1
|
Varsha KK, Yang X, Cannon AS, Zhong Y, Nagarkatti M, Nagarkatti P. Identification of miRNAs that target Fcγ receptor-mediated phagocytosis during macrophage activation syndrome. Front Immunol 2024; 15:1355315. [PMID: 38558807 PMCID: PMC10981272 DOI: 10.3389/fimmu.2024.1355315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
2
|
Rashid MH. Full-length recombinant antibodies from Escherichia coli: production, characterization, effector function (Fc) engineering, and clinical evaluation. MAbs 2022; 14:2111748. [PMID: 36018829 PMCID: PMC9423848 DOI: 10.1080/19420862.2022.2111748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although several antibody fragments and antibody fragment-fusion proteins produced in Escherichia coli (E. coli) are approved as therapeutics for various human diseases, a full-length monoclonal or a bispecific antibody produced in E. coli has not yet been approved. The past decade witnessed substantial progress in expression of full-length antibodies in the E. coli cytoplasm and periplasm, as well as in cell-free expression systems. The equivalency of E. coli-produced aglycosylated antibodies and their mammalian cell-produced counterparts, with respect to biochemical and biophysical properties, including antigen binding, in vitro and in vivo serum stability, pharmacokinetics, and in vivo serum half-life, has been demonstrated. Extensive engineering of the Fc domain of aglycosylated antibodies enables recruitment of various effector functions, despite the lack of N-linked glycans. This review summarizes recent research, preclinical advancements, and clinical development of E. coli-produced aglycosylated therapeutic antibodies as monoclonal, bispecific, and antibody-drug conjugates for use in autoimmune, oncology, and immuno-oncology areas.Abbreviations: ADA Anti-drug antibody; ADCC Antibody-dependent cellular cytotoxicity; ADCP Antibody-dependent cellular phagocytosis; ADC Antibody-drug conjugate; aFc Aglycosylated Fc; AMD Age-related macular degeneration aTTP Acquired thrombotic thrombocytopenic purpura; BCMA B-cell maturation antigen; BLA Biologics license application; BsAb Bispecific antibody; C1q Complement protein C1q; CDC Complement-dependent cytotoxicity; CDCC Complement-dependent cellular cytotoxicity; CDCP Complement-dependent cellular phagocytosis; CEX Cation exchange chromatography; CFPS Cell-free protein expression; CHO Chinese Hamster Ovary; CH1-3 Constant heavy chain 1-3; CL Constant light chain; DLBCL Diffuse large B-cell lymphoma; DAR Drug antibody ratio; DC Dendritic cell; dsFv Disulfide-stabilized Fv; EU European Union; EGFR Epidermal growth factor receptor; E. coli Escherichia coli; EpCAM Epithelial cell adhesion molecule; Fab Fragment antigen binding; FACS Fluorescence activated cell sorting; Fc Fragment crystallizable; FcRn Neonatal Fc receptor; FcɣRs Fc gamma receptors; FDA Food and Drug Administration; FL-IgG Full-length immunoglobulin; Fv Fragment variable; FolRαa Folate receptor alpha; gFc Glycosylated Fc; GM-CSF Granulocyte macrophage-colony stimulating factor; GPx7 Human peroxidase 7; HCL Hairy cell leukemia; HIV Human immunodeficiency virusl; HER2 Human epidermal growth factor receptor 2; HGF Hepatocyte growth factor; HIC Hydrophobic interaction chromatography; HLA Human leukocyte antigen; IBs Inclusion bodies; IgG1-4 Immunoglobulin 1-4; IP Intraperitoneal; ITC Isothermal titration calorimetry; ITP Immune thrombocytopenia; IV Intravenous; kDa Kilodalton; KiH Knob-into-Hole; mAb Monoclonal antibody; MAC Membrane-attack complex; mCRC Metastatic colorectal cancer; MM Multipl myeloma; MOA Mechanism of action; MS Mass spectrometry; MUC1 Mucin 1; MG Myasthenia gravis; NB Nanobody; NK Natural killer; nsAA Nonstandard amino acid; NSCLC Non-small cell lung cancer; P. aeruginosa Pseudomonas aeruginosa; PD-1 Programmed cell death 1; PD-L1 Programmed cell death-ligand 1; PDI Protein disulfide isomerase; PECS Periplasmic expression cytometric screening; PK Pharmacokinetics; P. pastoris Pichia pastoris; PTM Post-translational modification; Rg Radius of gyration; RA Rheumatoid arthritis; RT-PCR Reverse transcription polymerase chain reaction; SAXS Small angle X-ray scattering; scF Single chain Fv; SCLC Small cell lung cancer; SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEC Size exclusion chromatography; SEED Strand-exchange engineered domain; sRNA Small regulatory RNA; SRP Signal recognition particle; T1/2 Half-life; Tagg Aggregation temperature; TCR T cell receptor; TDB T cell-dependent bispecific; TF Tissue factor; TIR Translation initiation region; Tm Melting temperature; TNBC Triple-negative breast cancer; TNF Tumor necrosis factor; TPO Thrombopoietin; VEGF Vascular endothelial growth factor; vH Variable heavy chain; vL Variable light chain; vWF von Willebrand factor; WT Wild type.
Collapse
|
3
|
Bayat B, Traum A, Berghöfer H, Werth S, Zhu J, Bein G, Sachs UJ, Santoso S. Current Anti-HPA-1a Standard Antibodies React with the β3 Integrin Subunit but not with αIIbβ3 and αvβ3 Complexes. Thromb Haemost 2019; 119:1807-1815. [PMID: 31587244 DOI: 10.1055/s-0039-1696716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fetal/neonatal alloimmune thrombocytopenia (FNAIT) results from maternal alloantibodies (abs) reacting with fetal platelets expressing paternal human platelet antigens (HPAs), mostly HPA-1a. Anti-HPA-1a abs, are the most frequent cause of severe thrombocytopenia and intracranial hemorrhage (ICH). OBJECTIVES Titration of anti-HPA-1a in maternal serum using standard National Institute for Biological Standards and Control (NIBSC) 03/152 is one diagnostic approach to predict the severity of FNAIT. Recently, we found three anti-HPA-1a subtypes reacting with the β3 subunit independently or dependently from complexes with αIIb and αv. Endothelial cell-reactive anti-αvβ3 abs were found predominantly in cases with ICH. Our aim was to assess whether available standard material represents all anti-HPA-1a subtypes. MATERIALS AND METHODS In this study, anti-HPA-1a sera (NIBSC 03/152) and human monoclonal antibodies (moabs) against HPA-1a (moabs 26.4 and 813) were evaluated using transfected cell lines expressing αIIbβ3, αvβ3 or monomeric cβ3. RESULTS Flow cytometry analyses with well-characterized murine moabs recognizing αIIbβ3, αvβ3, or β3 alone demonstrated that AP3 reacts compound-independently, whereas compound-dependent moabs Gi5 and 23C6 reacted only with complexes. NIBSC 03/152, moabs 26.4, and 813 against HPA-1a reacted like AP3, same results were obtained with monomeric cβ3 in immunoblotting. Antigen capture assay targeting endothelial cells showed anti-HPA-1a reactivity disappearance after cβ3 beads adsorption. Furthermore, in contrast to anti-HPA-1a abs from ICH cases, none of NIBSC 03/152, 26.4, and 813 inhibited tube formation. CONCLUSION These results suggest that current anti-HPA-1a standard material contains only the anti-β3 subtype. The absence of anti-αvβ3 makes NIBSC 03/152 less suitable as standard to predict the severity of FNAIT.
Collapse
Affiliation(s)
- Behnaz Bayat
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Annalena Traum
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Heike Berghöfer
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Silke Werth
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Jieging Zhu
- Blood Research Institute, Milwaukee, Wisconsin, United States
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich J Sachs
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Transfusion Medicine and Hemotherapy, University Hospital Marburg, Marburg, Germany
| | - Sentot Santoso
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Stapleton NM, Brinkhaus M, Armour KL, Bentlage AEH, de Taeye SW, Temming AR, Mok JY, Brasser G, Maas M, van Esch WJE, Clark MR, Williamson LM, van der Schoot CE, Vidarsson G. Reduced FcRn-mediated transcytosis of IgG2 due to a missing Glycine in its lower hinge. Sci Rep 2019; 9:7363. [PMID: 31089170 PMCID: PMC6517591 DOI: 10.1038/s41598-019-40731-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 02/19/2019] [Indexed: 11/09/2022] Open
Abstract
Neonatal Fc-receptor (FcRn), the major histocompatibility complex (MHC) class I-like Fc-receptor, transports immunoglobuline G (IgG) across cell layers, extending IgG half-life in circulation and providing newborns with humoral immunity. IgG1 and IgG2 have similar half-lives, yet IgG2 displays lower foetal than maternal concentration at term, despite all known FcRn binding residues being preserved between IgG1 and IgG2. We investigated FcRn mediated transcytosis of VH-matched IgG1 and IgG2 and mutated variants thereof lacking Fc-gamma receptor (FcγR) binding in human cells expressing FcRn. We observed that FcγR binding was not required for transport and that FcRn transported less IgG2 than IgG1. Transport of IgG1 with a shortened lower hinge (ΔGly236, absent in germline IgG2), was reduced to levels equivalent to IgG2. Conversely, transport of IgG2 + Gly236 was increased to IgG1 levels. Gly236 is not a contact residue between IgG and FcRn, suggesting that its absence leads to an altered conformation of IgG, possibly due to a less flexible Fab, positioned closer to the Fc portion. This may sterically hinder FcRn binding and transport. We conclude that the lack of Gly236 is sufficient to explain the reduced FcRn-mediated IgG2 transcytosis and accounts for the low maternal/fetal IgG2 ratio at term.
Collapse
Affiliation(s)
- Nigel M Stapleton
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands.,HALIX B.V., J.H. Oortweg 15/17, 2333 CH, Leiden, The Netherlands
| | - Maximilian Brinkhaus
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | - Kathryn L Armour
- Department of Pathology, Division of Immunology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,Department of Haematology, University of Cambridge, Cambridge, UK.,LifeArc, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Arthur E H Bentlage
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | - Steven W de Taeye
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | - A Robin Temming
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | | | | | | | | | - Mike R Clark
- Department of Pathology, Division of Immunology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,Clark Antibodies Ltd, 10 Wellington Street, Cambridge, CB1 1HW, UK
| | - Lorna M Williamson
- Department of Haematology, University of Cambridge, Cambridge, UK.,NHS Blood and Transplant, Long Road, Cambridge, CB2 2PT, UK
| | - C Ellen van der Schoot
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands.
| |
Collapse
|
5
|
Brojer E, Husebekk A, Dębska M, Uhrynowska M, Guz K, Orzińska A, Dębski R, Maślanka K. Fetal/Neonatal Alloimmune Thrombocytopenia: Pathogenesis, Diagnostics and Prevention. Arch Immunol Ther Exp (Warsz) 2015; 64:279-90. [PMID: 26564154 PMCID: PMC4939163 DOI: 10.1007/s00005-015-0371-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/31/2015] [Indexed: 01/10/2023]
Abstract
Fetal/neonatal alloimmune thrombocytopenia (FNAIT) is a relatively rare condition (1/1000–1/2000) that was granted orphan status by the European Medicines Agency in 2011. Clinical consequences of FNAIT, however, may be severe. A thrombocytopenic fetus or new-born is at risk of intracranial hemorrhage that may result in lifelong disability or death. Preventing such bleeding is thus vital and requires a solution. Anti-HPA1a antibodies are the most frequent cause of FNAIT in Caucasians. Its pathogenesis is similar to hemolytic disease of the newborn (HDN) due to anti-RhD antibodies, but is characterized by platelet destruction and is more often observed in the first pregnancy. In 75 % of these women, alloimmunization by HPA-1a antigens, however, occurs at delivery, which enables development of antibody-mediated immune suppression to prevent maternal immunization. As for HDN, the recurrence rate of FNAIT is high. For advancing diagnostic efforts and treatment, it is thereby crucial to understand the pathogenesis of FNAIT, including cellular immunity involvement. This review presents the current knowledge on FNAIT. Also described is a program for HPA-1a screening in identifying HPA-1a negative pregnant women at risk of immunization. This program is now performed at the Institute of Hematology and Transfusion Medicine in cooperation with the Department of Obstetrics and Gynecology of the Medical Centre of Postgraduate Education in Warsaw as well as the UiT The Arctic University of Norway.
Collapse
Affiliation(s)
- Ewa Brojer
- Department of Immunohematology and Immunology of Transfusion Medicine, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| | - Anne Husebekk
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Marzena Dębska
- 2nd Department of Obstetrics and Gynecology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Małgorzata Uhrynowska
- Department of Immunohematology and Immunology of Transfusion Medicine, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Katarzyna Guz
- Department of Immunohematology and Immunology of Transfusion Medicine, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Orzińska
- Department of Immunohematology and Immunology of Transfusion Medicine, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Romuald Dębski
- 2nd Department of Obstetrics and Gynecology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Krystyna Maślanka
- Department of Immunohematology and Immunology of Transfusion Medicine, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
6
|
Vadasz B, Chen P, Yougbaré I, Zdravic D, Li J, Li C, Carrim N, Ni H. Platelets and platelet alloantigens: Lessons from human patients and animal models of fetal and neonatal alloimmune thrombocytopenia. Genes Dis 2015; 2:173-185. [PMID: 28345015 PMCID: PMC5362271 DOI: 10.1016/j.gendis.2015.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Platelets play critical roles in hemostasis and thrombosis. Emerging evidence indicates that they are versatile cells and also involved in many other physiological processes and disease states. Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a life threatening bleeding disorder caused by fetal platelet destruction by maternal alloantibodies developed during pregnancy. Gene polymorphisms cause platelet surface protein incompatibilities between mother and fetus, and ultimately lead to maternal alloimmunization. FNAIT is the most common cause of intracranial hemorrhage in full-term infants and can also lead to intrauterine growth retardation and miscarriage. Proper diagnosis, prevention and treatment of FNAIT is challenging due to insufficient knowledge of the disease and a lack of routine screening as well as its frequent occurrence in first pregnancies. Given the ethical difficulties in performing basic research on human fetuses and neonates, animal models are essential to improve our understanding of the pathogenesis and treatment of FNAIT. The aim of this review is to provide an overview on platelets, hemostasis and thrombocytopenia with a focus on the advancements made in FNAIT by utilizing animal models.
Collapse
Affiliation(s)
- Brian Vadasz
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Pingguo Chen
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Canadian Blood Services, Toronto, ON, Canada
| | - Issaka Yougbaré
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Canadian Blood Services, Toronto, ON, Canada
| | - Darko Zdravic
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Canadian Blood Services, Toronto, ON, Canada
| | - June Li
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Conglei Li
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Canadian Blood Services, Toronto, ON, Canada
| | - Naadiya Carrim
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Heyu Ni
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Canadian Blood Services, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Advances in alloimmune thrombocytopenia: perspectives on current concepts of human platelet antigens, antibody detection strategies, and genotyping. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2015; 13:380-90. [PMID: 26057488 DOI: 10.2450/2015.0275-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/15/2015] [Indexed: 12/22/2022]
Abstract
Alloimmunisation to platelets leads to the production of antibodies against platelet antigens and consequently to thrombocytopenia. Numerous molecules located on the platelet surface are antigenic and induce immune-mediated platelet destruction with symptoms that can be serious. Human platelet antigens (HPA) cause thrombocytopenias, such as neonatal alloimmune thrombocytopenia, post-transfusion purpura, and platelet transfusion refractoriness. Thirty-four HPA are classified into 28 systems. Assays to identify HPA and anti-HPA antibodies are critically important for preventing and treating thrombocytopenia caused by anti-HPA antibodies. Significant progress in furthering our understanding of HPA has been made in the last decade: new HPA have been discovered, antibody-detection methods have improved, and new genotyping methods have been developed. We review these advances and discuss issues that remain to be resolved as well as future prospects for preventing and treating immune thrombocytopenia.
Collapse
|
8
|
Recombinant HPA-1a antibody therapy for treatment of fetomaternal alloimmune thrombocytopenia: proof of principle in human volunteers. Blood 2013; 122:313-20. [PMID: 23656729 DOI: 10.1182/blood-2013-02-481887] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fetomaternal alloimmune thrombocytopenia, caused by the maternal generation of antibodies against fetal human platelet antigen-1a (HPA-1a), can result in intracranial hemorrhage and intrauterine death. We have developed a therapeutic human recombinant high-affinity HPA-1a antibody (B2G1Δnab) that competes for binding to the HPA-1a epitope but carries a modified constant region that does not bind to Fcγ receptors. In vitro studies with a range of clinical anti-HPA-1a sera have shown that B2G1Δnab blocks monocyte chemiluminescence by >75%. In this first-in-man study, we demonstrate that HPA-1a1b autologous platelets (matching fetal phenotype) sensitized with B2G1Δnab have the same intravascular survival as unsensitized platelets (190 hours), while platelets sensitized with a destructive immunoglobulin G1 version of the antibody (B2G1) are cleared from the circulation in 2 hours. Mimicking the situation in fetuses receiving B2G1Δnab as therapy, we show that platelets sensitized with a combination of B2G1 (representing destructive HPA-1a antibody) and B2G1Δnab survive 3 times as long in circulation compared with platelets sensitized with B2G1 alone. This confirms the therapeutic potential of B2G1Δnab. The efficient clearance of platelets sensitized with B2G1 also opens up the opportunity to carry out studies of prophylaxis to prevent alloimmunization in HPA-1a-negative mothers.
Collapse
|
9
|
Eriksen BH, Husebekk A, Fugelseth D, Salberg KR, Lindemann R. A newborn with petechiae. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2013; 133:761-4. [PMID: 23588181 DOI: 10.4045/tidsskr.12.1009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
10
|
Bastian M, Holsteg M, Hanke-Robinson H, Duchow K, Cussler K. Bovine Neonatal Pancytopenia: is this alloimmune syndrome caused by vaccine-induced alloreactive antibodies? Vaccine 2011; 29:5267-75. [PMID: 21605614 PMCID: PMC7126856 DOI: 10.1016/j.vaccine.2011.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 02/02/2023]
Abstract
Bovine Neonatal Pancytopenia (BNP) is a new emerging disease observed since 2007 in Germany and neighbouring countries. The syndrome affects newborn calves and is characterized by pancytopenia, severe bleeding and high lethality. So far, a causative role of infectious or toxic agents has been ruled out. Instead, the syndrome is induced after ingestion of colostrum, the first milk that supplies the calf with maternal antibodies. In analogy to similar diseases in humans it has therefore been postulated that BNP is caused by alloreactive, maternal antibodies. There is a striking association between BNP and a previous vaccination of the respective dams with a particular vaccine against Bovine Virus Diarrhoea (BVD). This association has led to a suspension of the marketing authorisation for the vaccine, by the European Commission. The current study investigates the role of this vaccine in the pathogenesis of BNP. By flow cytometry we were able to demonstrate that sera of BNP dams (dams that gave birth to a BNP calf) harbour alloreactive antibodies binding to surface antigens on bovine leukocytes. A significantly weaker alloreactivity was observed with sera of non-BNP dams that have been vaccinated with the same vaccine but delivered healthy calves. No binding was seen with non-BVD-vaccinated control cows and animals that were vaccinated with other inactivated BVD vaccines so far not associated with BNP. The binding is functionally relevant, because opsonization of bovine leukocytes with alloantibodies led to an elevated cytophagocytosis by bovine macrophages. To test whether the vaccine induces alloreactive antibodies two strategies were employed: Guinea pigs were vaccinated with a panel of commercially available BVD-vaccines. Only the incriminated vaccine induced antibodies binding surface antigens on bovine leukocytes. Additionally, two calves were repeatedly vaccinated with the suspected vaccine and the development of alloreactivity was monitored. In dependence of the number of booster immunizations the induction of alloreactive antibodies could be observed. Finally, by affinity purification we were able to directly demonstrate that BNP associated alloantibodies cross react with the bovine kidney cell line used for vaccine production. Together this provides strong evidence that this particular BVD vaccine has the potential to induce BNP associated alloantibodies.
Collapse
Affiliation(s)
- Max Bastian
- Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany.
| | | | | | | | | |
Collapse
|
11
|
Psaila B, Bussel JB. Fc receptors in immune thrombocytopenias: a target for immunomodulation? J Clin Invest 2008; 118:2677-81. [PMID: 18654670 DOI: 10.1172/jci36451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In autoimmune disease, Fc receptors (FcRs) form the interface between immune effector cells and their antibody-coated targets, and as such are attractive targets for immunomodulatory therapy. In this issue of the JCI, two highly novel studies of Fc-FcR interactions provide new insights into the role of FcRs in immune thrombocytopenia. Asahi et al. utilized a comprehensive platform of immunological assays to examine the mechanism underlying Helicobacter pylori-associated immune thrombocytopenic purpura, and Ghevaert et al. describe a specially designed antibody that saturates binding sites on fetal platelets without initiating FcgammaR-mediated platelet phagocytosis, preventing the binding of pathological maternal anti-HLA antibodies that cause fetomaternal alloimmune thrombocytopenia (see the related articles beginning on pages 2939 and 2929, respectively). These reports illustrate how a remarkably detailed molecular understanding of the FcR network may translate into new therapeutic strategies with high clinical impact.
Collapse
Affiliation(s)
- Bethan Psaila
- Platelet Disorders Center, Division of Pediatric Hematology-Oncology, Weill Cornell Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|