1
|
Lawler JM, Kamal KY, Botchlett RE, Woo SL, Li H, Hord JM, Fluckey JD, Wu C. Metformin ablates high fat diet-induced skeletal muscle hypertrophy and elevation of sarcolemmal GLUT4 when feeding is initiated in young adult male mice. Connect Tissue Res 2025; 66:121-135. [PMID: 40052722 DOI: 10.1080/03008207.2025.2471853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025]
Abstract
A high-fat diet (HFD) and metabolic disease can impair insulin signaling in skeletal muscle, including a reduction in IRS-1 and GLUT-4 at the cell membrane. Other sarcolemmal proteins (e.g. caveolin-3, nNOS) within the dystrophin-glycoprotein complex (DGC) are partially lost with Type II diabetes. Thus, we hypothesized that a HFD would cause a significant loss of sarcolemmal DGC proteins and GLUT4, and the anti-diabetic drug metformin would mitigate the disruption of the DGC and preserve sarcolemmal GLUT4 on the soleus muscle. Eight-week-old mice were fed a high-fat diet for 12 weeks. After 8 weeks, one-half of the HFD mice received metformin for the remaining 4 weeks. HFD caused a marked increase in soleus muscle mass and fiber cross-sectional area and elevated sarcolemmal GLUT4, even though systemic insulin resistance was greater. HFD-induced muscle hypertrophy and elevated membrane GLUT4 were unexpectedly attenuated by metformin. In addition, IRS-1 positive staining was not reduced by HFD but rather enhanced in the metformin mice fed a high-fat diet. Sarcolemmal staining of dystrophin and caveolin-3 was reduced by HFD but not in the metformin group, while nNOS intensity was unaffected by HFD and metformin. These findings suggest that skeletal muscles in young adult mice can compensate for a high-fat diet and insulin resistance, with a minor disruption of the DGC, by maintaining cell membrane nNOS and IRS-1 and elevating GLUT4. We postulate that a window of compensatory GLUT4 and nNOS signaling allows calorically dense food to enhance skeletal muscle fiber size when introduced in adolescence.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signaling Laboratory, Kinesiology and Sport Management Department, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Khaled Y Kamal
- Redox Biology & Cell Signaling Laboratory, Kinesiology and Sport Management Department, Texas A&M University, College Station, TX, USA
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - Rachel E Botchlett
- Redox Biology & Cell Signaling Laboratory, Kinesiology and Sport Management Department, Texas A&M University, College Station, TX, USA
| | - Shih Lung Woo
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Honggui Li
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Jeff M Hord
- Redox Biology & Cell Signaling Laboratory, Kinesiology and Sport Management Department, Texas A&M University, College Station, TX, USA
- Department of Molecular Physiology and Biophysics, Carver School of Medicine, University of Iowa, Iowa City, IA, USA
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Long DW, Long BD, Nawaratna GI, Wu G. Oral Administration of L-Arginine Improves the Growth and Survival of Sow-Reared Intrauterine Growth-Restricted Piglets. Animals (Basel) 2025; 15:550. [PMID: 40003032 PMCID: PMC11851912 DOI: 10.3390/ani15040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Neonatal piglets with intrauterine growth restriction (IUGR) exhibit reduced rates of growth and survival. The present study tested the hypothesis that L-arginine supplementation can mitigate this problem. One hundred and twelve (112) IUGR piglets (with a mean birth weight of 0.84 kg) from 28 sows (four IUGR piglets/sow) were assigned randomly into one of four groups. Piglets were nursed by sows and orally administered 0, 0.1, 0.2, or 0.4 g L-arginine (in the form of L-arginine-HCl) per kg body weight (BW) twice daily between 0 and 14 days of age. The total doses of L-arginine were 0, 0.2, 0.4, or 0.8 g/kg BW/day. Appropriate amounts of L-alanine were added to L-arginine solutions so that all groups of piglets received the same amount of nitrogen. Piglets were weighed on days 0, 7, and 14 of age. On day 14, blood samples (5 mL) were obtained from the jugular vein of piglets at 1 h after suckling, and their milk consumption was measured over a 10-h period using the weigh-suckle-weigh technique. Milk intake did not differ (p > 0.05) among the four groups of piglets. Oral administration of 0.4 g L-arginine/kg BW/day increased (p < 0.05) the circulating levels of arginine, creatine, and anabolic hormones (insulin, growth hormone, and insulin-like growth factor-I), but decreased (p < 0.05) plasma concentrations of ammonia and cortisol (a catabolic hormone). Compared to the control group, IUGR piglets administered 0.2 and 0.4 g L-arginine/kg BW/day increased (p < 0.05) weight gain by 19% and 31%, respectively. Growth did not differ (p > 0.05) between the control and 0.8 g L-arginine/kg BW/day groups. The survival rates of IUGR piglets were 50%, 75%, 89%, and 89%, respectively, for the 0, 0.2, 0.4, and 0.8 g L-arginine/kg BW/day groups. Collectively, these results indicate that the growth and survival of IUGR piglets can be improved through L-arginine supplementation.
Collapse
Affiliation(s)
| | | | | | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Acquarone D, Bertero A, Brancaccio M, Sorge M. Chaperone Proteins: The Rising Players in Muscle Atrophy. J Cachexia Sarcopenia Muscle 2025; 16:e13659. [PMID: 39707668 PMCID: PMC11747685 DOI: 10.1002/jcsm.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 12/23/2024] Open
Abstract
Despite significant progress in understanding the molecular aetiology of muscle atrophy, there is still a great need for new targets and drugs capable of counteracting muscle wasting. The role of an impaired proteostasis as the underlying causal mechanism of muscle atrophy is a well-established concept. From the earliest work on muscle atrophy and the identification of the first atrogenes, the hyper-activation of the proteolytic systems, such as autophagy and the ubiquitin proteasome system, has been recognized as the major driver of atrophy. However, the role of other key regulators of proteostasis, the chaperone proteins, has been largely overlooked. Chaperone proteins play a pivotal role in protein folding and in preventing the aggregation of misfolded proteins. Indeed, some chaperones, such as αB-crystallin and Hsp25, are involved in compensatory responses aimed at counteracting protein aggregation during sarcopenia. Chaperones also regulate different intracellular signalling pathways crucial for atrogene expression and the control of protein catabolism, such as the AKT and NF-kB pathways, which are regulated by Hsp70 and Hsp90. Furthermore, the downregulation of certain chaperones causes severe muscle wasting per se and experimental strategies aimed at preventing this downregulation have shown promising results in mitigating or reversing muscle atrophy. This highlights the therapeutic potential of targeting chaperones and confirms their crucial anti-atrophic functions. In this review, we summarize the most relevant data showing the modulation and the causative role of chaperone proteins in different types of skeletal muscle atrophies.
Collapse
Affiliation(s)
- Davide Acquarone
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| |
Collapse
|
4
|
Li X, Wu C, Lu X, Wang L. Predictive models of sarcopenia based on inflammation and pyroptosis-related genes. Front Genet 2024; 15:1491577. [PMID: 39777262 PMCID: PMC11703911 DOI: 10.3389/fgene.2024.1491577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background Sarcopenia is a prevalent condition associated with aging. Inflammation and pyroptosis significantly contribute to sarcopenia. Methods Two sarcopenia-related datasets (GSE111016 and GSE167186) were obtained from the Gene Expression Omnibus (GEO), followed by batch effect removal post-merger. The "limma" R package was utilized to identify differentially expressed genes (DEGs). Subsequently, LASSO analysis was conducted on inflammation and pyroptosis-related genes (IPRGs), resulting in the identification of six hub IPRGs. A novel skeletal muscle aging model was developed and validated using an independent dataset. Additionally, Gene Ontology (GO) enrichment analysis was performed on DEGs, along with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene set enrichment analysis (GSEA). ssGSEA was employed to assess differences in immune cell proportions between healthy muscle groups in older versus younger adults. The expression levels of the six core IPRGs were quantified via qRT-PCR. Results A total of 44 elderly samples and 68 young healthy samples were analyzed for DEGs. Compared to young healthy muscle tissue, T cell infiltration levels in aged muscle tissue were significantly reduced, while mast cell and monocyte infiltration levels were relatively elevated. A new diagnostic screening model for sarcopenia based on the six IPRGs demonstrated high predictive efficiency (AUC = 0.871). qRT-PCR results indicated that the expression trends of these six IPRGs aligned with those observed in the database. Conclusion Six biomarkers-BTG2, FOXO3, AQP9, GPC3, CYCS, and SCN1B-were identified alongside a diagnostic model that offers a novel approach for early diagnosis of sarcopenia.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Wu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Wang
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Bahadoran Z, Mirmiran P, Ghasemi A. Type 2 diabetes-related sarcopenia: role of nitric oxide. Nutr Metab (Lond) 2024; 21:107. [PMID: 39695784 DOI: 10.1186/s12986-024-00883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Sarcopenia, characterized by progressive and generalized loss of skeletal muscle (SkM) mass, strength, and physical performance, is a prevalent complication in type 2 diabetes (T2D). Nitric oxide (NO), a multifunctional gasotransmitter involved in whole-body glucose and insulin homeostasis, plays key roles in normal SkM physiology and function. Here, we highlight the role of NO in SkM mass maintenance and its potential contribution to the development of T2D-related sarcopenia. Physiologic NO level, primarily produced by sarcolemmal neuronal nitric oxide synthase (nNOSμ isoform), is involved in protein synthesis in muscle fibers and maintenance of SkM mass. The observed effect of nNOSμ on SkM mass is muscle-type specific and sex-dependent. Impaired NO homeostasis [due to a diminished nNOSμ-NO availability and excessive NO production through inducible NOS (iNOS) in response to atrophic stimuli, e.g., inflammatory cytokines] in SkM occurred during the development and progression of T2D, may cause sarcopenia. Theoretically, restoration of NO through nNOS overexpression, supplying NOS substrates (e.g., L-arginine and L-citrulline), phosphodiesterase (PDE) inhibition, and supplementation with NO donors (e.g., inorganic nitrate) may be potential therapeutic approaches to preserve SkM mass and prevents sarcopenia in T2D.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Micronutrient Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, P.O. Box 19395-4763, Tehran, Iran.
| |
Collapse
|
6
|
Suzuki N, Kanzaki M, Koide M, Izumi R, Fujita R, Takahashi T, Ogawa K, Yabe Y, Tsuchiya M, Suzuki M, Harada R, Ohno A, Ono H, Nakamura N, Ikeda K, Warita H, Osana S, Oikawa Y, Toyohara T, Abe T, Rui M, Ebihara S, Nagatomi R, Hagiwara Y, Aoki M. Sporadic inclusion body myositis-derived myotube culture revealed muscle cell-autonomous expression profiles. PLoS One 2024; 19:e0306021. [PMID: 39088432 PMCID: PMC11293708 DOI: 10.1371/journal.pone.0306021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/10/2024] [Indexed: 08/03/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is a muscle disease in older people and is characterized by inflammatory cell invasion into intact muscle fibers and rimmed vacuoles. The pathomechanism of sIBM is not fully elucidated yet, and controversy exists as to whether sIBM is a primary autoimmune disease or a degenerative muscle disease with secondary inflammation. Previously, we established a method of collecting CD56-positive myoblasts from human skeletal muscle biopsy samples. We hypothesized that the myoblasts derived from these patients are useful to see the cell-autonomous pathomechanism of sIBM. With these resources, myoblasts were differentiated into myotubes, and the expression profiles of cell-autonomous pathology of sIBM were analyzed. Myoblasts from three sIBM cases and six controls were differentiated into myotubes. In the RNA-sequencing analysis of these "myotube" samples, 104 differentially expressed genes (DEGs) were found to be significantly upregulated by more than twofold in sIBM, and 13 DEGs were downregulated by less than twofold. For muscle biopsy samples, a comparative analysis was conducted to determine the extent to which "biopsy" and "myotube" samples differed. Fifty-three DEGs were extracted of which 32 (60%) had opposite directions of expression change (e.g., increased in biopsy vs decreased in myotube). Apolipoprotein E (apoE) and transmembrane protein 8C (TMEM8C or MYMK) were commonly upregulated in muscle biopsies and myotubes from sIBM. ApoE and myogenin protein levels were upregulated in sIBM. Given that enrichment analysis also captured changes in muscle contraction and development, the triggering of muscle atrophy signaling and abnormal muscle differentiation via MYMK or myogenin may be involved in the pathogenesis of sIBM. The presence of DEGs in sIBM suggests that the myotubes formed from sIBM-derived myoblasts revealed the existence of muscle cell-autonomous degeneration in sIBM. The catalog of DEGs will be an important resource for future studies on the pathogenesis of sIBM focusing on primary muscle degeneration.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Masashi Koide
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Fujita
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tadahisa Takahashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazumi Ogawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yutaka Yabe
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Masako Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuhei Harada
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyuki Ohno
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Iwate Hospital, Ichinoseki, Iwate, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yoshitsugu Oikawa
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Toyohara
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Muliang Rui
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Kamal KY, Othman MA, Kim JH, Lawler JM. Bioreactor development for skeletal muscle hypertrophy and atrophy by manipulating uniaxial cyclic strain: proof of concept. NPJ Microgravity 2024; 10:62. [PMID: 38862543 PMCID: PMC11167039 DOI: 10.1038/s41526-023-00320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/15/2023] [Indexed: 06/13/2024] Open
Abstract
Skeletal muscles overcome terrestrial, gravitational loading by producing tensile forces that produce movement through joint rotation. Conversely, the microgravity of spaceflight reduces tensile loads in working skeletal muscles, causing an adaptive muscle atrophy. Unfortunately, the design of stable, physiological bioreactors to model skeletal muscle tensile loading during spaceflight experiments remains challenging. Here, we tested a bioreactor that uses initiation and cessation of cyclic, tensile strain to induce hypertrophy and atrophy, respectively, in murine lineage (C2C12) skeletal muscle myotubes. Uniaxial cyclic stretch of myotubes was conducted using a StrexCell® (STB-1400) stepper motor system (0.75 Hz, 12% strain, 60 min day^-1). Myotube groups were assigned as follows: (a) quiescent over 2- or (b) 5-day (no stretch), (c) experienced 2-days (2dHY) or (d) 5-days (5dHY) of cyclic stretch, or (e) 2-days of cyclic stretch followed by a 3-day cessation of stretch (3dAT). Using ß-sarcoglycan as a sarcolemmal marker, mean myotube diameter increased significantly following 2dAT (51%) and 5dAT (94%) vs. matched controls. The hypertrophic, anabolic markers talin and Akt phosphorylation (Thr308) were elevated with 2dHY but not in 3dAT myotubes. Inflammatory, catabolic markers IL-1ß, IL6, and NF-kappaB p65 subunit were significantly higher in the 3dAT group vs. all other groups. The ratio of phosphorylated FoxO3a/total FoxO3a was significantly lower in 3dAT than in the 2dHY group, consistent with elevated catabolic signaling during unloading. In summary, we demonstrated proof-of-concept for a spaceflight research bioreactor, using uniaxial cyclic stretch to produce myotube hypertrophy with increased tensile loading, and myotube atrophy with subsequent cessation of stretch.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA.
| | - Mariam Atef Othman
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Joo-Hyun Kim
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Baum O. Expression of neuronal NO synthase α- and β-isoforms in skeletal muscle of mice. Biochem J 2024; 481:601-613. [PMID: 38592741 DOI: 10.1042/bcj20230458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
Knowledge of the primary structure of neuronal NO synthase (nNOS) in skeletal muscle is still conflicting and needs further clarification. To elucidate the expression patterns of nNOS isoforms at both mRNA and protein level, systematic reverse transcription (RT)-PCR and epitope mapping by qualitative immunoblot analysis on skeletal muscle of C57/BL6 mice were performed. The ability of the nNOS isoforms to form aggregates was characterized by native low-temperature polyacrylamide electrophoresis (LT-PAGE). The molecular analysis was focused on the rectus femoris (RF) muscle, a skeletal muscle with a nearly balanced ratio of nNOS α- and β-isoforms. RT-PCR amplificates from RF muscles showed exclusive exon-1d mRNA expression, either with or without exon-μ. Epitope mapping demonstrated the simultaneous expression of the nNOS splice variants α/μ, α/non-μ, β/μ and β/non-μ. Furthermore, immunoblotting suggests that the transition between nNOS α- and β-isoforms lies within exon-3. In LT-PAGE, three protein nNOS associated aggregates were detected in homogenates of RF muscle and tibialis anterior muscle: a 320 kDa band containing nNOS α-isoforms, while 250 and 300 kDa bands consist of nNOS β-isoforms that form homodimers or heterodimers with non-nNOS proteins.
Collapse
Affiliation(s)
- Oliver Baum
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
9
|
Takeda S. Memories of Professor François Gros. C R Biol 2024; 346:45-49. [PMID: 38113106 DOI: 10.5802/crbiol.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
I joined the laboratory of Professor Francois Gros in 1987 and worked there as a postdoc with Robert Whalen until 1992. I recount the research we carried out and mention that of the other scientists also working on skeletal muscle on the 6th floor of the Molecular Biology Department of the Institut Pasteur at that time. I then present my subsequent research when I returned to Japan. I pay tribute to the influence of Professor Gros and to his support in establishing Japanese/French meetings on muscle biology and muscular dystrophy. I also invoke personal memories of Robert Whalen and Margaret Buckingham and remember the occasions when I returned to Paris to honour François Gros.
Collapse
|
10
|
Nakamura S, Sato Y, Kobayashi T, Oya A, Fujie A, Matsumoto M, Nakamura M, Kanaji A, Miyamoto T. Bezafibrate attenuates immobilization-induced muscle atrophy in mice. Sci Rep 2024; 14:2240. [PMID: 38279013 PMCID: PMC10817916 DOI: 10.1038/s41598-024-52689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/22/2024] [Indexed: 01/28/2024] Open
Abstract
Muscle atrophy due to fragility fractures or frailty worsens not only activity of daily living and healthy life expectancy, but decreases life expectancy. Although several therapeutic agents for muscle atrophy have been investigated, none is yet in clinical use. Here we report that bezafibrate, a drug used to treat hyperlipidemia, can reduce immobilization-induced muscle atrophy in mice. Specifically, we used a drug repositioning approach to screen 144 drugs already utilized clinically for their ability to inhibit serum starvation-induced elevation of Atrogin-1, a factor related to muscle atrophy, in myotubes in vitro. Two candidates were selected, and here we demonstrate that one of them, bezafibrate, significantly reduced muscle atrophy in an in vivo model of muscle atrophy induced by leg immobilization. In gastrocnemius muscle, immobilization reduced muscle weight by an average of ~ 17.2%, and bezafibrate treatment prevented ~ 40.5% of that atrophy. In vitro, bezafibrate significantly inhibited expression of the inflammatory cytokine Tnfa in lipopolysaccharide-stimulated RAW264.7 cells, a murine macrophage line. Finally, we show that expression of Tnfa and IL-1b is induced in gastrocnemius muscle in the leg immobilization model, an activity significantly antagonized by bezafibrate administration in vivo. We conclude that bezafibrate could serve as a therapeutic agent for immobilization-induced muscle atrophy.
Collapse
Affiliation(s)
- Satoshi Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Akihito Oya
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Astuhiro Fujie
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Arihiko Kanaji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
- Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
11
|
Sadeghi A, Niknam M, Momeni-Moghaddam MA, Shabani M, Aria H, Bastin A, Teimouri M, Meshkani R, Akbari H. Crosstalk between autophagy and insulin resistance: evidence from different tissues. Eur J Med Res 2023; 28:456. [PMID: 37876013 PMCID: PMC10599071 DOI: 10.1186/s40001-023-01424-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Insulin is a critical hormone that promotes energy storage in various tissues, as well as anabolic functions. Insulin resistance significantly reduces these responses, resulting in pathological conditions, such as obesity and type 2 diabetes mellitus (T2DM). The management of insulin resistance requires better knowledge of its pathophysiological mechanisms to prevent secondary complications, such as cardiovascular diseases (CVDs). Recent evidence regarding the etiological mechanisms behind insulin resistance emphasizes the role of energy imbalance and neurohormonal dysregulation, both of which are closely regulated by autophagy. Autophagy is a conserved process that maintains homeostasis in cells. Accordingly, autophagy abnormalities have been linked to a variety of metabolic disorders, including insulin resistance, T2DM, obesity, and CVDs. Thus, there may be a link between autophagy and insulin resistance. Therefore, the interaction between autophagy and insulin function will be examined in this review, particularly in insulin-responsive tissues, such as adipose tissue, liver, and skeletal muscle.
Collapse
Affiliation(s)
- Asie Sadeghi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Niknam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Bastin
- Clinical Research Development Center "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Teimouri
- Department of Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Motohashi N, Minegishi K, Aoki Y. Inherited myogenic abilities in muscle precursor cells defined by the mitochondrial complex I-encoding protein. Cell Death Dis 2023; 14:689. [PMID: 37857600 PMCID: PMC10587152 DOI: 10.1038/s41419-023-06192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
Skeletal muscle comprises different muscle fibers, including slow- and fast-type muscles, and satellite cells (SCs), which exist in individual muscle fibers and possess different myogenic properties. Previously, we reported that myoblasts (MBs) from slow-type enriched soleus (SOL) had a high potential to self-renew compared with cells derived from fast-type enriched tibialis anterior (TA). However, whether the functionality of myogenic cells in adult muscles is attributed to the muscle fiber in which they reside and whether the characteristics of myogenic cells derived from slow- and fast-type fibers can be distinguished at the genetic level remain unknown. Global gene expression analysis revealed that the myogenic potential of MBs was independent of the muscle fiber type they reside in but dependent on the region of muscles they are derived from. Thus, in this study, proteomic analysis was conducted to clarify the molecular differences between MBs derived from TA and SOL. NADH dehydrogenase (ubiquinone) iron-sulfur protein 8 (Ndufs8), a subunit of NADH dehydrogenase in mitochondrial complex I, significantly increased in SOL-derived MBs compared with that in TA-derived cells. Moreover, the expression level of Ndufs8 in MBs significantly decreased with age. Gain- and loss-of-function experiments revealed that Ndufs8 expression in MBs promoted differentiation, self-renewal, and apoptosis resistance. In particular, Ndufs8 suppression in MBs increased p53 acetylation, followed by a decline in NAD/NADH ratio. Nicotinamide mononucleotide treatment, which restores the intracellular NAD+ level, could decrease p53 acetylation and increase myogenic cell self-renewal ability in vivo. These results suggested that the functional differences in MBs derived from SOL and TA governed by the mitochondrial complex I-encoding gene reflect the magnitude of the decline in SC number observed with aging, indicating that the replenishment of NAD+ is a possible approach for improving impaired cellular functions caused by aging or diseases.
Collapse
Affiliation(s)
- Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan.
| | - Katsura Minegishi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan.
| |
Collapse
|
13
|
Cáceres-Ayala C, Mira RG, Acuña MJ, Brandan E, Cerpa W, Rebolledo DL. Episodic Binge-like Ethanol Reduces Skeletal Muscle Strength Associated with Atrophy, Fibrosis, and Inflammation in Young Rats. Int J Mol Sci 2023; 24:ijms24021655. [PMID: 36675170 PMCID: PMC9861047 DOI: 10.3390/ijms24021655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
Binge Drinking (BD) corresponds to episodes of ingestion of large amounts of ethanol in a short time, typically ≤2 h. BD occurs across all populations, but young and sports-related people are especially vulnerable. However, the short- and long-term effects of episodic BD on skeletal muscle function have been poorly explored. Young rats were randomized into two groups: control and episodic Binge-Like ethanol protocol (BEP) (ethanol 3 g/kg IP, 4 episodes of 2-days ON-2-days OFF paradigm). Muscle function was evaluated two weeks after the last BEP episode. We found that rats exposed to BEP presented decreased muscle strength and increased fatigability, compared with control animals. Furthermore, we observed that skeletal muscle from rats exposed to BEP presented muscle atrophy, evidenced by reduced fiber size and increased expression of atrophic genes. We also observed that BEP induced fibrotic and inflammation markers, accompanied by mislocalization of nNOSµ and high levels of protein nitration. Our findings suggest that episodic binge-like ethanol exposure alters contractile capacity and increases fatigue by mechanisms involving atrophy, fibrosis, and inflammation, which remain for at least two weeks after ethanol clearance. These pathological features are common to several neuromuscular diseases and might affect muscle performance and health in the long term.
Collapse
Affiliation(s)
- Constanza Cáceres-Ayala
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rodrigo G. Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - María José Acuña
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7780272, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7780272, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Waldo Cerpa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (W.C.); (D.L.R.)
| | - Daniela L. Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (W.C.); (D.L.R.)
| |
Collapse
|
14
|
Identification of Body Size Determination Related Candidate Genes in Domestic Pig Using Genome-Wide Selection Signal Analysis. Animals (Basel) 2022; 12:ani12141839. [PMID: 35883386 PMCID: PMC9312078 DOI: 10.3390/ani12141839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/03/2023] Open
Abstract
This study aimed to identify the genes related to the body size of pigs by conducting genome-wide selection analysis (GWSA). We performed a GWSA scan on 50 pigs belonging to four small-bodied pig populations (Diannan small-eared pig, Bama Xiang pig, Wuzhishan pig, and Jeju black pig from South Korea) and 124 large-bodied pigs. We used the genetic parameters of the pairwise fixation index (FST) and π ratio (case/control) to screen candidate genome regions and genes related to body size. The results revealed 47,339,509 high-quality SNPs obtained from 174 individuals, while 280 interacting candidate regions were obtained from the top 1% signal windows of both parameters, along with 187 genes (e.g., ADCK4, AMDHD2, ASPN, ASS1, and ATP6V0C). The results of the candidate gene (CG) annotation showed that a series of CGs (e.g., MSTN, LTBP4, PDPK1, PKMYT1, ASS1, and STAT6) was enriched into the gene ontology terms. Moreover, molecular pathways, such as the PI3K-Akt, HIF-1, and AMPK signaling pathways, were verified to be related to body development. Overall, we identified a series of key genes that may be closely related to the body size of pigs, further elucidating the heredity basis of body shape determination in pigs and providing a theoretical reference for molecular breeding.
Collapse
|
15
|
Montagna C, Filomeni G. Looking at denitrosylation to understand the myogenesis gone awry theory of rhabdomyosarcoma. Nitric Oxide 2022; 122-123:1-5. [PMID: 35182743 DOI: 10.1016/j.niox.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
S-nitrosylation of proteins is a nitric oxide (NO)-based post-translational modification of cysteine residues. By removing the NO moiety from S-nitrosothiol adducts, denitrosylases restore sulfhydryl protein pool and act as downstream tuners of S-nitrosylation signaling. Alterations in the S-nitrosylation/denitrosylation dynamics are implicated in many pathological states, including cancer ontogenesis and progression, skeletal muscle myogenesis and function. Here, we aim to provide and link different lines of evidence, and elaborate on the possible role of S-nitrosylation/denitrosylation signaling in rhabdomyosarcoma, one of the most common pediatric mesenchymal malignancy.
Collapse
Affiliation(s)
- Costanza Montagna
- Department of Biology, Tor Vergata University, Rome, Italy; Unicamillus-Saint Camillus University of Health Sciences, Rome, Italy.
| | - Giuseppe Filomeni
- Department of Biology, Tor Vergata University, Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
16
|
Sharlo K, Tyganov SA, Tomilovskaya E, Popov DV, Saveko AA, Shenkman BS. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int J Mol Sci 2021; 23:ijms23010468. [PMID: 35008893 PMCID: PMC8745071 DOI: 10.3390/ijms23010468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.
Collapse
|
17
|
Shaheryar ZA, Khan MA, Adnan CS, Zaidi AA, Hänggi D, Muhammad S. Neuroinflammatory Triangle Presenting Novel Pharmacological Targets for Ischemic Brain Injury. Front Immunol 2021; 12:748663. [PMID: 34691061 PMCID: PMC8529160 DOI: 10.3389/fimmu.2021.748663] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is one of the leading causes of morbidity and mortality globally. Hundreds of clinical trials have proven ineffective in bringing forth a definitive and effective treatment for ischemic stroke, except a myopic class of thrombolytic drugs. That, too, has little to do with treating long-term post-stroke disabilities. These studies proposed diverse options to treat stroke, ranging from neurotropic interpolation to venting antioxidant activity, from blocking specific receptors to obstructing functional capacity of ion channels, and more recently the utilization of neuroprotective substances. However, state of the art knowledge suggests that more pragmatic focus in finding effective therapeutic remedy for stroke might be targeting intricate intracellular signaling pathways of the 'neuroinflammatory triangle': ROS burst, inflammatory cytokines, and BBB disruption. Experimental evidence reviewed here supports the notion that allowing neuroprotective mechanisms to advance, while limiting neuroinflammatory cascades, will help confine post-stroke damage and disabilities.
Collapse
Affiliation(s)
- Zaib A. Shaheryar
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Mahtab A. Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Awais Ali Zaidi
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
- Imran Idrees College of Pharmacy, Lahore, Pakistan
| | - Daniel Hänggi
- Department of Neurosurgery, Faculty of Medicine and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Neurosurgery, Faculty of Medicine and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Tyganov SA, Mochalova EP, Melnikov IY, Vikhlyantsev IM, Ulanova AD, Sharlo KA, Mirzoev TM, Shenkman BS. NOS-dependent effects of plantar mechanical stimulation on mechanical characteristics and cytoskeletal proteins in rat soleus muscle during hindlimb suspension. FASEB J 2021; 35:e21905. [PMID: 34569672 DOI: 10.1096/fj.202100783r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/11/2022]
Abstract
The study was aimed at investigating the mechanisms and structures which determine mechanical properties of skeletal muscles under gravitational unloading and plantar mechanical stimulation (PMS). We hypothesized that PMS would increase NO production and prevent an unloading-induced reduction in skeletal muscle passive stiffness. Wistar rats were hindlimb suspended and subjected to a daily PMS and one group of stimulated animals was also treated with nitric oxide synthase (NOS) inhibitor (L-NAME). Animals received mechanical stimulation of the feet for 4 h a day throughout 7-day hindlimb suspension (HS) according to a scheme that mimics the normal walking of the animal. Seven-day HS led to a significant reduction in soleus muscle weight by 25%. However, PMS did not prevent the atrophic effect induced by HS. Gravitational unloading led to a significant decrease in maximum isometric force and passive stiffness by 38% and 31%, respectively. The use of PMS prevented a decrease in the maximum isometric strength of the soleus muscle. At the same time, the passive stiffness of the soleus in the PMS group significantly exceeded the control values by 40%. L-NAME (NOS inhibitor) administration attenuated the effect of PMS on passive stiffness and maximum force of the soleus muscle. The content of the studied cytoskeletal proteins (α-actinin-2, α-actinin-3, desmin, titin, nebulin) decreased after 7-day HS, but this decrease was successfully prevented by PMS in a NOS-dependent manner. We also observed significant decreases in mRNA expression levels of α-actinin-2, desmin, and titin after HS, which was prevented by PMS. The study also revealed a significant NOS-dependent effect of PMS on the content of collagen-1a, but not collagen-3a. Thus, PMS during mechanical unloading is able to maintain soleus muscle passive tension and force as well as mRNA transcription and protein contents of cytoskeletal proteins in a NOS-dependent manner.
Collapse
Affiliation(s)
- Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina P Mochalova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Y Melnikov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ivan M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anna D Ulanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Kristina A Sharlo
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Prospects for the Personalized Multimodal Therapy Approach to Pain Management via Action on NO and NOS. Molecules 2021; 26:molecules26092431. [PMID: 33921984 PMCID: PMC8122598 DOI: 10.3390/molecules26092431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic pain syndromes are an important medical problem generated by various molecular, genetic, and pathophysiologic mechanisms. Back pain, neuropathic pain, and posttraumatic pain are the most important pathological processes associated with chronic pain in adults. Standard approaches to the treatment of them do not solve the problem of pain chronicity. This is the reason for the search for new personalized strategies for the prevention and treatment of chronic pain. The nitric oxide (NO) system can play one of the key roles in the development of peripheral pain and its chronicity. The purpose of the study is to review publications devoted to changes in the NO system in patients with peripheral chronical pain syndromes. We have carried out a search for the articles published in e-Library, PubMed, Oxford Press, Clinical Case, Springer, Elsevier, and Google Scholar databases. The search was carried out using keywords and their combinations. The role of NO and NO synthases (NOS) isoforms in peripheral pain development and chronicity was demonstrated primarily from animal models to humans. The most studied is the neuronal NOS (nNOS). The role of inducible NOS (iNOS) and endothelial NOS (eNOS) is still under investigation. Associative genetic studies have shown that single nucleotide variants (SNVs) of NOS1, NOS2, and NOS3 genes encoding nNOS, iNOS, and eNOS may be associated with acute and chronic peripheral pain. Prospects for the use of NOS inhibitors to modulate the effect of drugs used to treat peripheral pain syndrome are discussed. Associative genetic studies of SNVs NOS1, NOS2, and NOS3 genes are important for understanding genetic predictors of peripheral pain chronicity and development of new personalized pharmacotherapy strategies.
Collapse
|
20
|
Nox2 Inhibition Regulates Stress Response and Mitigates Skeletal Muscle Fiber Atrophy during Simulated Microgravity. Int J Mol Sci 2021; 22:ijms22063252. [PMID: 33806917 PMCID: PMC8005132 DOI: 10.3390/ijms22063252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023] Open
Abstract
Insufficient stress response and elevated oxidative stress can contribute to skeletal muscle atrophy during mechanical unloading (e.g., spaceflight and bedrest). Perturbations in heat shock proteins (e.g., HSP70), antioxidant enzymes, and sarcolemmal neuronal nitric oxidase synthase (nNOS) have been linked to unloading-induced atrophy. We recently discovered that the sarcolemmal NADPH oxidase-2 complex (Nox2) is elevated during unloading, downstream of angiotensin II receptor 1, and concomitant with atrophy. Here, we hypothesized that peptidyl inhibition of Nox2 would attenuate disruption of HSP70, MnSOD, and sarcolemmal nNOS during unloading, and thus muscle fiber atrophy. F344 rats were divided into control (CON), hindlimb unloaded (HU), and hindlimb unloaded +7.5 mg/kg/day gp91ds-tat (HUG) groups. Unloading-induced elevation of the Nox2 subunit p67phox-positive staining was mitigated by gp91ds-tat. HSP70 protein abundance was significantly lower in HU muscles, but not HUG. MnSOD decreased with unloading; however, MnSOD was not rescued by gp91ds-tat. In contrast, Nox2 inhibition protected against unloading suppression of the antioxidant transcription factor Nrf2. nNOS bioactivity was reduced by HU, an effect abrogated by Nox2 inhibition. Unloading-induced soleus fiber atrophy was significantly attenuated by gp91ds-tat. These data establish a causal role for Nox2 in unloading-induced muscle atrophy, linked to preservation of HSP70, Nrf2, and sarcolemmal nNOS.
Collapse
|
21
|
Sharlo KA, Paramonova II, Lvova ID, Mochalova EP, Kalashnikov VE, Vilchinskaya NA, Tyganov SA, Konstantinova TS, Shevchenko TF, Kalamkarov GR, Shenkman BS. Plantar Mechanical Stimulation Maintains Slow Myosin Expression in Disused Rat Soleus Muscle via NO-Dependent Signaling. Int J Mol Sci 2021; 22:1372. [PMID: 33573052 PMCID: PMC7866401 DOI: 10.3390/ijms22031372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
It was observed that gravitational unloading during space missions and simulated microgravity in ground-based studies leads to both transformation of slow-twitch muscle fibers into fast-twitch fibers and to the elimination of support afferentation, leading to the "switching-off" of postural muscle motor units electrical activity. In recent years, plantar mechanical stimulation (PMS) has been found to maintain the neuromuscular activity of the hindlimb muscles. Nitric oxide (NO) was shown to be one of the mediators of muscle fiber activity, which can also promote slow-type myosin expression. We hypothesized that applying PMS during rat hindlimb unloading would lead to NO production upregulation and prevention of the unloading-induced slow-to-fast fiber-type shift in rat soleus muscles. To test this hypothesis, Wistar rats were hindlimb suspended and subjected to daily PMS, and one group of PMS-subjected animals was also treated with nitric oxide synthase inhibitor (L-NAME). We discovered that PMS led to sustained NO level in soleus muscles of the suspended animals, and NOS inhibitor administration blocked this effect, as well as the positive effects of PMS on myosin I and IIa mRNA transcription and slow-to-fast fiber-type ratio during rat hindlimb unloading. The results of the study indicate that NOS activity is necessary for the PMS-mediated prevention of slow-to-fast fiber-type shift and myosin I and IIa mRNA transcription decreases during rat hindlimb unloading.
Collapse
Affiliation(s)
- Kristina A. Sharlo
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Inna I. Paramonova
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Irina D. Lvova
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Ekaterina P. Mochalova
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Vitaliy E. Kalashnikov
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Natalia A. Vilchinskaya
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Sergey A. Tyganov
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Tatyana S. Konstantinova
- Emanuel Institute of Biochemical Physics, RAS, 123007 Moscow, Russia; (T.S.K.); (T.F.S.); (G.R.K.)
| | - Tatiana F. Shevchenko
- Emanuel Institute of Biochemical Physics, RAS, 123007 Moscow, Russia; (T.S.K.); (T.F.S.); (G.R.K.)
| | - Grigoriy R. Kalamkarov
- Emanuel Institute of Biochemical Physics, RAS, 123007 Moscow, Russia; (T.S.K.); (T.F.S.); (G.R.K.)
| | - Boris S. Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| |
Collapse
|
22
|
Hord JM, Garcia MM, Farris KR, Guzzoni V, Lee Y, Lawler MS, Lawler JM. Nox2 signaling and muscle fiber remodeling are attenuated by losartan administration during skeletal muscle unloading. Physiol Rep 2021; 9:e14606. [PMID: 33400850 PMCID: PMC7785102 DOI: 10.14814/phy2.14606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022] Open
Abstract
Reduced mechanical loading results in atrophy of skeletal muscle fibers. Increased reactive oxygen species (ROS) are causal in sarcolemmal dislocation of nNOS and FoxO3a activation. The Nox2 isoform of NADPH oxidase and mitochondria release ROS during disuse in skeletal muscle. Activation of the angiotensin II type 1 receptor (AT1R) can elicit Nox2 complex formation. The AT1R blocker losartan was used to test the hypothesis that AT1R activation drives Nox2 assembly, nNOS dislocation, FoxO3a activation, and thus alterations in morphology in the unloaded rat soleus. Male Fischer 344 rats were divided into four groups: ambulatory control (CON), ambulatory + losartan (40 mg kg-1 day-1 ) (CONL), 7 days of tail-traction hindlimb unloading (HU), and HU + losartan (HUL). Losartan attenuated unloading-induced loss of muscle fiber cross-sectional area (CSA) and fiber-type shift. Losartan mitigated unloading-induced elevation of ROS levels and upregulation of Nox2. Furthermore, AT1R blockade abrogated nNOS dislocation away from the sarcolemma and elevation of nuclear FoxO3a. We conclude that AT1R blockade attenuates disuse remodeling by inhibiting Nox2, thereby lessening nNOS dislocation and activation of FoxO3a.
Collapse
Affiliation(s)
- Jeffrey M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marcela M Garcia
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Katherine R Farris
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Vinicius Guzzoni
- Department of Cellular and Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Yang Lee
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station/Temple, TX, USA
| | - Matthew S Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
23
|
Gorza L, Sorge M, Seclì L, Brancaccio M. Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 2021; 10:cells10010061. [PMID: 33401549 PMCID: PMC7823551 DOI: 10.3390/cells10010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of muscle mass and force characterizes muscle atrophy in several different conditions, which share the expression of atrogenes and the activation of their transcriptional regulators. However, attempts to antagonize muscle atrophy development in different experimental contexts by targeting contributors to the atrogene pathway showed partial effects in most cases. Other master regulators might independently contribute to muscle atrophy, as suggested by our recent evidence about the co-requirement of the muscle-specific chaperone protein melusin to inhibit unloading muscle atrophy development. Furthermore, melusin and other muscle mass regulators, such as nNOS, belong to costameres, the macromolecular complexes that connect sarcolemma to myofibrils and to the extracellular matrix, in correspondence with specific sarcomeric sites. Costameres sense a mechanical load and transduce it both as lateral force and biochemical signals. Recent evidence further broadens this classic view, by revealing the crucial participation of costameres in a sarcolemmal “signaling hub” integrating mechanical and humoral stimuli, where mechanical signals are coupled with insulin and/or insulin-like growth factor stimulation to regulate muscle mass. Therefore, this review aims to enucleate available evidence concerning the early involvement of costamere components and additional putative master regulators in the development of major types of muscle atrophy.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- Correspondence:
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| |
Collapse
|
24
|
Uda M, Yoshihara T, Ichinoseki-Sekine N, Baba T, Yoshioka T. Potential roles of neuronal nitric oxide synthase and the PTEN-induced kinase 1 (PINK1)/Parkin pathway for mitochondrial protein degradation in disuse-induced soleus muscle atrophy in adult rats. PLoS One 2020; 15:e0243660. [PMID: 33296434 PMCID: PMC7725317 DOI: 10.1371/journal.pone.0243660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Excessive nitric oxide (NO) production and mitochondrial dysfunction can activate protein degradation in disuse-induced skeletal muscle atrophy. However, the increase in NO production in atrophied muscles remains controversial. In addition, although several studies have investigated the PTEN-induced kinase 1 (PINK1)/Parkin pathway, a mitophagy pathway, in atrophied muscle, the involvement of this pathway in soleus muscle atrophy is unclear. In this study, we investigated the involvement of neuronal nitric oxide synthase (nNOS) and the PINK1/Parkin pathway in soleus muscle atrophy induced by 14 days of hindlimb unloading (HU) in adult rats. HU lowered the weight of the soleus muscles. nNOS expression showed an increase in atrophied soleus muscles. Although HU increased malondialdehyde as oxidative modification of the protein, it decreased 6-nitrotryptophan, a marker of protein nitration. Additionally, the nitrosocysteine content and S-nitrosylated Parkin were not altered, suggesting the absence of excessive nitrosative stress after HU. The expression of PINK1 and Parkin was also unchanged, whereas the expression of heat shock protein 70 (HSP70), which is required for Parkin activity, was reduced in atrophied soleus muscles. Moreover, we observed accumulation and reduced ubiquitination of high molecular weight mitofusin 2, which is a target of Parkin, in atrophied soleus muscles. These results indicate that excessive NO is not produced in atrophied soleus muscles despite nNOS accumulation, suggesting that excessive NO dose not mediate in soleus muscle atrophy at least after 14 days of HU. Furthermore, the PINK1/Parkin pathway may not play a role in mitophagy at this time point. In contrast, the activity of Parkin may be downregulated because of reduced HSP70 expression, which may contribute to attenuated degradation of target proteins in the atrophied soleus muscles after 14 days of HU. The present study provides new insights into the roles of nNOS and a protein degradation pathway in soleus muscle atrophy.
Collapse
Affiliation(s)
- Munehiro Uda
- School of Nursing, Hirosaki Gakuin University, Hirosaki, Aomori, Japan
- * E-mail: ,
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Noriko Ichinoseki-Sekine
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
- Faculty of Liberal Arts, The Open University of Japan, Chiba, Japan
| | - Takeshi Baba
- School of Medicine, Juntendo University, Inzai, Chiba, Japan
| | | |
Collapse
|
25
|
Nakada S, Yamashita Y, Machida S, Miyagoe-Suzuki Y, Arikawa-Hirasawa E. Perlecan Facilitates Neuronal Nitric Oxide Synthase Delocalization in Denervation-Induced Muscle Atrophy. Cells 2020; 9:cells9112524. [PMID: 33238404 PMCID: PMC7700382 DOI: 10.3390/cells9112524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Perlecan is an extracellular matrix molecule anchored to the sarcolemma by a dystrophin–glycoprotein complex. Perlecan-deficient mice are tolerant to muscle atrophy, suggesting that perlecan negatively regulates mechanical stress-dependent skeletal muscle mass. Delocalization of neuronal nitric oxide synthase (nNOS) from the sarcolemma to the cytosol triggers protein degradation, thereby initiating skeletal muscle atrophy. We hypothesized that perlecan regulates nNOS delocalization and activates protein degradation during this process. To determine the role of perlecan in nNOS-mediated mechanotransduction, we used sciatic nerve transection as a denervation model of gastrocnemius muscles. Gastrocnemius muscle atrophy was significantly lower in perinatal lethality-rescued perlecan-knockout (Hspg2−/−-Tg) mice than controls (WT-Tg) on days 4 and 14 following surgery. Immunofluorescence microscopy showed that cell membrane nNOS expression was reduced by denervation in WT-Tg mice, with marginal effects in Hspg2−/−-Tg mice. Moreover, levels of atrophy-related proteins—i.e., FoxO1a, FoxO3a, atrogin-1, and Lys48-polyubiquitinated proteins—increased in the denervated muscles of WT-Tg mice but not in Hspg2−/−-Tg mice. These findings suggest that during denervation, perlecan promotes nNOS delocalization from the membrane and stimulates protein degradation and muscle atrophy by activating FoxO signaling and the ubiquitin–proteasome system.
Collapse
Affiliation(s)
- Satoshi Nakada
- Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba 270-1695, Japan; (S.N.); (S.M.)
| | - Yuri Yamashita
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Shuichi Machida
- Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba 270-1695, Japan; (S.N.); (S.M.)
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan;
| | - Eri Arikawa-Hirasawa
- Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba 270-1695, Japan; (S.N.); (S.M.)
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
- Correspondence: ; Tel.: +81-3-3813-3111
| |
Collapse
|
26
|
Shenkman BS. How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 2020; 21:E5037. [PMID: 32708817 PMCID: PMC7404025 DOI: 10.3390/ijms21145037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
A mammalian soleus muscle along with other "axial" muscles ensures the stability of the body under the Earth's gravity. In rat experiments with hindlimb suspension, zero-gravity parabolic flights as well as in human dry immersion studies, a dramatic decrease in the electromyographic (EMG) activity of the soleus muscle has been repeatedly shown. Most of the motor units of the soleus muscle convert from a state of activity to a state of rest which is longer than under natural conditions. And the state of rest gradually converts to the state of disuse. This review addresses a number of metabolic events that characterize the earliest stage of the cessation of the soleus muscle contractile activity. One to three days of mechanical unloading are accompanied by energy-dependent dephosphorylation of AMPK, accumulation of the reactive oxygen species, as well as accumulation of resting myoplasmic calcium. In this transition period, a rapid rearrangement of the various signaling pathways occurs, which, primarily, results in a decrease in the rate of protein synthesis (primarily via inhibition of ribosomal biogenesis and activation of endogenous inhibitors of mRNA translation, such as GSK3β) and an increase in proteolysis (via upregulation of muscle-specific E3-ubiquitin ligases).
Collapse
Affiliation(s)
- Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia
| |
Collapse
|
27
|
Sharlo KA, Paramonova II, Lvova ID, Vilchinskaya NA, Bugrova AE, Shevchenko TF, Kalamkarov GR, Shenkman BS. NO-Dependent Mechanisms of Myosin Heavy Chain Transcription Regulation in Rat Soleus Muscle After 7-Days Hindlimb Unloading. Front Physiol 2020; 11:814. [PMID: 32754051 PMCID: PMC7366496 DOI: 10.3389/fphys.2020.00814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/18/2020] [Indexed: 12/27/2022] Open
Abstract
It is known that nitric oxide (NO) may affect myosin heavy chain (MyHC) isoform mRNA transcription in skeletal muscles. The content of NO in soleus muscles decreases during rat hindlimb unloading as well as slow MyHC mRNA transcription. We aimed to detect which signaling pathways are involved in NO-dependent prevention of hindlimb-suspension (HS)-induced changes in MyHCs’ expression pattern. Male Wistar rats were divided into four groups: cage control group (C), hindlimb suspended for 7 days (7HS), hindlimb suspended for 7 days with L-arginine administration (7HS+A) (500 mg/kg body mass), and hindlimb suspended for 7 days with both L-arginine (500 mg/kg) and NO-synthase inhibitor L-NAME administration (50 mg/kg) (7HS+A+N). L-arginine treatment during 7 days of rat HS prevented HS-induced NO content decrease and slow MyHC mRNA transcription decrease and attenuated fast MyHC IIb mRNA transcription increase; it also prevented NFATc1 nuclear content decrease, calsarcin-2 expression increase, and GSK-3β Ser 9 phosphorylation decrease. Moreover, L-arginine administration prevented the HS-induced myh7b and PGC1α mRNAs content decreases and slow-type genes repressor SOX6 mRNA transcription increase. All these slow fiber-type protective effects of L-arginine were blocked in HS+A+N group, indicating that these effects were NO-dependent. Thus, NO decrease prevention during HS restores calcineurin/NFATc1 and myh7b/SOX6 signaling.
Collapse
Affiliation(s)
- Kristina A Sharlo
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inna I Paramonova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Irina D Lvova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Natalia A Vilchinskaya
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Anna E Bugrova
- Neurochemistry Laboratory, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana F Shevchenko
- Neurochemistry Laboratory, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Grigoriy R Kalamkarov
- Neurochemistry Laboratory, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
28
|
Vitadello M, Sorge M, Percivalle E, Germinario E, Danieli-Betto D, Turco E, Tarone G, Brancaccio M, Gorza L. Loss of melusin is a novel, neuronal NO synthase/FoxO3-independent master switch of unloading-induced muscle atrophy. J Cachexia Sarcopenia Muscle 2020; 11:802-819. [PMID: 32154658 PMCID: PMC7296270 DOI: 10.1002/jcsm.12546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Unloading/disuse induces skeletal muscle atrophy in bedridden patients and aged people, who cannot prevent it by means of exercise. Because interventions against known atrophy initiators, such as oxidative stress and neuronal NO synthase (nNOS) redistribution, are only partially effective, we investigated the involvement of melusin, a muscle-specific integrin-associated protein and a recognized regulator of protein kinases and mechanotransduction in cardiomyocytes. METHODS Muscle atrophy was induced in the rat soleus by tail suspension and in the human vastus lateralis by bed rest. Melusin expression was investigated at the protein and transcript level and after treatment of tail-suspended rats with atrophy initiator inhibitors. Myofiber size, sarcolemmal nNOS activity, FoxO3 myonuclear localization, and myofiber carbonylation of the unloaded rat soleus were studied after in vivo melusin replacement by cDNA electroporation, and muscle force, myofiber size, and atrogene expression after adeno-associated virus infection. In vivo interference of exogenous melusin with dominant-negative kinases and other atrophy attenuators (Grp94 cDNA; 7-nitroindazole) on size of unloaded rat myofibers was also explored. RESULTS Unloading/disuse reduced muscle melusin protein levels to about 50%, already after 6 h in the tail-suspended rat (P < 0.001), and to about 35% after 8 day bed rest in humans (P < 0.05). In the unloaded rat, melusin loss occurred despite of the maintenance of β1D integrin levels and was not abolished by treatments inhibiting mitochondrial oxidative stress, or nNOS activity and redistribution. Expression of exogenous melusin by cDNA transfection attenuated atrophy of 7 day unloaded rat myofibers (-31%), compared with controls (-48%, P = 0.001), without hampering the decrease in sarcolemmal nNOS activity and the increase in myonuclear FoxO3 and carbonylated myofibers. Infection with melusin-expressing adeno-associated virus ameliorated contractile properties of 7 day unloaded muscles (P ≤ 0.05) and relieved myofiber atrophy (-33%) by reducing Atrogin-1 and MurF-1 transcripts (P ≤ 0.002), despite of a two-fold increase in FoxO3 protein levels (P = 0.03). Atrophy attenuation by exogenous melusin did not result from rescue of Akt, ERK, or focal adhesion kinase activity, because it persisted after co-transfection with dominant-negative kinase forms (P < 0.01). Conversely, melusin cDNA transfection, combined with 7-nitroindazole treatment or with cDNA transfection of the nNOS-interacting chaperone Grp94, abolished 7 day unloaded myofiber atrophy. CONCLUSIONS Disuse/unloading-induced loss of melusin is an early event in muscle atrophy which occurs independently from mitochondrial oxidative stress, nNOS redistribution, and FoxO3 activation. Only preservation of melusin levels and sarcolemmal nNOS localization fully prevented muscle mass loss, demonstrating that both of them act as independent, but complementary, master switches of muscle disuse atrophy.
Collapse
Affiliation(s)
- Maurizio Vitadello
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR-Institute for Neuroscience, Padova Section, Padova, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Percivalle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Guido Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luisa Gorza
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
29
|
Montagna C, Cirotti C, Rizza S, Filomeni G. When S-Nitrosylation Gets to Mitochondria: From Signaling to Age-Related Diseases. Antioxid Redox Signal 2020; 32:884-905. [PMID: 31931592 DOI: 10.1089/ars.2019.7872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Significance: Cysteines have an essential role in redox signaling, transforming an oxidant signal into a biological response. Among reversible cysteine post-translational modifications, S-nitrosylation acts as a redox-switch in several pathophysiological states, such as ischemia/reperfusion, synaptic transmission, cancer, and muscular dysfunctions. Recent Advances: Growing pieces of in vitro and in vivo evidence argue for S-nitrosylation being deeply involved in development and aging, and playing a role in the onset of different pathological states. New findings suggest it being an enzymatically regulated cellular process, with deep impact on mitochondrial structure and function, and in cellular metabolism. In light of this, the recent discovery of the denitrosylase S-nitrosoCoA (coenzyme A) reductase takes on even greater importance and opens new perspectives on S-nitrosylation as a general mechanism of cellular homeostasis. Critical Issues: Based on these recent findings, we aim at summarizing and elaborating on the established and emerging crucial roles of S-nitrosylation in mitochondrial metabolism and mitophagy, and provide an overview of the pathophysiological effects induced by its deregulation. Future Directions: The identification of new S-nitrosylation targets, and the comprehension of the mechanisms through which S-nitrosylation modulates specific classes of proteins, that is, those impinging on diverse mitochondrial functions, may help to better understand the pathophysiology of aging, and propose lines of intervention to slow down or extend the onset of aging-related diseases.
Collapse
Affiliation(s)
- Costanza Montagna
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Claudia Cirotti
- Laboratory of Signal Transduction, Fondazione Santa Lucia, Rome, Italy
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
30
|
Ono H, Suzuki N, Kanno SI, Kawahara G, Izumi R, Takahashi T, Kitajima Y, Osana S, Nakamura N, Akiyama T, Ikeda K, Shijo T, Mitsuzawa S, Nagatomi R, Araki N, Yasui A, Warita H, Hayashi YK, Miyake K, Aoki M. AMPK Complex Activation Promotes Sarcolemmal Repair in Dysferlinopathy. Mol Ther 2020; 28:1133-1153. [PMID: 32087766 PMCID: PMC7132631 DOI: 10.1016/j.ymthe.2020.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/12/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Mutations in dysferlin are responsible for a group of progressive, recessively inherited muscular dystrophies known as dysferlinopathies. Using recombinant proteins and affinity purification methods combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found that AMP-activated protein kinase (AMPK)γ1 was bound to a region of dysferlin located between the third and fourth C2 domains. Using ex vivo laser injury experiments, we demonstrated that the AMPK complex was vital for the sarcolemmal damage repair of skeletal muscle fibers. Injury-induced AMPK complex accumulation was dependent on the presence of Ca2+, and the rate of accumulation was regulated by dysferlin. Furthermore, it was found that the phosphorylation of AMPKα was essential for plasma membrane repair, and treatment with an AMPK activator rescued the membrane-repair impairment observed in immortalized human myotubes with reduced expression of dysferlin and dysferlin-null mouse fibers. Finally, it was determined that treatment with the AMPK activator metformin improved the muscle phenotype in zebrafish and mouse models of dysferlin deficiency. These findings indicate that the AMPK complex is essential for plasma membrane repair and is a potential therapeutic target for dysferlinopathy.
Collapse
Affiliation(s)
- Hiroya Ono
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Shin-Ichiro Kanno
- The Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Toshiaki Takahashi
- National Hospital Organization Sendai-Nishitaga Hospital, Sendai 982-8555, Japan
| | - Yasuo Kitajima
- Department of Muscle Development and Regeneration, Division of Developmental Regulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Tomomi Shijo
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Shio Mitsuzawa
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Akira Yasui
- The Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Katsuya Miyake
- Department of Histology and Cell Biology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan; Center for Basic Medical Research, Narita Campus, International University of Health and Welfare, Narita 286-8686, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan.
| |
Collapse
|
31
|
Protective effects of enzyme degradation extract from Porphyra yezoensis against oxidative stress and brain injury in d-galactose-induced ageing mice. Br J Nutr 2019; 123:975-986. [DOI: 10.1017/s0007114519003088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Yamada T, Ashida Y, Tatebayashi D, Himori K. Myofibrillar function differs markedly between denervated and dexamethasone-treated rat skeletal muscles: Role of mechanical load. PLoS One 2019; 14:e0223551. [PMID: 31596883 PMCID: PMC6785062 DOI: 10.1371/journal.pone.0223551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/24/2019] [Indexed: 01/24/2023] Open
Abstract
Although there is good evidence to indicate a major role of intrinsic impairment of the contractile apparatus in muscle weakness seen in several pathophysiological conditions, the factors responsible for control of myofibrillar function are not fully understood. To investigate the role of mechanical load in myofibrillar function, we compared the skinned fiber force between denervated (DEN) and dexamethasone-treated (DEX) rat skeletal muscles with or without neuromuscular electrical stimulation (ES) training. DEN and DEX were induced by cutting the sciatic nerve and daily injection of dexamethasone (5 mg/kg/day) for 7 days, respectively. For ES training, plantarflexor muscles were electrically stimulated to produce four sets of five isometric contractions each day. In situ maximum torque was markedly depressed in the DEN muscles compared to the DEX muscles (-74% vs. -10%), whereas there was not much difference in the degree of atrophy in gastrocnemius muscles between DEN and DEX groups (-24% vs. -17%). Similar results were obtained in the skinned fiber preparation, with a greater reduction in maximum Ca2+-activated force in the DEN than in the DEX group (-53% vs. -16%). Moreover, there was a parallel decline in myosin heavy chain (MyHC) and actin content per muscle volume in DEN muscles, but not in DEX muscles, which was associated with upregulation of NADPH oxidase (NOX) 2, neuronal nitric oxide synthase (nNOS), and endothelial NOS expression, translocation of nNOS from the membrane to the cytosol, and augmentation of mRNA levels of muscle RING finger protein 1 (MuRF-1) and atrogin-1. Importantly, mechanical load evoked by ES protects against DEN- and DEX-induced myofibrillar dysfunction and these molecular alterations. Our findings provide novel insights regarding the difference in intrinsic contractile properties between DEN and DEX and suggest an important role of mechanical load in preserving myofibrillar function in skeletal muscle.
Collapse
Affiliation(s)
- Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- * E-mail:
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
33
|
Tomiga Y, Ito A, Sudo M, Ando S, Eshima H, Sakai K, Nakashima S, Uehara Y, Tanaka H, Soejima H, Higaki Y. One week, but not 12 hours, of cast immobilization alters promotor DNA methylation patterns in the nNOS gene in mouse skeletal muscle. J Physiol 2019; 597:5145-5159. [PMID: 31490543 DOI: 10.1113/jp277019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS DNA methylation may play an important role in regulating gene expression in skeletal muscle to adapt to physical activity and inactivity. Neuronal nitric oxide synthase (nNOS) in skeletal muscle is a key regulator of skeletal muscle mass; however, it is unclear whether nNOS expression is regulated by DNA methylation. We found that 1 week of cast immobilization increased nNOS DNA methylation levels and downregulated nNOS gene expression in atrophic slow-twitch soleus muscle from the mouse leg. These changes were not detected in non-atrophic fast-twitch extensor digitorum longus muscle. Twelve hours of cast immobilization decreased nNOS gene expression, whereas nNOS DNA methylation levels were unchanged, suggesting that downregulation of nNOS gene expression by short-term muscle inactivity is independent of the DNA methylation pattern. These findings contribute to a better understanding of the maintenance of skeletal muscle mass and prevention of muscle atrophy by epigenetic mechanisms via the nNOS/NO pathway. ABSTRACT DNA methylation is a mechanism that controls gene expression in skeletal muscle under various environmental stimuli, such as physical activity and inactivity. Neuronal nitric oxide synthase (nNOS) regulates muscle atrophy in skeletal muscle. However, the mechanisms regulating nNOS expression in atrophic muscle remain unclear. We hypothesized that nNOS expression in atrophic muscle is regulated by DNA methylation of the nNOS promotor in soleus (Sol; slow-twitch fibre dominant) and extensor digitorum longus (EDL; fast-twitch fibre dominant) muscles. One week of cast immobilization induced significant muscle atrophy in Sol but not in EDL. We showed that 1 week of cast immobilization increased nNOS DNA methylation levels in Sol, although only a minor change was detected in EDL. Consistent with the increased DNA methylation levels in atrophic Sol, the gene expression levels of total nNOS and nNOSµ (i.e. the major splicing variant of nNOS in skeletal muscle) decreased. The abundance of the nNOS protein and cell membrane (especially type IIa fibre) immunoreactivity also decreased in atrophic Sol. These changes were not observed in EDL after 1 week of cast immobilization. Furthermore, despite the lack of significant atrophy, 12 h of cast immobilization decreased gene expression levels of total nNOS and nNOSµ in Sol. However, no association was detected between nNOS DNA methylation and gene expression. The expression of the nNOSβ gene, another splicing variant of nNOS, in EDL was unchanged by cast immobilization, whereas its expression was not detected in Sol. We concluded that chronic adaptation of nNOS gene expression in cast immobilized muscle may involve nNOS DNA methylation.
Collapse
Affiliation(s)
- Yuki Tomiga
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,The Fukuoka University Institute for Physical Activity, Fukuoka, Japan
| | - Ai Ito
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Mizuki Sudo
- Physical Fitness Research Institute Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Hiroaki Eshima
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,Diabetes and Metabolism Research Centre, Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Kazuya Sakai
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Shihoko Nakashima
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Yoshinari Uehara
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Hiroaki Tanaka
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuki Higaki
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
34
|
Glutathione and Nitric Oxide: Key Team Players in Use and Disuse of Skeletal Muscle. Nutrients 2019; 11:nu11102318. [PMID: 31575008 PMCID: PMC6836164 DOI: 10.3390/nu11102318] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH) is the main non-enzymatic antioxidant playing an important role in detoxification, signal transduction by modulation of protein thiols redox status and direct scavenging of radicals. The latter function is not only performed against reactive oxygen species (ROS) but GSH also has a fundamental role in buffering nitric oxide (NO), a physiologically-produced molecule having-multifaceted functions. The efficient rate of GSH synthesis and high levels of GSH-dependent enzymes are characteristic features of healthy skeletal muscle where, besides the canonical functions, it is also involved in muscle contraction regulation. Moreover, NO production in skeletal muscle is a direct consequence of contractile activity and influences several metabolic myocyte pathways under both physiological and pathological conditions. In this review, we will consider the homeostasis and intersection of GSH with NO and then we will restrict the discussion on their role in processes related to skeletal muscle function and degeneration.
Collapse
|
35
|
Boehler JF, Ricotti V, Gonzalez JP, Soustek-Kramer M, Such L, Brown KJ, Schneider JS, Morris CA. Membrane recruitment of nNOSµ in microdystrophin gene transfer to enhance durability. Neuromuscul Disord 2019; 29:735-741. [PMID: 31521486 DOI: 10.1016/j.nmd.2019.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
Several gene transfer clinical trials are currently ongoing with the common aim of delivering a shortened version of dystrophin, termed a microdystrophin, for the treatment of Duchenne muscular dystrophy (DMD). However, one of the main differences between these trials is the microdystrophin protein produced following treatment. Each gene transfer product is based on different selections of dystrophin domain combinations to assemble microdystrophin transgenes that maintain functional dystrophin domains and fit within the packaging limits of an adeno-associated virus (AAV) vector. While domains involved in mechanical function, such as the actin-binding domain and β-dystroglycan binding domain, have been identified for many years and included in microdystrophin constructs, more recently the neuronal nitric oxide synthase (nNOS) domain has also been identified due to its role in enhancing nNOS membrane localization. As nNOS membrane localization has been established as an important requirement for prevention of functional ischemia in skeletal muscle, inclusion of the nNOS domain into a microdystrophin construct represents an important consideration. The aim of this mini review is to highlight what is currently known about the nNOS domain of dystrophin and to describe potential implications of this domain in a microdystrophin gene transfer clinical trial.
Collapse
Affiliation(s)
- Jessica F Boehler
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Valeria Ricotti
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - J Patrick Gonzalez
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | | | - Lauren Such
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Kristy J Brown
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Joel S Schneider
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States
| | - Carl A Morris
- Solid Biosciences, 141 Portland Street, Cambridge, MA 02139, United States.
| |
Collapse
|
36
|
Rebolledo DL, González D, Faundez-Contreras J, Contreras O, Vio CP, Murphy-Ullrich JE, Lipson KE, Brandan E. Denervation-induced skeletal muscle fibrosis is mediated by CTGF/CCN2 independently of TGF-β. Matrix Biol 2019; 82:20-37. [DOI: 10.1016/j.matbio.2019.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
|
37
|
Zhao J, Yang HT, Wasala L, Zhang K, Yue Y, Duan D, Lai Y. Dystrophin R16/17 protein therapy restores sarcolemmal nNOS in trans and improves muscle perfusion and function. Mol Med 2019; 25:31. [PMID: 31266455 PMCID: PMC6607532 DOI: 10.1186/s10020-019-0101-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023] Open
Abstract
Background Delocalization of neuronal nitric oxide synthase (nNOS) from the sarcolemma leads to functional muscle ischemia. This contributes to the pathogenesis in cachexia, aging and muscular dystrophy. Mutations in the gene encoding dystrophin result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). In many BMD patients and DMD patients that have been converted to BMD by gene therapy, sarcolemmal nNOS is missing due to the lack of dystrophin nNOS-binding domain. Methods Dystrophin spectrin-like repeats 16 and 17 (R16/17) is the sarcolemmal nNOS localization domain. Here we explored whether R16/17 protein therapy can restore nNOS to the sarcolemma and prevent functional ischemia in transgenic mice which expressed an R16/17-deleted human micro-dystrophin gene in the dystrophic muscle. The palmitoylated R16/17.GFP fusion protein was conjugated to various cell-penetrating peptides and produced in the baculovirus-insect cell system. The best fusion protein was delivered to the transgenic mice and functional muscle ischemia was quantified. Results Among five candidate cell-penetrating peptides, the mutant HIV trans-acting activator of transcription (TAT) protein transduction domain (mTAT) was the best in transferring the R16/17.GFP protein to the muscle. Systemic delivery of the mTAT.R16/17.GFP protein to micro-dystrophin transgenic mice successfully restored sarcolemmal nNOS without inducing T cell infiltration. More importantly, R16/17 protein therapy effectively prevented treadmill challenge-induced force loss and improved muscle perfusion during contraction. Conclusions Our results suggest that R16/17 protein delivery is a highly promising therapy for muscle diseases involving sarcolemmal nNOS delocalizaton. Electronic supplementary material The online version of this article (10.1186/s10020-019-0101-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junling Zhao
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Hsiao Tung Yang
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Lakmini Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA. .,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65212, USA. .,Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA. .,Department of Bioengineering, University of Missouri, Columbia, MO, 65212, USA.
| | - Yi Lai
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA.
| |
Collapse
|
38
|
Kobayashi J, Uchida H, Kofuji A, Ito J, Shimizu M, Kim H, Sekiguchi Y, Kushibe S. Molecular regulation of skeletal muscle mass and the contribution of nitric oxide: A review. FASEB Bioadv 2019; 1:364-374. [PMID: 32123839 PMCID: PMC6996321 DOI: 10.1096/fba.2018-00080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
A variety of internal and external factors such as exercise, nutrition, inflammation, and cancer-associated cachexia affect the regulation of skeletal muscle mass. Because skeletal muscle functions as a crucial regulator of whole body metabolism, rather than just as a motor for locomotion, the enhancement and maintenance of muscle mass and function are required to maintain health and reduce the morbidity and mortality associated with diseases involving muscle wasting. Recent studies in this field have made tremendous progress; therefore, identification of the mechanisms that regulate skeletal muscle mass is necessary for the physical and nutritional management of both athletes and patients with muscle wasting disease. In this review, we present an overall picture of the interactions regulating skeletal muscle mass, particularly focusing on the insulin-like growth factor-I (IGF-I)/insulin-Akt-mammalian target of rapamycin (mTOR) pathway, skeletal muscle inactivity, and endurance and resistance exercise. We also discuss the contribution of nitric oxide (NO) to the regulation of skeletal muscle mass based on the current knowledge of the novel role of NO in these processes.
Collapse
Affiliation(s)
- Jun Kobayashi
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Hiroyuki Uchida
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Ayaka Kofuji
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Junta Ito
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Maki Shimizu
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Hyounju Kim
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Yusuke Sekiguchi
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Seiji Kushibe
- Department of Management, Faculty of ManagementJosai UniversitySaitamaJapan
| |
Collapse
|
39
|
Montagna C, Rizza S, Cirotti C, Maiani E, Muscaritoli M, Musarò A, Carrí MT, Ferraro E, Cecconi F, Filomeni G. nNOS/GSNOR interaction contributes to skeletal muscle differentiation and homeostasis. Cell Death Dis 2019; 10:354. [PMID: 31043586 PMCID: PMC6494884 DOI: 10.1038/s41419-019-1584-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) plays a crucial role in the maintenance of correct skeletal muscle function due, at least in part, to S-nitrosylation of specific protein targets. Similarly, we recently provided evidence for a muscular phenotype in mice lacking the denitrosylase S-nitrosoglutathione reductase (GSNOR). Here, we demonstrate that nNOS and GSNOR are concomitantly expressed during differentiation of C2C12. They colocalizes at the sarcolemma and co-immunoprecipitate in cells and in myofibers. We also provide evidence that GSNOR expression decreases in mouse models of muscular dystrophies and of muscle atrophy and wasting, i.e., aging and amyotrophic lateral sclerosis, suggesting a more general regulatory role of GSNOR in skeletal muscle homeostasis.
Collapse
Affiliation(s)
- Costanza Montagna
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, 2400, Copenhagen, Denmark
| | - Salvatore Rizza
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Claudia Cirotti
- Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.,Fondazione Santa Lucia, IRCCS, 00143, Rome, Italy
| | - Emiliano Maiani
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine (formerly Department of Clinical Medicine), Sapienza University of Rome, 00185, Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161, Rome, Italy
| | - Maria Teresa Carrí
- Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.,Fondazione Santa Lucia, IRCCS, 00143, Rome, Italy
| | - Elisabetta Ferraro
- Department of Orthopaedics and Traumatology, Hospital "Maggiore della Carità", University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.,Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giuseppe Filomeni
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark. .,Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.
| |
Collapse
|
40
|
Ascorbic acid stimulates the in vitro myoblast proliferation and migration of pacu (Piaractus mesopotamicus). Sci Rep 2019; 9:2229. [PMID: 30778153 PMCID: PMC6379551 DOI: 10.1038/s41598-019-38536-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/31/2018] [Indexed: 12/31/2022] Open
Abstract
The postembryonic growth of skeletal muscle in teleost fish involves myoblast proliferation, migration and differentiation, encompassing the main events of embryonic myogenesis. Ascorbic acid plays important cellular and biochemical roles as an antioxidant and contributes to the proper collagen biosynthesis necessary for the structure of connective and bone tissues. However, whether ascorbic acid can directly influence the mechanisms of fish myogenesis and skeletal muscle growth remains unclear. The aim of our work was to evaluate the effects of ascorbic acid supplementation on the in vitro myoblast proliferation and migration of pacu (Piaractus mesopotamicus). To provide insight into the potential antioxidant role of ascorbic acid, we also treated myoblasts in vitro with menadione, which is a powerful oxidant. Our results show that ascorbic acid-supplemented myoblasts exhibit increased proliferation and migration and are protected against the oxidative stress caused by menadione. In addition, ascorbic acid increased the activity of the antioxidant enzyme superoxide dismutase and the expression of myog and mtor, which are molecular markers related to skeletal muscle myogenesis and protein synthesis, respectively. This work reveals a direct influence of ascorbic acid on the mechanisms of pacu myogenesis and highlights the potential use of ascorbic acid for stimulating fish skeletal muscle growth.
Collapse
|
41
|
Lawler JM, Garcia-Villatoro EL, Guzzoni V, Hord JM, Botchlett R, Holly D, Lawler MS, Janini Gomes M, Ryan P, Rodriguez D, Kuczmarski JM, Fluckey JD, Talcott S. Effect of combined fish oil & Curcumin on murine skeletal muscle morphology and stress response proteins during mechanical unloading. Nutr Res 2019; 65:17-28. [PMID: 30954343 DOI: 10.1016/j.nutres.2018.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 12/15/2022]
Abstract
Skeletal muscle is a highly adaptable tissue capable of remodeling when dynamic stress is altered, including changes in mechanical loading and stretch. When muscle is subjected to an unloaded state (e.g., bedrest, immobilization, spaceflight) the resulting loss of muscle cross sectional area (CSA) impairs force production. In addition, muscle fiber-type shifts from slow to fast-twitch fibers. Unloading also results in a downregulation of heat shock proteins (e.g., HSP70) and anabolic signaling, which further exacerbate these morphological changes. Our lab recently showed reactive oxygen species (ROS) are causal in unloading-induced alterations in Akt and FoxO3a phosphorylation, muscle fiber atrophy, and fiber-type shift. Nutritional supplements such as fish oil and curcumin enhance anabolic signaling, glutathione levels, and heat shock proteins. We hypothesized that fish oil, rich in omega-3-fatty acids, combined with the polyphenol curcumin would enhance stress protective proteins and anabolic signaling in the rat soleus muscle, concomitant with synergistic protection of morphology. C57BL/6 mice were assigned to 3 groups (n = 6/group): ambulatory controls (CON), hindlimb unloading (HU), and hindlimb unloading with 5% fish oil, 1% curcumin in diet (FOC). FOC treatments began 10 days prior to HU and tissues were harvested following 7 days of HU. FOC mitigated the unloading induced decrease in CSA. FOC also enhanced abundance of HSP70 and anabolic signaling (Akt phosphorylation, p70S6K phosphorylation), while reducing Nox2, a source of oxidative stress. Therefore, we concluded that the combination of fish oil and curcumin prevents skeletal muscle atrophy due to a boost of heat shock proteins and anabolic signaling in an unloaded state.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA; Department of Nutrition and Food Science, Texas A&M University.
| | - Erika L Garcia-Villatoro
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA; Department of Nutrition and Food Science, Texas A&M University
| | - Vinicius Guzzoni
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA; Department of Cellular and Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Jeff M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA; Department of Molecular Physiology and Biophysics, Carver School of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rachel Botchlett
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA; Department of Nutrition and Food Science, Texas A&M University
| | - Dylan Holly
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Matthew S Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA; Department of Biomedical Engineering, Georgia Tech University, Atlanta, GA, USA
| | - Mariana Janini Gomes
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA; Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Pat Ryan
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Dinah Rodriguez
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - J Matthew Kuczmarski
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A&M University
| | - Susanne Talcott
- Department of Nutrition and Food Science, Texas A&M University
| |
Collapse
|
42
|
Balke JE, Zhang L, Percival JM. Neuronal nitric oxide synthase (nNOS) splice variant function: Insights into nitric oxide signaling from skeletal muscle. Nitric Oxide 2018; 82:35-47. [PMID: 30503614 DOI: 10.1016/j.niox.2018.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
Abstract
Defects in neuronal nitric oxide synthase (nNOS) splice variant localization and signaling in skeletal muscle are a firmly established pathogenic characteristic of many neuromuscular diseases, including Duchenne and Becker muscular dystrophy (DMD and BMD, respectively). Therefore, substantial efforts have been made to understand and therapeutically target skeletal muscle nNOS isoform signaling. The purpose of this review is to summarize recent salient advances in understanding of the regulation, targeting, and function of nNOSμ and nNOSβ splice variants in normal and dystrophic skeletal muscle, primarily using findings from mouse models. The first focus of this review is how the differential targeting of nNOS splice variants creates spatially and functionally distinct nitric oxide (NO) signaling compartments at the sarcolemma, Golgi complex, and cytoplasm. Particular attention is given to the functions of sarcolemmal nNOSμ and limitations of current nNOS knockout models. The second major focus is to review current understanding of cGMP-mediated nNOS signaling in skeletal muscle and its emergence as a therapeutic target in DMD and BMD. Accordingly, we address the preclinical and clinical successes and setbacks with the testing of phosphodiesterase 5 inhibitors to redress nNOS signaling defects in DMD and BMD. In summary, this review of nNOS function in normal and dystrophic muscle aims to advance understanding how the messenger NO is harnessed for cellular signaling from a skeletal muscle perspective.
Collapse
Affiliation(s)
- Jordan E Balke
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA
| | - Ling Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA
| | - Justin M Percival
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA.
| |
Collapse
|
43
|
Patel A, Zhao J, Yue Y, Zhang K, Duan D, Lai Y. Dystrophin R16/17-syntrophin PDZ fusion protein restores sarcolemmal nNOSμ. Skelet Muscle 2018; 8:36. [PMID: 30466494 PMCID: PMC6251231 DOI: 10.1186/s13395-018-0182-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Background Loss of sarcolemmal nNOSμ is a common manifestation in a wide variety of muscle diseases and contributes to the dysregulation of multiple muscle activities. Given the critical role sarcolemmal nNOSμ plays in muscle, restoration of sarcolemmal nNOSμ should be considered as an important therapeutic goal. Methods nNOSμ is anchored to the sarcolemma by dystrophin spectrin-like repeats 16 and 17 (R16/17) and the syntrophin PDZ domain (Syn PDZ). To develop a strategy that can independently restore sarcolemmal nNOSμ, we engineered an R16/17-Syn PDZ fusion construct and tested whether this construct alone is sufficient to anchor nNOSμ to the sarcolemma in three different mouse models of Duchenne muscular dystrophy (DMD). Results Membrane-associated nNOSμ is completely lost in DMD. Adeno-associated virus (AAV)-mediated delivery of the R16/17-Syn PDZ fusion construct successfully restored sarcolemmal nNOSμ in all three models. Further, nNOS restoration was independent of the dystrophin-associated protein complex. Conclusions Our results suggest that the R16/17-Syn PDZ fusion construct is sufficient to restore sarcolemmal nNOSμ in the dystrophin-null muscle. Electronic supplementary material The online version of this article (10.1186/s13395-018-0182-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aman Patel
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Junling Zhao
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA. .,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65212, USA. .,Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA. .,Department of Bioengineering, University of Missouri, Columbia, MO, 65212, USA.
| | - Yi Lai
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA.
| |
Collapse
|
44
|
Lechado I Terradas A, Vitadello M, Traini L, Namuduri AV, Gastaldello S, Gorza L. Sarcolemmal loss of active nNOS (Nos1) is an oxidative stress-dependent, early event driving disuse atrophy. J Pathol 2018; 246:433-446. [PMID: 30066461 DOI: 10.1002/path.5149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/28/2018] [Accepted: 07/27/2018] [Indexed: 01/08/2023]
Abstract
Skeletal muscle atrophy following unloading or immobilization represents a major invalidating event in bedridden patients. Among mechanisms involved in atrophy development, a controversial role is played by neuronal NOS (nNOS; NOS1), whose dysregulation at the protein level and/or subcellular distribution also characterizes other neuromuscular disorders. This study aimed to investigate unloading-induced changes in nNOS before any evidence of myofiber atrophy, using vastus lateralis biopsies obtained from young healthy subjects after a short bed-rest and rat soleus muscles after exposure to short unloading periods. Our results showed that (1) changes in nNOS subcellular distribution using NADPH-diaphorase histochemistry to detect enzyme activity were observed earlier than using immunofluorescence to visualize the protein; (2) loss of active nNOS from the physiological subsarcolemmal localization occurred before myofiber atrophy, i.e. in 8-day bed-rest biopsies and in 6 h-unloaded rat soleus, and was accompanied by increased nNOS activity in the sarcoplasm; (3) nNOS (Nos1) transcript and protein levels decreased significantly in the rat soleus after 6 h and 1 day unloading, respectively, to return to ambulatory levels after 4 and 7 days of unloading, respectively; (4) unloading-induced nNOS redistribution appeared dependent on mitochondrial-derived oxidant species, indirectly measured by tropomyosin disulfide bonds which had increased significantly in the rat soleus already after a 6 h-unloading bout; (5) activity of displaced nNOS molecules is required for translocation of the FoxO3 transcription factor to myofiber nuclei. FoxO3 nuclear localization in rat soleus increased after 6 h unloading (about four-fold the ambulatory level), whereas it did not when nNOS expression and activity were inhibited in vivo before and during 6 h unloading. In conclusion, this study demonstrates that the redistribution of active nNOS molecules from sarcolemma to sarcoplasm not only is ahead of the atrophy of unloaded myofibers, and is induced by increased production of mitochondrial superoxide anion, but also drives FoxO3 activation to initiate muscle atrophy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - Leonardo Traini
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.,Precision Medicine Research Center (Department), Binzhou Medical University, Shandong Province, Yantai, PR China
| | - Luisa Gorza
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
45
|
Sakai H, Kimura M, Tsukimura Y, Yabe S, Isa Y, Kai Y, Sato F, Kon R, Ikarashi N, Narita M, Chiba Y, Kamei J. Dexamethasone exacerbates cisplatin‐induced muscle atrophy. Clin Exp Pharmacol Physiol 2018; 46:19-28. [DOI: 10.1111/1440-1681.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Hiroyasu Sakai
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Minami Kimura
- Department of Analytical PathophysiologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Yuka Tsukimura
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Saori Yabe
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Yosuke Isa
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Yuki Kai
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Fumiaki Sato
- Department of Analytical PathophysiologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Risako Kon
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Minoru Narita
- Department of PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular SciencesSchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Junzo Kamei
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| |
Collapse
|
46
|
Yamada T, Himori K, Tatebayashi D, Yamada R, Ashida Y, Imai T, Akatsuka M, Masuda Y, Kanzaki K, Watanabe D, Wada M, Westerblad H, Lanner JT. Electrical Stimulation Prevents Preferential Skeletal Muscle Myosin Loss in Steroid-Denervation Rats. Front Physiol 2018; 9:1111. [PMID: 30147660 PMCID: PMC6097132 DOI: 10.3389/fphys.2018.01111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Severe muscle weakness concomitant with preferential depletion of myosin has been observed in several pathological conditions. Here, we used the steroid-denervation (S-D) rat model, which shows dramatic decrease in myosin content and force production, to test whether electrical stimulation (ES) treatment can prevent these deleterious changes. S-D was induced by cutting the sciatic nerve and subsequent daily injection of dexamethasone for 7 days. For ES treatment, plantarflexor muscles were electrically stimulated to produce four sets of five isometric contractions each day. Plantarflexor in situ isometric torque, muscle weight, skinned muscle fiber force, and protein and mRNA expression were measured after the intervention period. ES treatment partly prevented the S-D-induced decreases in plantarflexor in situ isometric torque and muscle weight. ES treatment fully prevented S-D-induced decreases in skinned fiber force and ratio of myosin heavy chain (MyHC) to actin, as well as increases in the reactive oxygen/nitrogen species-generating enzymes NADPH oxidase (NOX) 2 and 4, phosphorylation of p38 MAPK, mRNA expression of the muscle-specific ubiquitin ligases muscle ring finger-1 (MuRF-1) and atrogin-1, and autolyzed active calpain-1. Thus, ES treatment is an effective way to prevent muscle impairments associated with loss of myosin.
Collapse
Affiliation(s)
- Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Ryotaro Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Tomihiro Imai
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masayuki Akatsuka
- Department of Intensive Care Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University, Sapporo, Japan
| | - Keita Kanzaki
- Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Daiki Watanabe
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Uchida T, Sakashita Y, Kitahata K, Yamashita Y, Tomida C, Kimori Y, Komatsu A, Hirasaka K, Ohno A, Nakao R, Higashitani A, Higashibata A, Ishioka N, Shimazu T, Kobayashi T, Okumura Y, Choi I, Oarada M, Mills EM, Teshima-Kondo S, Takeda S, Tanaka E, Tanaka K, Sokabe M, Nikawa T. Reactive oxygen species upregulate expression of muscle atrophy-associated ubiquitin ligase Cbl-b in rat L6 skeletal muscle cells. Am J Physiol Cell Physiol 2018. [DOI: 10.1152/ajpcell.00184.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unloading-mediated muscle atrophy is associated with increased reactive oxygen species (ROS) production. We previously demonstrated that elevated ubiquitin ligase casitas B-lineage lymphoma-b (Cbl-b) resulted in the loss of muscle volume (Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I, Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N, Mills EM, Takeda S, Nikawa T. Mol Cell Biol 29: 4798–4811, 2009). However, the pathological role of ROS production associated with unloading-mediated muscle atrophy still remains unknown. Here, we showed that the ROS-mediated signal transduction caused by microgravity or its simulation contributes to Cbl-b expression. In L6 myotubes, the assessment of redox status revealed that oxidized glutathione was increased under microgravity conditions, and simulated microgravity caused a burst of ROS, implicating ROS as a critical upstream mediator linking to downstream atrophic signaling. ROS generation activated the ERK1/2 early-growth response protein (Egr)1/2-Cbl-b signaling pathway, an established contributing pathway to muscle volume loss. Interestingly, antioxidant treatments such as N-acetylcysteine and TEMPOL, but not catalase, blocked the clinorotation-mediated activation of ERK1/2. The increased ROS induced transcriptional activity of Egr1 and/or Egr2 to stimulate Cbl-b expression through the ERK1/2 pathway in L6 myoblasts, since treatment with Egr1/2 siRNA and an ERK1/2 inhibitor significantly suppressed clinorotation-induced Cbl-b and Egr expression, respectively. Promoter and gel mobility shift assays revealed that Cbl-b was upregulated via an Egr consensus oxidative responsive element at −110 to −60 bp of the Cbl-b promoter. Together, this indicates that under microgravity conditions, elevated ROS may be a crucial mechanotransducer in skeletal muscle cells, regulating muscle mass through Cbl-b expression activated by the ERK-Egr signaling pathway.
Collapse
Affiliation(s)
- Takayuki Uchida
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshihiro Sakashita
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Kanako Kitahata
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Yui Yamashita
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Chisato Tomida
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Kimori
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Akio Komatsu
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuya Hirasaka
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, Japan
| | - Ayako Ohno
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Reiko Nakao
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | - Akira Higashibata
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | - Noriaki Ishioka
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | | | - Takeshi Kobayashi
- Department of Physiology, Nagoya University, School of Medicine, Nagoya, Japan
| | - Yuushi Okumura
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
- Faculty of Nutritional Science, Sagami Women’s University, Kanagawa, Japan
| | - Inho Choi
- Institute of Space Biology, Yonsei University, Wonju, South Korea
| | - Motoko Oarada
- Faculty of Nutritional Science, Sagami Women’s University, Kanagawa, Japan
| | - Edward M. Mills
- Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas, Austin, Texas
| | - Shigetada Teshima-Kondo
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
- Department of Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Shin’ichi Takeda
- Translational Research Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eiji Tanaka
- Department of Orthodontic Dentistry, Institute of Medical Biosciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keiji Tanaka
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University, School of Medicine, Nagoya, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
48
|
L-Arginine Enhances Protein Synthesis by Phosphorylating mTOR (Thr 2446) in a Nitric Oxide-Dependent Manner in C2C12 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7569127. [PMID: 29854093 PMCID: PMC5944195 DOI: 10.1155/2018/7569127] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/24/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
Muscle atrophy may arise from many factors such as inactivity, malnutrition, and inflammation. In the present study, we investigated the stimulatory effect of nitric oxide (NO) on muscle protein synthesis. Primarily, C2C12 cells were supplied with extra L-arginine (L-Arg) in the culture media. L-Arg supplementation increased the activity of inducible nitric oxide synthase (iNOS), the rate of protein synthesis, and the phosphorylation of mTOR (Thr 2446) and p70S6K (Thr 389). L-NAME, an NOS inhibitor, decreased NO concentrations within cells and abolished the stimulatory effect of L-Arg on protein synthesis and the phosphorylation of mTOR and p70S6K. In contrast, SNP (sodium nitroprusside), an NO donor, increased NO concentrations, enhanced protein synthesis, and upregulated mTOR and p70S6K phosphorylation, regardless of L-NAME treatment. Blocking mTOR with rapamycin abolished the stimulatory effect of both L-Arg and SNP on protein synthesis and p70S6K phosphorylation. These results indicate that L-Arg stimulates protein synthesis via the activation of the mTOR (Thr 2446)/p70S6K signaling pathway in an NO-dependent manner.
Collapse
|
49
|
Kuczmarski JM, Hord JM, Lee Y, Guzzoni V, Rodriguez D, Lawler MS, Garcia-Villatoro EL, Holly D, Ryan P, Falcon K, Garcia M, Janini Gomes M, Fluckey JD, Lawler JM. Effect of Eukarion-134 on Akt-mTOR signalling in the rat soleus during 7 days of mechanical unloading. Exp Physiol 2018; 103:545-558. [PMID: 29315934 DOI: 10.1113/ep086649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? Translocation of nNOSμ initiates catabolic signalling via FoxO3a and skeletal muscle atrophy during mechanical unloading. Recent evidence suggests that unloading-induced muscle atrophy and FoxO3a activation are redox sensitive. Will a mimetic of superoxide dismutase and catalase (i.e. Eukarion-134) also mitigate suppression of the Akt-mTOR pathway? What is the main finding and its importance? Eukarion-134 rescued Akt-mTOR signalling and sarcolemmal nNOSμ, which were linked to protection against the unloading phenotype, muscle fibre atrophy and partial fibre-type shift from slow to fast twitch. The loss of nNOSμ from the sarcolemma appears crucial to Akt phosphorylation and is redox sensitive, although the mechanisms remain unresolved. ABSTRACT Mechanical unloading stimulates rapid changes in skeletal muscle morphology, characterized by atrophy of muscle fibre cross-sectional area and a partial fibre-type shift from slow to fast twitch. Recent studies revealed that oxidative stress contributes to activation of forkhead box O3a (FoxO3a), proteolytic signalling and unloading-induced muscle atrophy via translocation of the μ-splice variant of neuronal nitric oxide synthase (nNOSμ) and activation of FoxO3a. There is limited understanding of the role of reactive oxygen species in the Akt-mammalian target of rapamycin (mTOR) pathway signalling during unloading. We hypothesized that Eukarion-134 (EUK-134), a mimetic of the antioxidant enzymes superoxide dismutase and catalase, would protect Akt-mTOR signalling in the unloaded rat soleus. Male Fischer 344 rats were separated into the following three study groups: ambulatory control (n = 11); 7 days of hindlimb unloading + saline injections (HU, n = 11); or 7 days of HU + EUK-134; (HU + EUK-134, n = 9). EUK-134 mitigated unloading-induced dephosphorylation of Akt, as well as FoxO3a, in the soleus. Phosphorylation of mTOR in the EUK-treated HU rats was not different from that in control animals. However, EUK-134 did not significantly rescue p70S6K phosphorylation. EUK-134 attenuated translocation of nNOSμ from the membrane to the cytosol, reduced nitration of tyrosine residues and suppressed upregulation of caveolin-3 and dysferlin. EUK-134 ameliorated HU-induced remodelling, atrophy of muscle fibres and the 12% increase in type II myosin heavy chain-positive fibres. Attenuation of the unloaded muscle phenotype was associated with decreased reactive oxygen species, as assessed by ethidium-positive nuclei. We conclude that oxidative stress affects Akt-mTOR signalling in unloaded skeletal muscle. Direct linkage of abrogation of nNOSμ translocation with Akt-mTOR signalling during unloading is the subject of future investigation.
Collapse
Affiliation(s)
- J Matthew Kuczmarski
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.,Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Jeff M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Yang Lee
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Vinicius Guzzoni
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.,Laboratory of Biochemistry and Molecular Biology, Department of Physiological Science, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Dinah Rodriguez
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Matthew S Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.,Department of Biomedical Engineering, Georgia Tech University, Atlanta, GA, USA
| | - Erika L Garcia-Villatoro
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Dylan Holly
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Patrick Ryan
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Kristian Falcon
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Marcela Garcia
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Mariana Janini Gomes
- Physiopathology Program in Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
50
|
Sharlo CA, Lomonosova YN, Turtikova OV, Mitrofanova OV, Kalamkarov GR, Bugrova AE, Shevchenko TF, Shenkman BS. The Role of GSK-3β Phosphorylation in the Regulation of Slow Myosin Expression in Soleus Muscle during Functional Unloading. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818010099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|