 10.1038/s41467-024-52243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
The absence of a comprehensive understanding of the neural basis of spontaneous pain limits the development of therapeutic strategies targeting this primary complaint of patients with chronic pain. Here we report a distinct neuronal ensemble within the prelimbic cortex which processes signals related to spontaneous pain in rats with chronic inflammatory pain. This neuronal ensemble specifically encodes spontaneous pain-related behaviors, independently of other locomotive and evoked behaviors. Activation of this neuronal ensemble elicits marked spontaneous pain-like behaviors and enhances nociceptive responses, whereas prolonged silencing of its activities alleviates spontaneous pain and promotes overall recovery from inflammatory pain. Notably, afferents from the primary somatosensory cortex and infralimbic cortex bidirectionally modulate the activities of the spontaneous pain-responsive prelimbic cortex neuronal ensemble and pain behaviors. These findings reveal the cortical basis of spontaneous pain at the neuronal level, highlighting a distinct neuronal ensemble within the prelimbic cortex and its associated pain-regulatory brain networks.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Science, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shi Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China.
- Medical Innovation Center (Taizhou) of Peking University, Taizhou, China.
| |
Collapse
|
6
|
Wu X, Yang L, Li Z, Gu C, Jin K, Luo A, Rasheed NF, Fiutak I, Chao K, Chen A, Mao J, Chen Q, Ding W, Shen S. Aging-associated decrease of PGC-1α promotes pain chronification. Aging Cell 2024; 23:e14177. [PMID: 38760908 PMCID: PMC11320346 DOI: 10.1111/acel.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/20/2024] Open
Abstract
Aging is generally associated with declining somatosensory function, which seems at odds with the high prevalence of chronic pain in older people. This discrepancy is partly related to the high prevalence of degenerative diseases such as osteoarthritis in older people. However, whether aging alters pain processing in the primary somatosensory cortex (S1), and if so, whether it promotes pain chronification is largely unknown. Herein, we report that older mice displayed prolonged nociceptive behavior following nerve injury when compared with mature adult mice. The expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) in S1 was decreased in older mice, whereas PGC-1α haploinsufficiency promoted prolonged nociceptive behavior after nerve injury. Both aging and PGC-1α haploinsufficiency led to abnormal S1 neural dynamics, revealed by intravital two-photon calcium imaging. Manipulating S1 neural dynamics affected nociceptive behavior after nerve injury: chemogenetic inhibition of S1 interneurons aggravated nociceptive behavior in naive mice; chemogenetic activation of S1 interneurons alleviated nociceptive behavior in older mice. More interestingly, adeno-associated virus-mediated expression of PGC-1α in S1 interneurons ameliorated aging-associated chronification of nociceptive behavior as well as aging-related S1 neural dynamic changes. Taken together, our results showed that aging-associated decrease of PGC-1α promotes pain chronification, which might be harnessed to alleviate the burden of chronic pain in older individuals.
Collapse
Affiliation(s)
- Xinbo Wu
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Present address:
Shanghai 10th HospitalTongji University School of MedicineShanghaiChina
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Zihua Li
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Chenzheng Gu
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Kaiyan Jin
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Andrew Luo
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Kristina Chao
- Summer Intern ProgramMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Amy Chen
- Summer Intern ProgramMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jianren Mao
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Qian Chen
- Chinese Academy of SciencesZhongshan Institute for Drug Discovery, Shanghai Institute of Materia MedicaShanghaiChina
| | - Weihua Ding
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
7
|
Huerta MÁ, Cisneros E, Alique M, Roza C. Strategies for measuring non-evoked pain in preclinical models of neuropathic pain: Systematic review. Neurosci Biobehav Rev 2024; 163:105761. [PMID: 38852847 DOI: 10.1016/j.neubiorev.2024.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The development of new analgesics for neuropathic pain treatment is crucial. The failure of promising drugs in clinical trials may be related to the over-reliance on reflex-based responses (evoked pain) in preclinical drug testing, which may not fully represent clinical neuropathic pain, characterized by spontaneous non-evoked pain (NEP). Hence, strategies for assessing NEP in preclinical studies emerged. This systematic review identified 443 articles evaluating NEP in neuropathic pain models (mainly traumatic nerve injuries in male rodents). An exponential growth in NEP evaluation was observed, which was assessed using 48 different tests classified in 12 NEP-related outcomes: anxiety, exploration/locomotion, paw lifting, depression, conditioned place preference, gait, autotomy, wellbeing, facial grooming, cognitive impairment, facial pain expressions and vocalizations. Although most of these outcomes showed clear limitations, our analysis suggests that conditioning-associated outcomes, pain-related comorbidities, and gait evaluation may be the most effective strategies. Moreover, a minimal part of the studies evaluated standard analgesics. The greater emphasis on evaluating NEP aligning with clinical pain symptoms may enhance analgesic drug development, improving clinical translation.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada 18012, Spain
| | - Elsa Cisneros
- Health Sciences School, Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain; Health Sciences School, Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Matilde Alique
- Department of System's Biology, Medical School, University of Alcala de Henares, Alcalá de Henares, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala de Henares, Alcalá de Henares, Spain.
| |
Collapse
|
8
|
Di Cesare Mannelli L, Ghelardini C. Commentary on "Synchronized activity of sensory neurons initiates cortical synchrony in a model of neuropathic pain". Neural Regen Res 2024; 19:728. [PMID: 37843205 PMCID: PMC10664135 DOI: 10.4103/1673-5374.382219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health – Neurofarba – Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health – Neurofarba – Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Kim B, Ding W, Yang L, Chen Q, Mao J, Feng G, Choi JH, Shen S. Simultaneous two-photon imaging and wireless EEG recording in mice. Heliyon 2024; 10:e25910. [PMID: 38449613 PMCID: PMC10915345 DOI: 10.1016/j.heliyon.2024.e25910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background In vivo two-photon imaging is a reliable method with high spatial resolution that allows observation of individual neuron and dendritic activity longitudinally. Neurons in local brain regions can be influenced by global brain states such as levels of arousal and attention that change over relatively short time scales, such as minutes. As such, the scientific rigor of investigating regional neuronal activities could be enhanced by considering the global brain state. New method In order to assess the global brain state during in vivo two-photon imaging, CBRAIN (collective brain research platform aided by illuminating neural activity), a wireless EEG collecting and labeling device, was controlled by the same computer of two-photon microscope. In an experiment to explore neuronal responses to isoflurane anesthesia through two-photon imaging, we investigated whether the response of individual cells correlated with concurrent EEG changes induced by anesthesia. Results In two-photon imaging, calcium activities of the excitatory neurons in the primary somatosensory cortex disappeared in about 30s after to the initiation of isoflurane anesthesia. The simultaneously recorded EEG showed various transitional activity for about 7 min from the initiation of anesthesia and continued with burst and suppression alternating pattern thereafter. As such, there was a dissociation between excitatory neuron activity of the primary somatosensory cortex and the global brain activity under anesthesia. Comparison with existing methods Existing methods to combine two-photon and EEG recording used wired EEG recording. In this study, wireless EEG was used in conjunction with two-photon imaging, facilitated by CBRAIN. More importantly, built-in algorithms of the CBRAIN can automatically detect brain state such as sleep. The codes used for EEG classification are easy to use, with no prior experience required. Conclusion Simultaneous recording of wireless EEG and two-photon imaging provides a practical way to capture individual neuronal activities with respect to global brain state in an experimental set-up.
Collapse
Affiliation(s)
- Bowon Kim
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Weihua Ding
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Liuyue Yang
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA, USA
- Current address: Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianren Mao
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Shiqian Shen
- Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Ding W, Yang L, Chen Q, Hu K, Liu Y, Bao E, Wang C, Mao J, Shen S. Foramen lacerum impingement of trigeminal nerve root as a rodent model for trigeminal neuralgia. JCI Insight 2023; 8:e168046. [PMID: 37159265 PMCID: PMC10393239 DOI: 10.1172/jci.insight.168046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
Trigeminal neuralgia (TN) is a classic neuralgic pain condition with distinct clinical characteristics. Modeling TN in rodents is challenging. Recently, we found that a foramen in the rodent skull base, the foramen lacerum, provides direct access to the trigeminal nerve root. Using this access, we developed a foramen lacerum impingement of trigeminal nerve root (FLIT) model and observed distinct pain-like behaviors in rodents, including paroxysmal asymmetric facial grimaces, head tilt when eating, avoidance of solid chow, and lack of wood chewing. The FLIT model recapitulated key clinical features of TN, including lancinating pain-like behavior and dental pain-like behavior. Importantly, when compared with a trigeminal neuropathic pain model (infraorbital nerve chronic constriction injury [IoN-CCI]), the FLIT model was associated with significantly higher numbers of c-Fos-positive cells in the primary somatosensory cortex (S1), unraveling robust cortical activation in the FLIT model. On intravital 2-photon calcium imaging, synchronized S1 neural dynamics were present in the FLIT but not the IoN-CCI model, revealing differential implication of cortical activation in different pain models. Taken together, our results indicate that FLIT is a clinically relevant rodent model of TN that could facilitate pain research and therapeutics development.
Collapse
Affiliation(s)
- Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Chen
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kun Hu
- Department of Pathology, Tuft University School of Medicine, Boston, Massachusetts, USA
| | - Yan Liu
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric Bao
- Brooks School, North Andover, Massachusetts, USA
| | - Changning Wang
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jianren Mao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Taylor NE, Ferrari L. Discovering chronic pain treatments: better animal models might help us get there. J Clin Invest 2023; 133:167814. [PMID: 36856117 PMCID: PMC9974092 DOI: 10.1172/jci167814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Only three classes of pain medications have made it into clinical use in the past 60 years despite intensive efforts and the need for nonaddictive pain treatments. One reason for the failure involves the use of animal models that lack mechanistic similarity to human pain conditions, with endpoint measurements that may not reflect the human pain experience. In this issue of the JCI, Ding, Fischer, and co-authors developed the foramen lacerum impingement of trigeminal nerve root (FLIT) model of human trigeminal neuralgia that has improved face, construct, and predictive validities over those of current models. They used the FLIT model to investigate the role that abnormal, hypersynchronous cortical activity contributed to a neuropathic pain state. Unrestrained, synchronous glutamatergic activity in the primary somatosensory cortex upper lip and jaw (S1ULp-S1J) region of the somatosensory cortex drove pain phenotypes. The model establishes a powerful tool to continue investigating the interaction between the peripheral and central nervous systems that leads to chronic pain.
Collapse
Affiliation(s)
- Norman E. Taylor
- Department of Anesthesiology, The University of Utah, Salt Lake City, Utah, USA
| | - Luiz Ferrari
- Department of Anesthesiology, The University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|