1
|
Li F, Wang S, Chen L, Jiang N, Chen X, Li J. Systemic genome-epigenome analysis captures a lineage-specific super-enhancer for MYB in gastrointestinal adenocarcinoma. Mol Syst Biol 2025:10.1038/s44320-025-00098-1. [PMID: 40234694 DOI: 10.1038/s44320-025-00098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Gastrointestinal adenocarcinoma is a major cancer type for the digestive system, ranking as the top cause of cancer-related deaths worldwide. While there has been extensive research on mutations in protein-coding regions, the knowledge of the landscape of its non-coding regulatory elements is still insufficient. Combining the analysis of active enhancer profiles and genomic structural variation, we discovered and validated a lineage-specific super-enhancer for MYB in gastrointestinal adenocarcinoma. This super-enhancer is composed of a predominant enhancer e4 and several additional enhancers, whose transcriptional activity is regulated by the direct binding of HNF4A and MYB itself. Suppression of the super-enhancer downregulated the expression of MYB, inhibited downstream Notch signaling and prevented the development of gastrointestinal adenocarcinoma both in vitro and in vivo. Our study uncovers a mechanism driven by non-coding variations that regulate MYB expression in a lineage-specific manner, offering new insights into the carcinogenic mechanism and potential therapeutic strategies for gastrointestinal adenocarcinoma.
Collapse
Affiliation(s)
- Fuyuan Li
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Shangzi Wang
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Lian Chen
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Ning Jiang
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Xingdong Chen
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jin Li
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Deleuze V, Stephen T, Salma M, Orfeo C, Jorna R, Maas A, Barroca V, Arcangeli ML, Lecellier CH, Andrieu-Soler C, Grosveld F, Soler E. In vivo deletion of a GWAS-identified Myb distal enhancer acts on Myb expression, globin switching, and clinical erythroid parameters in β-thalassemia. Sci Rep 2025; 15:8996. [PMID: 40089598 PMCID: PMC11910609 DOI: 10.1038/s41598-025-94222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025] Open
Abstract
Genome-wide association studies (GWAS) have identified numerous genetic variants linked to human diseases, mostly located in non-coding regions of the genome, particularly in putative enhancers. However, functional assessment of the non-coding GWAS variants has progressed at slow pace, since the functions of the vast majority of genomic enhancers have not been defined, impeding interpretation of disease-susceptibility variants. The HBS1L-MYB intergenic region harbors multiple SNPs associated with clinical erythroid parameters, including fetal hemoglobin levels, a feature impacting disease severity of beta-hemoglobinopathies such as sickle cell anemia and beta-thalassemia. HBS1L-MYB variants cluster in the vicinity of several MYB enhancers, altering MYB expression and globin switching. We and others have highlighted the conserved human MYB - 84kb enhancer, known as the - 81kb enhancer in the mouse, as likely candidate linked to these traits. We report here the generation of a Myb - 81kb enhancer knock-out mouse model, and shed light for the first time on its impact on steady state erythropoiesis and in beta-thalassemia in vivo.
Collapse
Affiliation(s)
| | | | - Mohammad Salma
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Cédric Orfeo
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Ruud Jorna
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
- Luminex Corporation, s-Hertogenbosch, The Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Charles-Henri Lecellier
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | - Charlotte Andrieu-Soler
- IGMM, Univ Montpellier, CNRS, INSERM, Montpellier, France
- Initiatives IdEx Globule Rouge d'Excellence (InIdex GR-Ex), Université Paris Cité, Paris, France
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Eric Soler
- IGMM, Univ Montpellier, CNRS, INSERM, Montpellier, France.
- Initiatives IdEx Globule Rouge d'Excellence (InIdex GR-Ex), Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Di Pierro E, Di Stefano V, Migone De Amicis M, Graziadei G. Are Mitochondria a Potential Target for Treating β-Thalassemia? J Clin Med 2025; 14:1095. [PMID: 40004626 PMCID: PMC11856739 DOI: 10.3390/jcm14041095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The inherited genetic disorder β-thalassemia affects the hematopoietic system and is caused by the low production or absence of adult hemoglobin (HbA). Ineffective erythropoiesis is the hallmark of β-thalassemia pathophysiology and is characterized by an erythropoietin-driven substantial increase in erythroblast proliferation, coupled with an increase in late-stage precursor apoptosis, which results in low levels of circulating mature red blood cells (RBCs) and chronic anemia. Mitochondrial dysfunction commonly occurs in these cells because of the increased demand for energy production and the need to manage abnormal hemoglobin chain synthesis. Moreover, several studies have highlighted the importance of gradual mitochondrial clearance for mature erythroid cell production. This review offers an overview of the mitochondrial role in essential cellular processes, particularly those crucial for maintaining RBC health and function. Additionally, recent evidence regarding the contribution of mitochondrial dysfunction to the pathophysiology and severity of β-thalassemia is discussed, along with updated insights into indirect mitochondria-targeting treatments, which present potential pharmacological targets.
Collapse
Affiliation(s)
- Elena Di Pierro
- SC di Medicina ad Indirizzo Metabolico, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122 Milano, Italy; (V.D.S.); (M.M.D.A.); (G.G.)
| | | | | | | |
Collapse
|
4
|
Reisz JA, Earley EJ, Nemkov T, Key A, Stephenson D, Keele GR, Dzieciatkowska M, Spitalnik SL, Hod EA, Kleinman S, Roubinian NH, Gladwin MT, Hansen KC, Norris PJ, Busch MP, Zimring JC, Churchill GA, Page GP, D'Alessandro A. Arginine metabolism is a biomarker of red blood cell and human aging. Aging Cell 2025; 24:e14388. [PMID: 39478346 PMCID: PMC11822668 DOI: 10.1111/acel.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Increasing global life expectancy motivates investigations of molecular mechanisms of aging and age-related diseases. This study examines age-associated changes in red blood cells (RBCs), the most numerous host cell in humans. Four cohorts, including healthy individuals and patients with sickle cell disease, were analyzed to define age-dependent changes in RBC metabolism. Over 15,700 specimens from 13,757 humans were examined, a major expansion over previous studies of RBCs in aging. Multi-omics approaches identified chronological age-related alterations in the arginine pathway with increased arginine utilization in RBCs from older individuals. These changes were consistent across healthy and sickle cell disease cohorts and were influenced by genetic variation, sex, and body mass index. Integrating multi-omics data and metabolite quantitative trait loci (mQTL) in humans and 525 diversity outbred mice functionally linked metabolism of arginine during RBC storage to increased vesiculation-a hallmark of RBC aging-and lower post-transfusion hemoglobin increments. Thus, arginine metabolism is a biomarker of RBC and organismal aging, suggesting potential new targets for addressing sequelae of aging.
Collapse
Affiliation(s)
- Julie A. Reisz
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| | - Alicia Key
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Steven L. Spitalnik
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Eldad A. Hod
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Steven Kleinman
- University of British ColumbiaVictoriaBritish ColumbiaCanada
| | - Nareg H. Roubinian
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Kaiser Permanente Northern California Division of ResearchPleasantonCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mark T. Gladwin
- Department of MedicineUniversity of Maryland School of Medicine, University of MarylandBaltimoreMarylandUSA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| | - Philip J. Norris
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Michael P. Busch
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - James C. Zimring
- Department of PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| |
Collapse
|
5
|
Belmokhtar I, Belmokhtar KY, Lhousni S, Charif M, Sidqi Z, Seddik R, Choukri M, Bellaoui M, Boulouiz R. Carrier frequency and molecular basis of hemoglobinopathies among blood donors in eastern Morocco: Implications for blood donation and genetic diagnosis. Clin Biochem 2025; 135:110840. [PMID: 39515600 DOI: 10.1016/j.clinbiochem.2024.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Hemoglobinopathies represent the most commonly inherited autosomal recessive blood disorders in the world. The aim of this study was to determine the carrier frequency and molecular basis of hemoglobinopathies among blood donors in eastern Morocco. This is the first study of its kind for this country. METHODS Healthy blood donors of the BRO Biobank were included in this study. Blood samples were analyzed using an automatic blood cell analyzer for complete blood counts. Hemoglobin fractions were analyzed by capillary electrophoresis and serum ferritin was measured on a chemical and immunological analyzer. Suspected hemoglobinopathy carriers were further characterized by Sanger sequencing, Gap PCR and PCR-RFLP. RESULTS The study involved 2013 blood donors, of whom 1063 were male and 950 were female (sex ratio male-to-female of 1.1). The median age of these donors was 35 years. The overall carrier frequency of hemoglobinopathies was 1.84 %, with β-thalassemia carriers being the most prevalent (0.65 %) followed by HbAC (0.55 %), α-thalassemia carriers (0.30 %), HbAS (0.1 %), HbAG-Philadelphia (0.1 %), HbAD-Ouled Rabah (0.05 %) and HbAO-Arab (0.05 %). Additionally, novel β-thalassemia variants (C6(-G) and -83(A > G)) and a structural variant (Hb D-Ouled Rabah) were discovered for the first time in Morocco. CONCLUSIONS This study provided the first report on carrier frequency and molecular basis of hemoglobinopathies among healthy donors in Morocco. These findings are valuable for the implementation of carrier screening and genetic diagnosis for hemoglobinopathies. Furthermore, these results justify the need to introduce pre-donation screening for hemoglobinopathy carriers in Morocco, particularly in areas with a high prevalence of carriers to enhance the overall quality of the national blood supply.
Collapse
Affiliation(s)
- Ihab Belmokhtar
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Karam Yahya Belmokhtar
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Saida Lhousni
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Majida Charif
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda 60000, Morocco
| | | | - Rachid Seddik
- Hematology Unit, Central Laboratory, Mohammed VI University Hospital Center, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Mohammed Choukri
- Biochemistry Unit, Central Laboratory, Mohammed VI University Hospital Center, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Mohammed Bellaoui
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco.
| | - Redouane Boulouiz
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
6
|
Diamantidis MD, Ikonomou G, Argyrakouli I, Pantelidou D, Delicou S. Genetic Modifiers of Hemoglobin Expression from a Clinical Perspective in Hemoglobinopathy Patients with Beta Thalassemia and Sickle Cell Disease. Int J Mol Sci 2024; 25:11886. [PMID: 39595957 PMCID: PMC11593634 DOI: 10.3390/ijms252211886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Hemoglobinopathies, namely β-thalassemia and sickle cell disease (SCD), are hereditary diseases, characterized by molecular genetic aberrations in the beta chains of hemoglobin. These defects affect the normal production of hemoglobin with severe anemia due to less or no amount of beta globins in patients with β-thalassemia (quantitative disorder), while SCD is a serious disease in which a mutated form of hemoglobin distorts the red blood cells into a crescent shape at low oxygen levels (qualitative disorder). Despite the revolutionary progress in recent years with the approval of gene therapy and gene editing for specific patients, there is an unmet need for highlighting the mechanisms influencing hemoglobin production and for the development of novel drugs and targeted therapies. The identification of the transcription factors and other genetic modifiers of hemoglobin expression is of utmost importance for discovering novel therapeutic approaches for patients with hemoglobinopathies. The aim of this review is to describe these complex molecular mechanisms and pathways affecting hemoglobin expression and to highlight the relevant investigational approaches or pharmaceutical interventions focusing on restoring the hemoglobin normal function by linking the molecular background of the disease with the clinical perspective. All the associated drugs increasing the hemoglobin expression in patients with hemoglobinopathies, along with gene therapy and gene editing, are also discussed.
Collapse
Affiliation(s)
- Michael D. Diamantidis
- Department of Hematology, Thalassemia and Sickle Cell Disease Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Georgia Ikonomou
- Thalassemia and Sickle Cell Disease Prevention Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Ioanna Argyrakouli
- Department of Hematology, Thalassemia and Sickle Cell Disease Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Despoina Pantelidou
- Thalassemia and Sickle Cell Disease Unit, AHEPA University General Hospital, 41221 Thessaloniki, Greece;
| | - Sophia Delicou
- Center of Expertise in Hemoglobinopathies and Their Complications, Thalassemia and Sickle Cell Disease Unit, Hippokration General Hospital, 41221 Athens, Greece;
| |
Collapse
|
7
|
Liu C, Wang Y, Shi M, Tao X, Man D, Zhang J, Han B. hnRNPA0 promotes MYB expression by interacting with enhancer lncRNA MY34UE-AS in human leukemia cells. Biochem Biophys Res Commun 2024; 724:150221. [PMID: 38865811 DOI: 10.1016/j.bbrc.2024.150221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
MYB is a key regulator of hematopoiesis and erythropoiesis, and dysregulation of MYB is closely involved in the development of leukemia, however the mechanism of MYB regulation remains still unclear so far. Our previous study identified a long noncoding RNA (lncRNA) derived from the -34 kb enhancer of the MYB locus, which can promote MYB expression, the proliferation and migration of human leukemia cells, and is therefore termed MY34UE-AS. Then the interacting partner proteins of MY34UE-AS were identified and studied in the present study. hnRNPA0 was identified as a binding partner of MY34UE-AS through RNA pulldown assay, which was further validated through RNA immunoprecipitation (RIP). hnRNPA0 interacted with MY34UE-AS mainly through its RRM2 domain. hnRNPA0 overexpression upregulated MYB and increased the proliferation and migration of K562 cells, whereas hnRNPA0 knockdown showed opposite effects. Rescue experiments showed MY34UE-AS was required for above mentioned functions of hnRNPA0. These results reveal that hnRNPA0 is involved in leukemia through upregulating MYB expression by interacting with MY34UE-AS, suggesting that the hnRNPA0/MY34UE-AS axis could serve as a potential target for leukemia treatment.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China.
| | - Yucheng Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China.
| | - Mengjie Shi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China.
| | - Xiaoxiao Tao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China.
| | - Da Man
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China.
| | - Junfang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| | - Bingshe Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306,China; National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University, Shanghai, 201306,China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
8
|
Tanshee RR, Mahmud Z, Nabi AHMN, Sayem M. A comprehensive in silico investigation into the pathogenic SNPs in the RTEL1 gene and their biological consequences. PLoS One 2024; 19:e0309713. [PMID: 39240887 PMCID: PMC11379182 DOI: 10.1371/journal.pone.0309713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/16/2024] [Indexed: 09/08/2024] Open
Abstract
The Regulator of Telomere Helicase 1 (RTEL1) gene encodes a critical DNA helicase intricately involved in the maintenance of telomeric structures and the preservation of genomic stability. Germline mutations in the RTEL1 gene have been clinically associated with Hoyeraal-Hreidarsson syndrome, a more severe version of Dyskeratosis Congenita. Although various research has sought to link RTEL1 mutations to specific disorders, no comprehensive investigation has yet been conducted on missense mutations. In this study, we attempted to investigate the functionally and structurally deleterious coding and non-coding SNPs of the RTEL1 gene using an in silico approach. Initially, out of 1392 nsSNPs, 43 nsSNPs were filtered out through ten web-based bioinformatics tools. With subsequent analysis using nine in silico tools, these 43 nsSNPs were further shortened to 11 most deleterious nsSNPs. Furthermore, analyses of mutated protein structures, evolutionary conservancy, surface accessibility, domains & PTM sites, cancer susceptibility, and interatomic interaction revealed the detrimental effect of these 11 nsSNPs on RTEL1 protein. An in-depth investigation through molecular docking with the DNA binding sequence demonstrated a striking change in the interaction pattern for F15L, M25V, and G706R mutant proteins, suggesting the more severe consequences of these mutations on protein structure and functionality. Among the non-coding variants, two had the highest likelihood of being regulatory variants, whereas one variant was predicted to affect the target region of a miRNA. Thus, this study lays the groundwork for extensive analysis of RTEL1 gene variants in the future, along with the advancement of precision medicine and other treatment modalities.
Collapse
Affiliation(s)
- Rifah Rownak Tanshee
- Department of Mathematics and Natural Sciences, BRAC University, Badda, Dhaka, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A. H. M. Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Sayem
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
9
|
Li J, Lv A, Chen M, Xu L, Huang H. Activating transcription factor 4 in erythroid development and β -thalassemia: a powerful regulator with therapeutic potential. Ann Hematol 2024; 103:2659-2670. [PMID: 37906269 DOI: 10.1007/s00277-023-05508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Activating transcription factor 4 (ATF4) is a fundamental basic region/leucine zipper transcription factor, responds to various stress signals, and plays crucial roles in normal metabolic and stress response processes. Although its functions in human health and disease are not completely understood, compelling evidence underscores ATF4 is indispensable for multiple stages and lineages of erythroid development, including the regulation of fetal liver hematopoietic stem cells, induction of terminal erythroid differentiation, and maintenance of erythroid homeostasis. β -Thalassemia is a blood disorder arising from mutations in the β -globin gene. Reactivating the expression of the γ -globin gene in adult patients has emerged as a promising therapeutic strategy for ameliorating clinical symptoms associated with β -thalassemia. Recent research has suggested that ATF4 contributes to decreased fetal hemoglobin (HbF) level through its binding to potent negative regulators of HbF, such as BCL11A and MYB. Notably, evidence also suggests a contrasting outcome where increased ATF4 protein levels are associated with enhanced HbF at the transcriptional level. Consequently, the identification of mechanisms that modulate ATF4-mediated γ -globin transcription and its effects on erythroid development may unveil novel targets for β -thalassemia treatment.
Collapse
Affiliation(s)
- Jingmin Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Aixiang Lv
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Meihuan Chen
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Liangpu Xu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Hailong Huang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, Fujian Province, People's Republic of China.
| |
Collapse
|
10
|
Kim J, Diaz LF, Miller MJ, Leadem B, Krivega I, Dean A. An enhancer RNA recruits KMT2A to regulate transcription of Myb. Cell Rep 2024; 43:114378. [PMID: 38889007 PMCID: PMC11369905 DOI: 10.1016/j.celrep.2024.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81-kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR-Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expressions were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the KMT2A/MLL1 complex. Myrlin CRISPRi compromised KMT2A occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting KMT2A.
Collapse
Affiliation(s)
- Juhyun Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Luis F Diaz
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Matthew J Miller
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; University of Iowa Medical School, Iowa City, IA 52242, USA
| | - Benjamin Leadem
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; GeneDx, Gaithersburg, MD 20877, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Sonothera, South San Francisco, CA 94080, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Corleone G, Sorino C, Caforio M, Di Giovenale S, De Nicola F, Goeman F, Bertaina V, Pitisci A, Cortile C, Locatelli F, Folgiero V, Fanciulli M. Enhancer engagement sustains oncogenic transformation and progression of B-cell precursor acute lymphoblastic leukemia. J Exp Clin Cancer Res 2024; 43:179. [PMID: 38926853 PMCID: PMC11210131 DOI: 10.1186/s13046-024-03075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Enhancer reprogramming plays a significant role in the heterogeneity of cancer. However, we have limited knowledge about the impact of chromatin remodeling in B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) patients, and how it affects tumorigenesis and drug response. Our research focuses on investigating the role of enhancers in sustaining oncogenic transformation in children with BCP-ALL. METHODS We used ATAC-seq to study the accessibility of chromatin in pediatric BCP-ALL at three different stages-onset, remission, and relapse. Using a combination of computational and experimental methods, we were able to analyze the accessibility landscape and focus on the most significant cis-regulatory sites. These sites were then functionally validated through the use of Promoter capture Hi-C in a primary cell line model called LAL-B, followed by RNA-seq and genomic deletion of target sites using CRISPR-Cas9 editing. RESULTS We found that enhancer activity changes during cancer progression and is mediated by the production of enhancer RNAs (eRNAs). CRISPR-Cas9-mediated validation of previously unknown eRNA productive enhancers demonstrated their capability to control the oncogenic activities of the MYB and DCTD genes. CONCLUSIONS Our findings directly support the notion that productive enhancer engagement is a crucial determinant of the BCP-ALL and highlight the potential of enhancers as therapeutic targets in pediatric BCP-ALL.
Collapse
Affiliation(s)
- Giacomo Corleone
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Cristina Sorino
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Matteo Caforio
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
| | - Stefano Di Giovenale
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
- Department of Computer, Control, and Management, Engineering Antonio Ruberti, Sapienza University of Rome, Rome, 00161, Italy
| | - Francesca De Nicola
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Frauke Goeman
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
| | - Angela Pitisci
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
| | - Clelia Cortile
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Valentina Folgiero
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy.
| | - Maurizio Fanciulli
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy.
| |
Collapse
|
12
|
Ojewunmi OO, Adeyemo TA, Oyetunji AI, Inyang B, Akinrindoye A, Mkumbe BS, Gardner K, Rooks H, Brewin J, Patel H, Lee SH, Chung R, Rashkin S, Kang G, Chianumba R, Sangeda R, Mwita L, Isa H, Agumadu UN, Ekong R, Faruk JA, Jamoh BY, Adebiyi NM, Umar IA, Hassan A, Grace C, Goel A, Inusa BPD, Falchi M, Nkya S, Makani J, Ahmad HR, Nnodu O, Strouboulis J, Menzel S. The genetic dissection of fetal haemoglobin persistence in sickle cell disease in Nigeria. Hum Mol Genet 2024; 33:919-929. [PMID: 38339995 PMCID: PMC11070134 DOI: 10.1093/hmg/ddae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
The clinical severity of sickle cell disease (SCD) is strongly influenced by the level of fetal haemoglobin (HbF) persistent in each patient. Three major HbF loci (BCL11A, HBS1L-MYB, and Xmn1-HBG2) have been reported, but a considerable hidden heritability remains. We conducted a genome-wide association study for HbF levels in 1006 Nigerian patients with SCD (HbSS/HbSβ0), followed by a replication and meta-analysis exercise in four independent SCD cohorts (3,582 patients). To dissect association signals at the major loci, we performed stepwise conditional and haplotype association analyses and included public functional annotation datasets. Association signals were detected for BCL11A (lead SNP rs6706648, β = -0.39, P = 4.96 × 10-34) and HBS1L-MYB (lead SNP rs61028892, β = 0.73, P = 1.18 × 10-9), whereas the variant allele for Xmn1-HBG2 was found to be very rare. In addition, we detected three putative new trait-associated regions. Genetically, dissecting the two major loci BCL11A and HBS1L-MYB, we defined trait-increasing haplotypes (P < 0.0001) containing so far unidentified causal variants. At BCL11A, in addition to a haplotype harbouring the putative functional variant rs1427407-'T', we identified a second haplotype, tagged by the rs7565301-'A' allele, where a yet-to-be-discovered causal DNA variant may reside. Similarly, at HBS1L-MYB, one HbF-increasing haplotype contains the likely functional small indel rs66650371, and a second tagged by rs61028892-'C' is likely to harbour a presently unknown functional allele. Together, variants at BCL11A and HBS1L-MYB SNPs explained 24.1% of the trait variance. Our findings provide a path for further investigation of the causes of variable fetal haemoglobin persistence in sickle cell disease.
Collapse
Affiliation(s)
- Oyesola O Ojewunmi
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Titilope A Adeyemo
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos, P.M.B 12003, Lagos, Nigeria
| | - Ajoke I Oyetunji
- Sickle Cell Foundation Nigeria, Ishaga Road, Idi-Araba, P.O. Box 3463, Lagos, Nigeria
| | - Bassey Inyang
- Department of Medical Biochemistry, College of Health Sciences, University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
| | - Afolashade Akinrindoye
- Sickle Cell Foundation Nigeria, Ishaga Road, Idi-Araba, P.O. Box 3463, Lagos, Nigeria
- School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Baraka S Mkumbe
- Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, United Nations Rd, Dar es Salaam, Tanzania
- Department of Artificial Intelligence and Innovative Medicine, Tohoku University Graduate School of Medicine, 980-8573, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Kate Gardner
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
- Clinical Haematology, Haematology and Oncology Directorate, Guy’s Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Helen Rooks
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - John Brewin
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
- Department of Haematological Medicine, King's College Hospital, London SE5 9RS, United Kingdom
| | - Hamel Patel
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, 16 De Crespigny Park, London SE5 8AB, United Kingdom
| | - Sang Hyuck Lee
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, 16 De Crespigny Park, London SE5 8AB, United Kingdom
| | - Raymond Chung
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, 16 De Crespigny Park, London SE5 8AB, United Kingdom
| | - Sara Rashkin
- St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Guolian Kang
- St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Reuben Chianumba
- Centre of Excellence for Sickle Cell Disease Research and Training (CESRTA), University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
| | - Raphael Sangeda
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Liberata Mwita
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Hezekiah Isa
- Centre of Excellence for Sickle Cell Disease Research and Training (CESRTA), University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
- Department of Haematology and Blood Transfusion, University of Abuja Teaching Hospital, Gwagwalada, P.M.B. 228, Gwagwalada, FCT Abuja, Nigeria
| | - Uche-Nnebe Agumadu
- Department of Paediatrics, College of Health Sciences, University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
| | - Rosemary Ekong
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jamilu A Faruk
- Department of Paediatrics, Ahmadu Bello University/Ahmadu Bello University Teaching Hospital, P.M.B 006, Zaria, Nigeria
| | - Bello Y Jamoh
- Department of Internal Medicine, Ahmadu Bello University/Ahmadu Bello University Teaching Hospital, P.M.B 006, Zaria, Nigeria
| | - Niyi M Adebiyi
- Department of Paediatrics, Ahmadu Bello University/Ahmadu Bello University Teaching Hospital, P.M.B 006, Zaria, Nigeria
| | - Ismail A Umar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Sokoto Road, Samaru, P.M.B 006, Zaria, Nigeria
| | - Abdulaziz Hassan
- Department of Haematology and Blood Transfusion, Ahmadu Bello University, Sokoto Road, Samaru, P.M.B 006, Zaria, Nigeria
| | - Christopher Grace
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Centre for Human Genetics, Roosevelt Drive, Oxford OX37BN, United Kingdom
| | - Anuj Goel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Centre for Human Genetics, Roosevelt Drive, Oxford OX37BN, United Kingdom
| | - Baba P D Inusa
- Evelina London Children’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, Westminster Bridge Rd, London SE1 7EH, United Kingdom
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - Siana Nkya
- Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, United Nations Rd, Dar es Salaam, Tanzania
- Tanzania Human Genetics Organisation, Sickle Cell Centre, 1 Kipalapala Street, Dar es Salaam, Tanzania
- Sickle Cell Program, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, United Nations Rd, Dar es Salaam, Tanzania
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Science, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Julie Makani
- Sickle Cell Program, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, United Nations Rd, Dar es Salaam, Tanzania
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Science, P.O. Box 65001, Dar es Salaam, Tanzania
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, Commonwealth Building, Hammersmith Campus, Du Cane Rd, London W12 0NN, United Kingdom
| | - Hafsat R Ahmad
- Department of Paediatrics, Ahmadu Bello University/Ahmadu Bello University Teaching Hospital, P.M.B 006, Zaria, Nigeria
| | - Obiageli Nnodu
- Centre of Excellence for Sickle Cell Disease Research and Training (CESRTA), University of Abuja, Mohammed Maccido Road, Airport Road, P.M.B 117, Abuja, Nigeria
- Department of Haematology and Blood Transfusion, University of Abuja Teaching Hospital, Gwagwalada, P.M.B. 228, Gwagwalada, FCT Abuja, Nigeria
| | - John Strouboulis
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Stephan Menzel
- School of Cancer and Pharmaceutical Sciences, King’s College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| |
Collapse
|
13
|
Gambari R, Waziri AD, Goonasekera H, Peprah E. Pharmacogenomics of Drugs Used in β-Thalassemia and Sickle-Cell Disease: From Basic Research to Clinical Applications. Int J Mol Sci 2024; 25:4263. [PMID: 38673849 PMCID: PMC11050010 DOI: 10.3390/ijms25084263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In this short review we have presented and discussed studies on pharmacogenomics (also termed pharmacogenetics) of the drugs employed in the treatment of β-thalassemia or Sickle-cell disease (SCD). This field of investigation is relevant, since it is expected to help clinicians select the appropriate drug and the correct dosage for each patient. We first discussed the search for DNA polymorphisms associated with a high expression of γ-globin genes and identified this using GWAS studies and CRISPR-based gene editing approaches. We then presented validated DNA polymorphisms associated with a high HbF production (including, but not limited to the HBG2 XmnI polymorphism and those related to the BCL11A, MYB, KLF-1, and LYAR genes). The expression of microRNAs involved in the regulation of γ-globin genes was also presented in the context of pharmacomiRNomics. Then, the pharmacogenomics of validated fetal hemoglobin inducers (hydroxyurea, butyrate and butyrate analogues, thalidomide, and sirolimus), of iron chelators, and of analgesics in the pain management of SCD patients were considered. Finally, we discuss current clinical trials, as well as international research networks focusing on clinical issues related to pharmacogenomics in hematological diseases.
Collapse
Affiliation(s)
- Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, Ferrara University, 40124 Ferrara, Italy
| | - Aliyu Dahiru Waziri
- Department of Hematology and Blood Transfusion, Ahmadu Bello University Teaching Hospital Zaria, Kaduna 810001, Nigeria;
| | - Hemali Goonasekera
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo P.O. Box 271, Sri Lanka;
| | - Emmanuel Peprah
- Implementing Sustainable Evidence-Based Interventions through Engagement (ISEE) Lab, Department of Global and Environmental Health, School of Global Public Health, New York University, New York, NY 10003, USA;
| |
Collapse
|
14
|
Tang L, Liao J, Hill MC, Hu J, Zhao Y, Ellinor P, Li M. MMCT-Loop: a mix model-based pipeline for calling targeted 3D chromatin loops. Nucleic Acids Res 2024; 52:e25. [PMID: 38281134 PMCID: PMC10954456 DOI: 10.1093/nar/gkae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/03/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
Protein-specific Chromatin Conformation Capture (3C)-based technologies have become essential for identifying distal genomic interactions with critical roles in gene regulation. The standard techniques include Chromatin Interaction Analysis by Paired-End Tag (ChIA-PET), in situ Hi-C followed by chromatin immunoprecipitation (HiChIP) also known as PLAC-seq. To identify chromatin interactions from these data, a variety of computational methods have emerged. Although these state-of-art methods address many issues with loop calling, only few methods can fit different data types simultaneously, and the accuracy as well as the efficiency these approaches remains limited. Here we have generated a pipeline, MMCT-Loop, which ensures the accurate identification of strong loops as well as dynamic or weak loops through a mixed model. MMCT-Loop outperforms existing methods in accuracy, and the detected loops show higher activation functionality. To highlight the utility of MMCT-Loop, we applied it to conformational data derived from neural stem cell (NSCs) and uncovered several previously unidentified regulatory regions for key master regulators of stem cell identity. MMCT-Loop is an accurate and efficient loop caller for targeted conformation capture data, which supports raw data or pre-processed valid pairs as input, the output interactions are formatted and easily uploaded to a genome browser for visualization.
Collapse
Affiliation(s)
- Li Tang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jiaqi Liao
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Matthew C Hill
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
- Cardiovascular Disease Initiative, The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jiaxin Hu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yichao Zhao
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
- Cardiovascular Disease Initiative, The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
15
|
Clarke ML, Gabrielsen OS, Frampton J. MYB as a Critical Transcription Factor and Potential Therapeutic Target in AML. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:341-358. [PMID: 39017851 DOI: 10.1007/978-3-031-62731-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Myb was identified over four decades ago as the transforming component of acute leukemia viruses in chickens. Since then it has become increasingly apparent that dysregulated MYB activity characterizes many blood cancers, including acute myeloid leukemia, and that it represents the most "addictive" oncoprotein in many, if not all, such diseases. As a consequence of this tumor-specific dependency for MYB, it has become a major focus of efforts to develop specific antileukemia drugs. Much attention is being given to ways to interrupt the interaction between MYB and cooperating factors, in particular EP300/KAT3B and CBP/KAT3A. Aside from candidates identified through screening of small molecules, the most exciting prospect for novel drugs seems to be the design of peptide mimetics that interfere directly at the interface between MYB and its cofactors. Such peptides combine a high degree of target specificity with good efficacy including minimal effects on normal hematopoietic cells.
Collapse
Affiliation(s)
- Mary Louise Clarke
- Department of Biomedical Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
16
|
Lemma RB, Fuglerud BM, Frampton J, Gabrielsen OS. MYB: A Key Transcription Factor in the Hematopoietic System Subject to Many Levels of Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:3-29. [PMID: 39017837 DOI: 10.1007/978-3-031-62731-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
17
|
Luo L, Molthoff J, Li Q, Liu Y, Luo S, Li N, Xuan S, Wang Y, Shen S, Bovy AG, Zhao J, Chen X. Identification of candidate genes associated with less-photosensitive anthocyanin phenotype using an EMS mutant ( pind) in eggplant ( Solanum melongena L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1282661. [PMID: 38169942 PMCID: PMC10758619 DOI: 10.3389/fpls.2023.1282661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Eggplant (Solanum melongena L.) is a highly nutritious and economically important vegetable crop. However, the fruit peel of eggplant often shows poor coloration owing to low-light intensity during cultivation, especially in the winter. The less-photosensitive varieties produce anthocyanin in low light or even dark conditions, making them valuable breeding materials. Nevertheless, genes responsible for anthocyanin biosynthesis in less-photosensitive eggplant varieties are not characterized. In this study, an EMS mutant, named purple in the dark (pind), was used to identify the key genes responsible for less-photosensitive coloration. Under natural conditions, the peel color and anthocyanin content in pind fruits were similar to that of wildtype '14-345'. The bagged pind fruits were light purple, whereas those of '14-345' were white; and the anthocyanin content in the pind fruit peel was significantly higher than that in '14-345'. Genetic analysis revealed that the less-photosensitive trait was controlled by a single dominant gene. The candidate gene was mapped on chromosome 10 in the region 7.72 Mb to 11.71 Mb. Thirty-five differentially expressed genes, including 12 structural genes, such as CHS, CHI, F3H, DFR, ANS, and UFGT, and three transcription factors MYB113, GL3, and TTG2, were identified in pind using RNA-seq. Four candidate genes EGP21875 (myb domain protein 113), EGP21950 (unknown protein), EGP21953 (CAAX amino-terminal protease family protein), and EGP21961 (CAAX amino-terminal protease family protein) were identified as putative genes associated with less-photosensitive anthocyanin biosynthesis in pind. These findings may clarify the molecular mechanisms underlying less-photosensitive anthocyanin biosynthesis in eggplant.
Collapse
Affiliation(s)
- Lei Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jos Molthoff
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Ying Liu
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Shuangxia Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxin Xuan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Kim J, Diaz LF, Miller MJ, Leadem B, Krivega I, Dean A. An enhancer RNA recruits MLL1 to regulate transcription of Myb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559528. [PMID: 37808852 PMCID: PMC10557664 DOI: 10.1101/2023.09.26.559528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81 kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR/Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expression were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the MLL1 complex. Myrlin CRISPRi compromised MLL1 occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting MLL1.
Collapse
Affiliation(s)
- Juhyun Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis F. Diaz
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Oregon Health and Sciences University, Portland, OR 97239
| | - Matthew J. Miller
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- University of Iowa Medical School, Iowa City, IA 52242
| | - Benjamin Leadem
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- GeneDx, Gaithersburg, MD 20877
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Sonothera, South San Francisco, CA 94080
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Deleuze V, Garcia L, Rouaisnel B, Salma M, Kinoo A, Andrieu-Soler C, Soler E. Efficient genome editing in erythroid cells unveils novel MYB target genes and regulatory functions. iScience 2023; 26:107641. [PMID: 37670779 PMCID: PMC10475484 DOI: 10.1016/j.isci.2023.107641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Targeted genome editing holds great promise in biology. However, efficient genome modification, including gene knock-in (KI), remains an unattained goal in multiple cell types and loci due to poor transfection efficiencies and low target genes expression, impeding the positive selection of recombined cells. Here, we describe a genome editing approach to achieve efficient gene targeting using hard to transfect erythroid cell lines. We demonstrate robust fluorescent protein KI efficiency in low expressed transcription factor (TF) genes (e.g., Myb or Zeb1). We further show the ability to target two independent loci in individual cells, exemplified by MYB-GFP and NuMA-Cherry double KI, allowing multicolor labeling of regulatory factors at physiological endogenous levels. Our KI tagging approach allowed us to perform genome-wide TF analysis at increased signal-to-noise ratios, and highlighted previously unidentified MYB target genes and pathways. Overall, we establish a versatile CRISPR-Cas9-based platform, offering attractive opportunities for the dissection of the erythroid differentiation process.
Collapse
Affiliation(s)
| | - Leonor Garcia
- IGMM, University Montpellier, CNRS, Montpellier, France
| | | | - Mohammad Salma
- IGMM, University Montpellier, CNRS, Montpellier, France
- Laboratory of Excellence GR-Ex, Université de Paris, Paris, France
| | - Alexia Kinoo
- IGMM, University Montpellier, CNRS, Montpellier, France
| | - Charlotte Andrieu-Soler
- IGMM, University Montpellier, CNRS, Montpellier, France
- Laboratory of Excellence GR-Ex, Université de Paris, Paris, France
| | - Eric Soler
- IGMM, University Montpellier, CNRS, Montpellier, France
- Laboratory of Excellence GR-Ex, Université de Paris, Paris, France
| |
Collapse
|
20
|
Lee SJ, Jung C, Oh JE, Kim S, Lee S, Lee JY, Yoon YS. Generation of Red Blood Cells from Human Pluripotent Stem Cells-An Update. Cells 2023; 12:1554. [PMID: 37296674 PMCID: PMC10253210 DOI: 10.3390/cells12111554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Red blood cell (RBC) transfusion is a lifesaving medical procedure that can treat patients with anemia and hemoglobin disorders. However, the shortage of blood supply and risks of transfusion-transmitted infection and immune incompatibility present a challenge for transfusion. The in vitro generation of RBCs or erythrocytes holds great promise for transfusion medicine and novel cell-based therapies. While hematopoietic stem cells and progenitors derived from peripheral blood, cord blood, and bone marrow can give rise to erythrocytes, the use of human pluripotent stem cells (hPSCs) has also provided an important opportunity to obtain erythrocytes. These hPSCs include both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). As hESCs carry ethical and political controversies, hiPSCs can be a more universal source for RBC generation. In this review, we first discuss the key concepts and mechanisms of erythropoiesis. Thereafter, we summarize different methodologies to differentiate hPSCs into erythrocytes with an emphasis on the key features of human definitive erythroid lineage cells. Finally, we address the current limitations and future directions of clinical applications using hiPSC-derived erythrocytes.
Collapse
Affiliation(s)
- Shin-Jeong Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Cholomi Jung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jee Eun Oh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangsung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ji Yoon Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
| | - Young-sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
21
|
Cato LD, Li R, Lu HY, Yu F, Wissman M, Mkumbe BS, Ekwattanakit S, Deelen P, Mwita L, Sangeda R, Suksangpleng T, Riolueang S, Bronson PG, Paul DS, Kawabata E, Astle WJ, Aguet F, Ardlie K, de Lapuente Portilla AL, Kang G, Zhang Y, Nouraie SM, Gordeuk VR, Gladwin MT, Garrett ME, Ashley-Koch A, Telen MJ, Custer B, Kelly S, Dinardo CL, Sabino EC, Loureiro P, Carneiro-Proietti AB, Maximo C, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, BIOS Consortium, Méndez A, Hammerer-Lercher A, Sheehan VA, Weiss MJ, Franke L, Nilsson B, Butterworth AS, Viprakasit V, Nkya S, Sankaran VG. Genetic regulation of fetal hemoglobin across global populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.24.23287659. [PMID: 36993312 PMCID: PMC10055601 DOI: 10.1101/2023.03.24.23287659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Human genetic variation has enabled the identification of several key regulators of fetal-to-adult hemoglobin switching, including BCL11A, resulting in therapeutic advances. However, despite the progress made, limited further insights have been obtained to provide a fuller accounting of how genetic variation contributes to the global mechanisms of fetal hemoglobin (HbF) gene regulation. Here, we have conducted a multi-ancestry genome-wide association study of 28,279 individuals from several cohorts spanning 5 continents to define the architecture of human genetic variation impacting HbF. We have identified a total of 178 conditionally independent genome-wide significant or suggestive variants across 14 genomic windows. Importantly, these new data enable us to better define the mechanisms by which HbF switching occurs in vivo. We conduct targeted perturbations to define BACH2 as a new genetically-nominated regulator of hemoglobin switching. We define putative causal variants and underlying mechanisms at the well-studied BCL11A and HBS1L-MYB loci, illuminating the complex variant-driven regulation present at these loci. We additionally show how rare large-effect deletions in the HBB locus can interact with polygenic variation to influence HbF levels. Our study paves the way for the next generation of therapies to more effectively induce HbF in sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Liam D. Cato
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rick Li
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Henry Y. Lu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mariel Wissman
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Baraka S. Mkumbe
- Sickle Cell Program, Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Biochemistry, Muhimbili University of Health and Allied Science, Dar es Salaam, Tanzania
- Department of Artificial Intelligence and Innovative Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Supachai Ekwattanakit
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patrick Deelen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Liberata Mwita
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Raphael Sangeda
- Sickle Cell Program, Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Thidarat Suksangpleng
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suchada Riolueang
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paola G. Bronson
- R&D Translational Biology, Biogen, Cambridge, Massachusetts, USA
| | - Dirk S. Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Emily Kawabata
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - William J. Astle
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Francois Aguet
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kristin Ardlie
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Guolian Kang
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yingze Zhang
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seyed Mehdi Nouraie
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Victor R. Gordeuk
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Sickle Cell Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark T. Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Melanie E. Garrett
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Allison Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Marilyn J. Telen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, California, USA
- Division of Pediatric Hematology, UCSF Benioff Children's Hospital, Oakland, California, USA
| | - Carla Luana Dinardo
- Fundacao Pro-Sangue Hemocentro de Sao Paulo, Sao Paulo, Brazil
- Institute of Tropical Medicine, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ester C. Sabino
- Institute of Tropical Medicine, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | - Adriana Méndez
- Institute of Laboratory Medicine, Cantonal Hospital Aarau, 5000 Aarau, Switzerland
| | | | - Vivien A. Sheehan
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta & Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Lude Franke
- Oncode Institute, Amsterdam, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Björn Nilsson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
- Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Vip Viprakasit
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siana Nkya
- Sickle Cell Program, Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Biochemistry, Muhimbili University of Health and Allied Science, Dar es Salaam, Tanzania
- Tanzania Human Genetics Organisation, Tanzania
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Biochemistry, Muhimbili University of Health and Allied Science
| |
Collapse
|
22
|
Impact of Genetic Polymorphisms in Modifier Genes in Determining Fetal Hemoglobin Levels in Beta-Thalassemia. THALASSEMIA REPORTS 2023. [DOI: 10.3390/thalassrep13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Genetic polymorphisms in Quantitative Trait Loci (QTL) genes such as BCL11A, HBS1L-MYB and KLF1 have been reported to influence fetal hemoglobin (HbF) levels. This prospective study was planned to evaluate the role of genetic polymorphisms in QTL genes as determinant of HbF levels in beta thalassemia major patients. The study was carried out on 100 thalassemia major patients. Blood samples were collected in EDTA and plain vials for biochemical and molecular evaluation. The BCL11A, HBS1L-MYB and KLF1 genotypes were determined using a polymerase chain reaction (PCR)-based method. Red Blood Cell (RBC) indices and HbF levels were assessed. In silico analysis was assessed using loss-of-function tool (Lof Tool). Statistical difference and genetic comparisons between groups were evaluated by using SPSS for Windows, version 16.0 (SPSS Inc., Chicago, IL, USA). Comparisons between quantitative variables were carried out after data explored for normality using Kolmogorov–Smirnov test of normality. Logistic regression was used for computation of ORs and 95% CIs (Confidence Interval). We observed association of HbF levels in thalassemia major patients with the polymorphisms in BCL11A (rs11886868 rs7557939; rs1427407 and rs766432) and HBS1L-MYB (rs9399137) gene. The results of this study indicated that the presence of polymorphisms on modifier genes are strongly associated with an increase in HbF levels in thalassemia major patients. Further research with a larger sample size and with other genes of modifier genes is required.
Collapse
|
23
|
Long KLP, Muroy SE, Sorooshyari SK, Ko MJ, Jaques Y, Sudmant P, Kaufer D. Transcriptomic profiles of stress susceptibility and resilience in the amygdala and hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527777. [PMID: 36798395 PMCID: PMC9934702 DOI: 10.1101/2023.02.08.527777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
A single, severe episode of stress can bring about myriad responses amongst individuals, ranging from cognitive enhancement to debilitating and persistent anxiety; however, the biological mechanisms that contribute to resilience versus susceptibility to stress are poorly understood. The dentate gyrus (DG) of the hippocampus and the basolateral nucleus of the amygdala (BLA) are key limbic regions that are susceptible to the neural and hormonal effects of stress. Previous work has also shown that these regions contribute to individual variability in stress responses; however, the molecular mechanisms underlying the role of these regions in susceptibility and resilience are unknown. In this study, we profiled the transcriptomic signatures of the DG and BLA of rats with divergent behavioral outcomes after a single, severe stressor. We subjected rats to three hours of immobilization with exposure to fox urine and conducted a behavioral battery one week after stress to identify animals that showed persistent, high anxiety-like behavior. We then conducted bulk RNA sequencing of the DG and BLA from susceptible, resilient, and unexposed control rats. Differential gene expression analyses revealed that the molecular signatures separating each of the three groups were distinct and non-overlapping between the DG and BLA. In the amygdala, key genes associated with insulin and hormonal signaling corresponded with vulnerability. Specifically, Inhbb, Rab31 , and Ncoa3 were upregulated in the amygdala of stress-susceptible animals compared to resilient animals. In the hippocampus, increased expression of Cartpt - which encodes a key neuropeptide involved in reward, reinforcement, and stress responses - was strongly correlated with vulnerability to anxiety-like behavior. However, few other genes distinguished stress-susceptible animals from control animals, while a larger number of genes separated stress-resilient animals from control and stress-susceptible animals. Of these, Rnf112, Tbx19 , and UBALD1 distinguished resilient animals from both control and susceptible animals and were downregulated in resilience, suggesting that an active molecular response in the hippocampus facilitates protection from the long-term consequences of severe stress. These results provide novel insight into the mechanisms that bring about individual variability in the behavioral responses to stress and provide new targets for the advancement of therapies for stress-induced neuropsychiatric disorders.
Collapse
|
24
|
Stikker BS, Hendriks RW, Stadhouders R. Decoding the genetic and epigenetic basis of asthma. Allergy 2023; 78:940-956. [PMID: 36727912 DOI: 10.1111/all.15666] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
Asthma is a complex and heterogeneous chronic inflammatory disease of the airways. Alongside environmental factors, asthma susceptibility is strongly influenced by genetics. Given its high prevalence and our incomplete understanding of the mechanisms underlying disease susceptibility, asthma is frequently studied in genome-wide association studies (GWAS), which have identified thousands of genetic variants associated with asthma development. Virtually all these genetic variants reside in non-coding genomic regions, which has obscured the functional impact of asthma-associated variants and their translation into disease-relevant mechanisms. Recent advances in genomics technology and epigenetics now offer methods to link genetic variants to gene regulatory elements embedded within non-coding regions, which have started to unravel the molecular mechanisms underlying the complex (epi)genetics of asthma. Here, we provide an integrated overview of (epi)genetic variants associated with asthma, focusing on efforts to link these disease associations to biological insight into asthma pathophysiology using state-of-the-art genomics methodology. Finally, we provide a perspective as to how decoding the genetic and epigenetic basis of asthma has the potential to transform clinical management of asthma and to predict the risk of asthma development.
Collapse
Affiliation(s)
- Bernard S Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Chumchuen S, Sripichai O, Jearawiriyapaisarn N, Fucharoen S, Peerapittayamongkol C. Induction of fetal hemoglobin: Lentiviral shRNA knockdown of HBS1L in β0-thalassemia/HbE erythroid cells. PLoS One 2023; 18:e0281059. [PMID: 36888630 PMCID: PMC9994754 DOI: 10.1371/journal.pone.0281059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/16/2023] [Indexed: 03/09/2023] Open
Abstract
Imbalanced globin chain output contributes to thalassemia pathophysiology. Hence, induction of fetal hemoglobin in β-thalassemia and other β-hemoglobinopathies are of continuing interest for therapeutic approaches. Genome-wide association studies have identified three common genetic loci: namely β-globin (HBB), an intergenic region between MYB and HBS1L, and BCL11A underlying quantitative fetal hemoglobin production. Here, we report that knockdown of HBS1L (all known variants) using shRNA in early erythroblast obtained from β0-thalassemia/HbE patients triggers an upregulation of γ-globin mRNA 1.69 folds. There is modest perturbation of red cell differentiation assessed by flow cytometry and morphology studies. The levels of α- and β-globin mRNAs are relatively unaltered. Knockdown of HBS1L also increases the percentage of fetal hemoglobin around 16.7 folds when compared to non-targeting shRNA. Targeting HBS1L is attractive because of the potent induction of fetal hemoglobin and the modest effect on cell differentiation.
Collapse
Affiliation(s)
- Sukanya Chumchuen
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Orapan Sripichai
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Chayanon Peerapittayamongkol
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail: ,
| |
Collapse
|
26
|
Rizo-de la Torre LC, Borrayo-López FJ, Perea-Díaz FJ, Aquino E, Venegas M, Hernández-Carbajal C, Espinoza-Mata LL, Ibarra-Cortés B. Fetal hemoglobin regulating genetic variants identified in homozygous (HbSS) and heterozygous (HbSA) subjects from South Mexico. J Trop Pediatr 2022; 68:6709334. [PMID: 36130307 DOI: 10.1093/tropej/fmac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Hemoglobin S is caused by a nucleotide change in HBB gene (HBB:c.20A>T, p.Glu6Val), is presented in diverse forms: simple carriers (HbSA), homozygotes (HbSS) also known as sickle cell anemia, and compound heterozygotes with other β-hemoglobinopathies. It is worldwide distributed, in Mexico, is frequently observed in the southern states Guerrero, Oaxaca and Chiapas. Elevated fetal hemoglobin (HbF) is associated with mild phenotype; single-nucleotide variants (SNVs) in modifier genes, such as BCL11A, HBG2, HBBP1 pseudogene and HBS1L-MYB intergenic region, upregulate HbF synthesis. The aim of this study was to identify HbF regulating genetic variants in HbSS and HbSA Mexican subjects. We studied 39 individuals (HbSS = 24, 61%, HbSA = 15, 39%) from Chiapas (67%) and Guerrero (33%), peripheral blood was collected in ethylenediamine tetraacetic acid (EDTA) for molecular and hematological studies, DNA was isolated by salting-out technic and genotyping was performed through allelic discrimination by real time polymerase chain reaction (RT-PCR) using Taqman® probes for 15 SNV (in BCL11A: rs6706648, rs7557939, rs4671393, rs11886868, rs766432, rs7599488, rs1427407; HBS1L-MYB: rs28384513, rs7776054, rs9399137, rs4895441, rs9402686, rs1320963; HBG2: rs7482144; and HBBP1: rs10128556). The obtained data were analyzed using IMB SPSS v.22.0 software. All minor alleles were observed in frequencies over 0.05, the most frequent was rs9402686 (0.82), while the less frequent was rs101028556 (0.08). In HbSS group, the mean fetal hemoglobin was 11.9 ± 5.9% and was significantly elevated in BCL11A rs11886868 wildtype homozygotes and in carriers of HBS1L-MYB intergenic region rs7776054 (p = 0.04 and p = 0.03, respectively). In conclusion, in HbSS Mexican patients, two SNVs were observed related to increased HbF; BCL11A rs11886868 and HBS1L-MYB rs7776054.
Collapse
Affiliation(s)
- L C Rizo-de la Torre
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - F J Borrayo-López
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico.,Departamento de Biología Molecular y Genómica, Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara, Jalisco, Mexico.,División de Genética, CIBO, IMSS, Guadalajara, Jalisco, Mexico
| | - F J Perea-Díaz
- División de Genética, CIBO, IMSS, Guadalajara, Jalisco, Mexico
| | - E Aquino
- Departamento de Hematología, Hospital de Especialidades Pediátricas, Secretaría de Salud, Tuxtla Gutiérrez, Chiapas, Mexico
| | - M Venegas
- Departamento de Hematología, Hospital Regional, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Acapulco, Guerrero, Mexico
| | - C Hernández-Carbajal
- Departamento de Hematología, Hospital General Regional No. 1, IMSS, Acapulco, Guerrero, Mexico
| | - L L Espinoza-Mata
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico.,División de Genética, CIBO, IMSS, Guadalajara, Jalisco, Mexico
| | - B Ibarra-Cortés
- Instituto de Genética Humana "Dr. Enrique Corona Rivera" CUCS, UDG, Guadalajara, Jalisco, Mexico
| |
Collapse
|
27
|
Dahl SL, Bapst AM, Khodo SN, Scholz CC, Wenger RH. Fount, fate, features, and function of renal erythropoietin-producing cells. Pflugers Arch 2022; 474:783-797. [PMID: 35750861 PMCID: PMC9338912 DOI: 10.1007/s00424-022-02714-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 12/19/2022]
Abstract
Renal erythropoietin (Epo)-producing (REP) cells represent a rare and incompletely understood cell type. REP cells are fibroblast-like cells located in close proximity to blood vessels and tubules of the corticomedullary border region. Epo mRNA in REP cells is produced in a pronounced "on-off" mode, showing transient transcriptional bursts upon exposure to hypoxia. In contrast to "ordinary" fibroblasts, REP cells do not proliferate ex vivo, cease to produce Epo, and lose their identity following immortalization and prolonged in vitro culture, consistent with the loss of Epo production following REP cell proliferation during tissue remodelling in chronic kidney disease. Because Epo protein is usually not detectable in kidney tissue, and Epo mRNA is only transiently induced under hypoxic conditions, transgenic mouse models have been developed to permanently label REP cell precursors, active Epo producers, and inactive descendants. Future single-cell analyses of the renal stromal compartment will identify novel characteristic markers of tagged REP cells, which will provide novel insights into the regulation of Epo expression in this unique cell type.
Collapse
Affiliation(s)
- Sophie L Dahl
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Andreas M Bapst
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Stellor Nlandu Khodo
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
- Institute of Physiology, University Medicine Greifswald, D-17475, Greifswald, Germany
| | - Roland H Wenger
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
28
|
Single Nucleotide Polymorphisms in XMN1-HBG2, HBS1L-MYB, and BCL11A and Their Relation to High Fetal Hemoglobin Levels That Alleviate Anemia. Diagnostics (Basel) 2022; 12:diagnostics12061374. [PMID: 35741184 PMCID: PMC9221560 DOI: 10.3390/diagnostics12061374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Anemia is a condition in which red blood cells and/or hemoglobin (Hb) concentrations are decreased below the normal range, resulting in a lack of oxygen being transported to tissues and organs. Those afflicted with this condition may feel lethargic and weak, which reduces their quality of life. The condition may be manifested in inherited blood disorders, such as thalassemia and sickle cell disease, whereas acquired disorders include aplastic anemia, chronic disease, drug toxicity, pregnancy, and nutritional deficiency. The augmentation of fetal hemoglobin (HbF) results in the reduction in clinical symptoms in beta-hemoglobinopathies. Several transcription factors as well as medications such as hydroxyurea may help red blood cells produce more HbF. HbF expression increases with the downregulation of three main quantitative trait loci, namely, the XMN1-HBG2, HBS1L-MYB, and BCL11A genes. These genes contain single nucleotide polymorphisms (SNPs) that modulate the expression of HbF differently in various populations. Allele discrimination is important in SNP genotyping and is widely applied in many assays. In conclusion, the expression of HbF with a genetic modifier is crucial in determining the severity of anemic diseases, and genetic modification of HbF expression may offer clinical benefits in diagnosis and disease management.
Collapse
|
29
|
Gazal S, Weissbrod O, Hormozdiari F, Dey KK, Nasser J, Jagadeesh KA, Weiner DJ, Shi H, Fulco CP, O'Connor LJ, Pasaniuc B, Engreitz JM, Price AL. Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity. Nat Genet 2022; 54:827-836. [PMID: 35668300 PMCID: PMC9894581 DOI: 10.1038/s41588-022-01087-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/27/2022] [Indexed: 02/04/2023]
Abstract
Disease-associated single-nucleotide polymorphisms (SNPs) generally do not implicate target genes, as most disease SNPs are regulatory. Many SNP-to-gene (S2G) linking strategies have been developed to link regulatory SNPs to the genes that they regulate in cis. Here, we developed a heritability-based framework for evaluating and combining different S2G strategies to optimize their informativeness for common disease risk. Our optimal combined S2G strategy (cS2G) included seven constituent S2G strategies and achieved a precision of 0.75 and a recall of 0.33, more than doubling the recall of any individual strategy. We applied cS2G to fine-mapping results for 49 UK Biobank diseases/traits to predict 5,095 causal SNP-gene-disease triplets (with S2G-derived functional interpretation) with high confidence. We further applied cS2G to provide an empirical assessment of disease omnigenicity; we determined that the top 1% of genes explained roughly half of the SNP heritability linked to all genes and that gene-level architectures vary with variant allele frequency.
Collapse
Affiliation(s)
- Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Omer Weissbrod
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Farhad Hormozdiari
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kushal K Dey
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph Nasser
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karthik A Jagadeesh
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Huwenbo Shi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Bristol Myers Squibb, Cambridge, MA, USA
| | | | - Bogdan Pasaniuc
- Departments of Computational Medicine, Human Genetics, Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
30
|
Andrieu-Soler C, Soler E. Erythroid Cell Research: 3D Chromatin, Transcription Factors and Beyond. Int J Mol Sci 2022; 23:6149. [PMID: 35682828 PMCID: PMC9181152 DOI: 10.3390/ijms23116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Studies of the regulatory networks and signals controlling erythropoiesis have brought important insights in several research fields of biology and have been a rich source of discoveries with far-reaching implications beyond erythroid cells biology. The aim of this review is to highlight key recent discoveries and show how studies of erythroid cells bring forward novel concepts and refine current models related to genome and 3D chromatin organization, signaling and disease, with broad interest in life sciences.
Collapse
Affiliation(s)
| | - Eric Soler
- IGMM, Université Montpellier, CNRS, 34093 Montpellier, France;
- Laboratory of Excellence GR-Ex, Université de Paris, 75015 Paris, France
| |
Collapse
|
31
|
Starlard-Davenport A, Gu Q, Pace BS. Targeting Genetic Modifiers of HBG Gene Expression in Sickle Cell Disease: The miRNA Option. Mol Diagn Ther 2022; 26:497-509. [PMID: 35553407 PMCID: PMC9098152 DOI: 10.1007/s40291-022-00589-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Sickle cell disease (SCD) is one of the most common inherited hemoglobinopathy disorders that affects millions of people worldwide. Reactivation of HBG (HBG1, HBG2) gene expression and induction of fetal hemoglobin (HbF) is an important therapeutic strategy for ameliorating the clinical symptoms and severity of SCD. Hydroxyurea is the only US FDA-approved drug with proven efficacy to induce HbF in SCD patients, yet serious complications have been associated with its use. Over the last three decades, numerous additional pharmacological agents that reactivate HBG transcription in vitro have been investigated, but few have proceeded to FDA approval, with the exception of arginine butyrate and decitabine; however, neither drug met the requirements for routine clinical use due to difficulties with oral delivery and inability to achieve therapeutic levels. Thus, novel approaches that produce sufficient efficacy, specificity, and sustainable HbF induction with low adverse effects are desirable. More recently, microRNAs (miRNAs) have gained attention for their diagnostic and therapeutic potential to treat various diseases ranging from cancer to Alzheimer’s disease via targeting oncogenes and their gene products. Thus, it is plausible that miRNAs that target HBG regulatory genes may be useful for inducing HbF as a treatment for SCD. Our laboratory and others have documented the association of miRNAs with HBG activation or suppression via silencing transcriptional repressors and activators, respectively, of HBG expression. Herein, we review progress made in understanding molecular mechanisms of miRNA-mediated HBG regulation and discuss the extent to which molecular targets of HBG might be suitable prospects for development of SCD clinical therapy. Lastly, we discuss challenges with the application of miRNA delivery in vivo and provide potential strategies for overcoming barriers in the future.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- College of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Qingqing Gu
- College of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| |
Collapse
|
32
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
33
|
Manu GP, Segbefia C, N’guessan BB, Coffie SA, Adjei GO. Association Between Selected Single Nucleotide Polymorphisms in Globin and Related Genes and Response to Hydroxyurea Therapy in Ghanaian Children with Sickle Cell Disease. Pharmgenomics Pers Med 2022; 15:205-214. [PMID: 35300055 PMCID: PMC8922234 DOI: 10.2147/pgpm.s351599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Gloria Pokuaa Manu
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Catherine Segbefia
- Department of Child Health, University of Ghana Medical School, Accra, Ghana
| | - Benoit Banga N’guessan
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - George Obeng Adjei
- Centre for Tropical, Clinical Pharmacology and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- Correspondence: George Obeng Adjei, Email
| |
Collapse
|
34
|
Sales RR, Nogueira BL, Tosatti JAG, Gomes KB, Luizon MR. Do Genetic Polymorphisms Affect Fetal Hemoglobin (HbF) Levels in Patients With Sickle Cell Anemia Treated With Hydroxyurea? A Systematic Review and Pathway Analysis. Front Pharmacol 2022; 12:779497. [PMID: 35126118 PMCID: PMC8814522 DOI: 10.3389/fphar.2021.779497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/31/2021] [Indexed: 01/23/2023] Open
Abstract
Hydroxyurea has long been used for the treatment of sickle cell anemia (SCA), and its clinical effectiveness is related to the induction of fetal hemoglobin (HbF), a major modifier of SCA phenotypes. However, there is substantial variability in response to hydroxyurea among patients with SCA. While some patients show an increase in HbF levels and an ameliorated clinical condition under low doses of hydroxyurea, other patients present a poor effect or even develop toxicity. However, the effects of genetic polymorphisms on increasing HbF levels in response to hydroxyurea in patients with SCA (Hb SS) have been less explored. Therefore, we performed a systematic review to assess whether single-nucleotide polymorphisms (SNPs) affect HbF levels in patients with SCA treated with hydroxyurea. Moreover, we performed pathway analysis using the set of genes with SNPs found to be associated with changes in HbF levels in response to hydroxyurea among the included studies. The systematic literature search was conducted on Medline/PubMed, EMBASE, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Scopus, and Web of Science. Seven cohort studies were included following our inclusion and exclusion criteria. From the 728 genetic polymorphisms examined in the included studies, 50 different SNPs of 17 genes were found to be associated with HbF changes in patients with SCA treated with hydroxyurea, which are known to affect baseline HbF but are not restricted to them. Enrichment analysis of this gene set revealed reactome pathways with the lowest adjusted p-values and highest combined scores related to VEGF ligand–receptor interactions (R-HSA-194313; R-HSA-195399) and the urea cycle (R-HSA-70635). Pharmacogenetic studies of response to hydroxyurea therapy in patients with SCA are still scarce and markedly heterogeneous regarding candidate genes and SNPs examined for association with HbF changes and outcomes, suggesting that further studies are needed. The reviewed findings highlighted that similar to baseline HbF, changes in HbF levels upon hydroxyurea therapy are likely to be regulated by multiple loci. There is evidence that SNPs in intron 2 of BCL11A affect HbF changes in response to hydroxyurea therapy, a potential application that might improve the clinical management of SCA. Systematic Review Registration: (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=208790).
Collapse
Affiliation(s)
- Rahyssa Rodrigues Sales
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Rahyssa Rodrigues Sales, ; Marcelo Rizzatti Luizon,
| | - Bárbara Lisboa Nogueira
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jéssica Abdo Gonçalves Tosatti
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Karina Braga Gomes
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Rizzatti Luizon
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Rahyssa Rodrigues Sales, ; Marcelo Rizzatti Luizon,
| |
Collapse
|
35
|
Jablonski KP, Carron L, Mozziconacci J, Forné T, Hütt MT, Lesne A. Contribution of 3D genome topological domains to genetic risk of cancers: a genome-wide computational study. Hum Genomics 2022; 16:2. [PMID: 35016721 PMCID: PMC8753905 DOI: 10.1186/s40246-022-00375-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/02/2022] [Indexed: 01/31/2023] Open
Abstract
Background Genome-wide association studies have identified statistical associations between various diseases, including cancers, and a large number of single-nucleotide polymorphisms (SNPs). However, they provide no direct explanation of the mechanisms underlying the association. Based on the recent discovery that changes in three-dimensional genome organization may have functional consequences on gene regulation favoring diseases, we investigated systematically the genome-wide distribution of disease-associated SNPs with respect to a specific feature of 3D genome organization: topologically associating domains (TADs) and their borders. Results For each of 449 diseases, we tested whether the associated SNPs are present in TAD borders more often than observed by chance, where chance (i.e., the null model in statistical terms) corresponds to the same number of pointwise loci drawn at random either in the entire genome, or in the entire set of disease-associated SNPs listed in the GWAS catalog. Our analysis shows that a fraction of diseases displays such a preferential localization of their risk loci. Moreover, cancers are relatively more frequent among these diseases, and this predominance is generally enhanced when considering only intergenic SNPs. The structure of SNP-based diseasome networks confirms that localization of risk loci in TAD borders differs between cancers and non-cancer diseases. Furthermore, different TAD border enrichments are observed in embryonic stem cells and differentiated cells, consistent with changes in topological domains along embryogenesis and delineating their contribution to disease risk. Conclusions Our results suggest that, for certain diseases, part of the genetic risk lies in a local genetic variation affecting the genome partitioning in topologically insulated domains. Investigating this possible contribution to genetic risk is particularly relevant in cancers. This study thus opens a way of interpreting genome-wide association studies, by distinguishing two types of disease-associated SNPs: one with an effect on an individual gene, the other acting in interplay with 3D genome organization. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00375-2.
Collapse
Affiliation(s)
- Kim Philipp Jablonski
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, 4058, Basel, Switzerland
| | - Leopold Carron
- Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, CNRS, Sorbonne Université, Paris, France.,Laboratory of Computational and Quantitative Biology, LCQB, Sorbonne Université, Paris, France
| | - Julien Mozziconacci
- Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, CNRS, Sorbonne Université, Paris, France.,Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, Paris, France
| | - Thierry Forné
- Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS, Univ. Montpellier, Montpellier, France
| | - Marc-Thorsten Hütt
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany.
| | - Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, CNRS, Sorbonne Université, Paris, France. .,Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS, Univ. Montpellier, Montpellier, France.
| |
Collapse
|
36
|
Fonseca PAS, Schenkel FS, Cánovas A. Genome-wide association study using haplotype libraries and repeated measures model to identify candidate genomic regions for stillbirth in Holstein cattle. J Dairy Sci 2022; 105:1314-1326. [PMID: 34998559 DOI: 10.3168/jds.2021-20936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
Reduced fertility is one of the main causes of economic losses on dairy farms, resulting in economic losses estimated at $938 per stillbirth case in Holstein herds. The identification of genomic regions associated with stillbirth could help to develop better management and breeding strategies aimed to reduce the frequency of undesirable gestation outcomes. Here, 10,570 cows and 50,541 birth records were used to perform a haplotype-based GWAS. A total of 41 significantly associated pseudo-SNPs (haplotypes within haplotype blocks converted to a binary classification) were identified after Bonferroni adjustment for multiple tests. A total of 117 positional candidate genes were annotated within or close (in a 200-kb interval) to significant pseudo-SNPs (haplotype blocks). The guilt-by-association functional prioritization identified 31 potential functional candidate genes for reproductive performance out of the 117 positional candidate genes annotated. These genes play crucial roles in biological processes associated with pregnancy persistence, fetus development, immune response, among others. These results helped us to better understand the genetic basis of stillbirth in dairy cattle and may be useful for the prediction of stillbirth in Holstein cattle, helping to reduce the related economic losses caused by this phenotype.
Collapse
Affiliation(s)
- P A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
37
|
Chen J, Guo JT. Structural and functional analysis of somatic coding and UTR indels in breast and lung cancer genomes. Sci Rep 2021; 11:21178. [PMID: 34707120 PMCID: PMC8551294 DOI: 10.1038/s41598-021-00583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Insertions and deletions (Indels) represent one of the major variation types in the human genome and have been implicated in diseases including cancer. To study the features of somatic indels in different cancer genomes, we investigated the indels from two large samples of cancer types: invasive breast carcinoma (BRCA) and lung adenocarcinoma (LUAD). Besides mapping somatic indels in both coding and untranslated regions (UTRs) from the cancer whole exome sequences, we investigated the overlap between these indels and transcription factor binding sites (TFBSs), the key elements for regulation of gene expression that have been found in both coding and non-coding sequences. Compared to the germline indels in healthy genomes, somatic indels contain more coding indels with higher than expected frame-shift (FS) indels in cancer genomes. LUAD has a higher ratio of deletions and higher coding and FS indel rates than BRCA. More importantly, these somatic indels in cancer genomes tend to locate in sequences with important functions, which can affect the core secondary structures of proteins and have a bigger overlap with predicted TFBSs in coding regions than the germline indels. The somatic CDS indels are also enriched in highly conserved nucleotides when compared with germline CDS indels.
Collapse
Affiliation(s)
- Jing Chen
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jun-Tao Guo
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
38
|
Hariharan P, Gorivale M, Sawant P, Mehta P, Nadkarni A. Significance of genetic modifiers of hemoglobinopathies leading towards precision medicine. Sci Rep 2021; 11:20906. [PMID: 34686692 PMCID: PMC8536722 DOI: 10.1038/s41598-021-00169-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Hemoglobinopathies though a monogenic disorder, show phenotypic variability. Hence, understanding the genetics underlying the heritable sub-phenotypes of hemoglobinopathies, specific to each population, would be prognostically useful and could inform personalized therapeutics. This study aimed to evaluate the role of genetic modifiers leading to higher HbF production with cumulative impact of the modifiers on disease severity. 200 patients (100 β-thalassemia homozygotes, 100 Sickle Cell Anemia), and 50 healthy controls were recruited. Primary screening followed with molecular analysis for confirming the β-hemoglobinopathy was performed. Co-existing α-thalassemia and the polymorphisms located in 3 genetic loci linked to HbF regulation were screened. The most remarkable result was the association of SNPs with clinically relevant phenotypic groups. The γ-globin gene promoter polymorphisms [- 158 C → T, + 25 G → A],BCL11A rs1427407 G → T, - 3 bp HBS1L-MYB rs66650371 and rs9399137 T → C polymorphisms were correlated with higher HbF, in group that has lower disease severity score (P < 0.00001), milder clinical presentation, and a significant delay in the age of the first transfusion. Our study emphasizes the complex genetic interactions underlying the disease phenotype that may be a prognostic marker for predicting the clinical severity and assist in disease management.
Collapse
Affiliation(s)
- Priya Hariharan
- Department of Haematogenetics, ICMR-National Institute of Immunohaematology, 13th Floor NMS Building, KEM Hospital Campus, Parel, Mumbai, 400012, India
| | - Manju Gorivale
- Department of Haematogenetics, ICMR-National Institute of Immunohaematology, 13th Floor NMS Building, KEM Hospital Campus, Parel, Mumbai, 400012, India
| | - Pratibha Sawant
- Department of Haematogenetics, ICMR-National Institute of Immunohaematology, 13th Floor NMS Building, KEM Hospital Campus, Parel, Mumbai, 400012, India
| | - Pallavi Mehta
- Department of Haematogenetics, ICMR-National Institute of Immunohaematology, 13th Floor NMS Building, KEM Hospital Campus, Parel, Mumbai, 400012, India
| | - Anita Nadkarni
- Department of Haematogenetics, ICMR-National Institute of Immunohaematology, 13th Floor NMS Building, KEM Hospital Campus, Parel, Mumbai, 400012, India.
| |
Collapse
|
39
|
Masselli E, Pozzi G, Carubbi C, Vitale M. The Genetic Makeup of Myeloproliferative Neoplasms: Role of Germline Variants in Defining Disease Risk, Phenotypic Diversity and Outcome. Cells 2021; 10:cells10102597. [PMID: 34685575 PMCID: PMC8534117 DOI: 10.3390/cells10102597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Myeloproliferative neoplasms are hematologic malignancies typified by a substantial heritable component. Germline variants may affect the risk of developing a MPN, as documented by GWAS studies on large patient cohorts. In addition, once the MPN occurred, inherited host genetic factors can be responsible for tuning the disease phenotypic presentation, outcome, and response to therapy. This review covered the polymorphisms that have been variably associated to MPNs, discussing them in the functional perspective of the biological pathways involved. Finally, we reviewed host genetic determinants of clonal hematopoiesis, a pre-malignant state that may anticipate overt hematologic neoplasms including MPNs.
Collapse
Affiliation(s)
- Elena Masselli
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, 43126 Parma, Italy; (E.M.); (G.P.)
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Giulia Pozzi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, 43126 Parma, Italy; (E.M.); (G.P.)
| | - Cecilia Carubbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, 43126 Parma, Italy; (E.M.); (G.P.)
- Correspondence: (C.C.); (M.V.)
| | - Marco Vitale
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, 43126 Parma, Italy; (E.M.); (G.P.)
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
- Correspondence: (C.C.); (M.V.)
| |
Collapse
|
40
|
Corre T, Ponte B, Pivin E, Pruijm M, Ackermann D, Ehret G, Spanaus K, Bochud M, Wenger RH. Heritability and association with distinct genetic loci of erythropoietin levels in the general population. Haematologica 2021; 106:2499-2501. [PMID: 33832210 PMCID: PMC8409065 DOI: 10.3324/haematol.2021.278389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/26/2021] [Indexed: 01/24/2023] Open
Affiliation(s)
- Tanguy Corre
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland; National Centre of Competence in Research "Kidney.CH", Switzerland; Department of Computational Biology, University of Lausanne, Lausanne
| | - Belen Ponte
- Nephrology Service, Department Medicine, Geneva University Hospital, Geneva
| | - Edward Pivin
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne
| | - Menno Pruijm
- Nephrology Service, University Hospital of Lausanne and University of Lausanne, Lausanne
| | - Daniel Ackermann
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern
| | - Georg Ehret
- Cardiology, Department of Medicine, Geneva University Hospital, Geneva
| | - Katharina Spanaus
- Institute of Clinical Chemistry, University Hospital of Zurich, Zurich
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland; National Centre of Competence in Research "Kidney.CH"
| | - Roland H Wenger
- National Centre of Competence in Research "Kidney.CH", Switzerland; Institute of Physiology, University of Zurich, Zurich.
| |
Collapse
|
41
|
Boltsis I, Grosveld F, Giraud G, Kolovos P. Chromatin Conformation in Development and Disease. Front Cell Dev Biol 2021; 9:723859. [PMID: 34422840 PMCID: PMC8371409 DOI: 10.3389/fcell.2021.723859] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.
Collapse
Affiliation(s)
- Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
- Cancer Research Center of Lyon – INSERM U1052, Lyon, France
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
42
|
Unique Polymorphisms at BCL11A, HBS1L-MYB and HBB Loci Associated with HbF in Kuwaiti Patients with Sickle Cell Disease. J Pers Med 2021; 11:jpm11060567. [PMID: 34204365 PMCID: PMC8234980 DOI: 10.3390/jpm11060567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with sickle cell disease (SCD) in Kuwait have elevated HbF levels ranging from ~10-44%; however, the modulating factors are unclear. We investigated the association of single nucleotide polymorphisms (SNPs) at BCL11A, HBS1L-MYB and HBB with HbF levels in 237 Kuwaiti SCD patients, divided into 3 subgroups according to their HbF levels. Illumina Ampliseq custom DNA panel was used for genotyping and confirmed by arrayed primer extension or Sanger sequencing. In the BCL11A locus, the CC genotype of rs7606173 [χ2 = 16.5] and (GG) of rs10195871 [χ2 = 15.0] were associated with Hb-F1 and HbF-2 subgroups, unlike rs1427404-T [χ2 = 17.3], which showed the highest association across the three subgroups. HBS1L-MYB locus revealed 2 previously-described SNPs (rs66650371 [χ2 = 9.5] and rs35795442 [χ2 = 9.2]) and 2 previously-unreported SNPs, (rs13220662 [χ2 = 6.2] and rs1406811 [χ2 = 6.7]) that were associated with the HbF-3 subgroup, making this the key locus elevating HbF to the highest levels. HBB cluster variants were associated with lower levels of HbF (β = -1.1). We report four previously-unpublished variants showing significant association with HbF. Each of the three quantitative trait loci affects HbF levels differently; unique SNPs, especially in HBS1L-MYB, elevate HbF to the highest levels.
Collapse
|
43
|
Ganel L, Chen L, Christ R, Vangipurapu J, Young E, Das I, Kanchi K, Larson D, Regier A, Abel H, Kang CJ, Scott A, Havulinna A, Chiang CWK, Service S, Freimer N, Palotie A, Ripatti S, Kuusisto J, Boehnke M, Laakso M, Locke A, Stitziel NO, Hall IM. Mitochondrial genome copy number measured by DNA sequencing in human blood is strongly associated with metabolic traits via cell-type composition differences. Hum Genomics 2021; 15:34. [PMID: 34099068 PMCID: PMC8185936 DOI: 10.1186/s40246-021-00335-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mitochondrial genome copy number (MT-CN) varies among humans and across tissues and is highly heritable, but its causes and consequences are not well understood. When measured by bulk DNA sequencing in blood, MT-CN may reflect a combination of the number of mitochondria per cell and cell-type composition. Here, we studied MT-CN variation in blood-derived DNA from 19184 Finnish individuals using a combination of genome (N = 4163) and exome sequencing (N = 19034) data as well as imputed genotypes (N = 17718). RESULTS We identified two loci significantly associated with MT-CN variation: a common variant at the MYB-HBS1L locus (P = 1.6 × 10-8), which has previously been associated with numerous hematological parameters; and a burden of rare variants in the TMBIM1 gene (P = 3.0 × 10-8), which has been reported to protect against non-alcoholic fatty liver disease. We also found that MT-CN is strongly associated with insulin levels (P = 2.0 × 10-21) and other metabolic syndrome (metS)-related traits. Using a Mendelian randomization framework, we show evidence that MT-CN measured in blood is causally related to insulin levels. We then applied an MT-CN polygenic risk score (PRS) derived from Finnish data to the UK Biobank, where the association between the PRS and metS traits was replicated. Adjusting for cell counts largely eliminated these signals, suggesting that MT-CN affects metS via cell-type composition. CONCLUSION These results suggest that measurements of MT-CN in blood-derived DNA partially reflect differences in cell-type composition and that these differences are causally linked to insulin and related traits.
Collapse
Affiliation(s)
- Liron Ganel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lei Chen
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Christ
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Erica Young
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Indraniel Das
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Krishna Kanchi
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - David Larson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison Regier
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Haley Abel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandra Scott
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aki Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Susan Service
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytical and Translational Genetics Unit (ATGU), Psychiatric & Neurodevelopmental Genetics Unit, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Adam Locke
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan O Stitziel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ira M Hall
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
44
|
Cheng L, Li Y, Qi Q, Xu P, Feng R, Palmer L, Chen J, Wu R, Yee T, Zhang J, Yao Y, Sharma A, Hardison RC, Weiss MJ, Cheng Y. Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression. Nat Genet 2021; 53:869-880. [PMID: 33958780 PMCID: PMC8628368 DOI: 10.1038/s41588-021-00861-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
Pinpointing functional noncoding DNA sequences and defining their contributions to health-related traits is a major challenge for modern genetics. We developed a high-throughput framework to map noncoding DNA functions with single-nucleotide resolution in four loci that control erythroid fetal hemoglobin (HbF) expression, a genetically determined trait that modifies sickle cell disease (SCD) phenotypes. Specifically, we used the adenine base editor ABEmax to introduce 10,156 separate A•T to G•C conversions in 307 predicted regulatory elements and quantified the effects on erythroid HbF expression. We identified numerous regulatory elements, defined their epigenomic structures and linked them to low-frequency variants associated with HbF expression in an SCD cohort. Targeting a newly discovered γ-globin gene repressor element in SCD donor CD34+ hematopoietic progenitors raised HbF levels in the erythroid progeny, inhibiting hypoxia-induced sickling. Our findings reveal previously unappreciated genetic complexities of HbF regulation and provide potentially therapeutic insights into SCD.
Collapse
Affiliation(s)
- Li Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qian Qi
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peng Xu
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ruopeng Feng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lance Palmer
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Chen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ruiqiong Wu
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tiffany Yee
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Zhang
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
45
|
Zakaria NA, Islam MA, Abdullah WZ, Bahar R, Mohamed Yusoff AA, Abdul Wahab R, Shamsuddin S, Johan MF. Epigenetic Insights and Potential Modifiers as Therapeutic Targets in β-Thalassemia. Biomolecules 2021; 11:755. [PMID: 34070036 PMCID: PMC8158146 DOI: 10.3390/biom11050755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 01/28/2023] Open
Abstract
Thalassemia, an inherited quantitative globin disorder, consists of two types, α- and β-thalassemia. β-thalassemia is a heterogeneous disease that can be asymptomatic, mild, or even severe. Considerable research has focused on investigating its underlying etiology. These studies found that DNA hypomethylation in the β-globin gene cluster is significantly related to fetal hemoglobin (HbF) elevation. Histone modification reactivates γ-globin gene expression in adults and increases β-globin expression. Down-regulation of γ-globin suppressor genes, i.e., BCL11A, KLF1, HBG-XMN1, HBS1L-MYB, and SOX6, elevates the HbF level. β-thalassemia severity is predictable through FLT1, ARG2, NOS2A, and MAP3K5 gene expression. NOS2A and MAP3K5 may predict the β-thalassemia patient's response to hydroxyurea, a HbF-inducing drug. The transcription factors NRF2 and BACH1 work with antioxidant enzymes, i.e., PRDX1, PRDX2, TRX1, and SOD1, to protect erythrocytes from oxidative damage, thus increasing their lifespan. A single β-thalassemia-causing mutation can result in different phenotypes, and these are predictable by IGSF4 and LARP2 methylation as well as long non-coding RNA expression levels. Finally, the coinheritance of β-thalassemia with α-thalassemia ameliorates the β-thalassemia clinical presentation. In conclusion, the management of β-thalassemia is currently limited to genetic and epigenetic approaches, and numerous factors should be further explored in the future.
Collapse
Affiliation(s)
- Nur Atikah Zakaria
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.Z.); (W.Z.A.); (R.B.)
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.Z.); (W.Z.A.); (R.B.)
| | - Wan Zaidah Abdullah
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.Z.); (W.Z.A.); (R.B.)
| | - Rosnah Bahar
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.Z.); (W.Z.A.); (R.B.)
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Ridhwan Abdul Wahab
- Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Shaharum Shamsuddin
- School of Health Sciences, University Sains Malaysia, Kubang Kerian 16150, Malaysia;
- Institute for Research in Molecular Medicine (INFORMM), University Sains Malaysia, Kubang Kerian 16150, Malaysia
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.Z.); (W.Z.A.); (R.B.)
| |
Collapse
|
46
|
Predictive SNPs for β 0-thalassemia/HbE disease severity. Sci Rep 2021; 11:10352. [PMID: 33990643 PMCID: PMC8121782 DOI: 10.1038/s41598-021-89641-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
β-Thalassemia/HbE disease has a wide spectrum of clinical phenotypes ranging from asymptomatic to dependent on regular blood transfusions. Ability to predict disease severity is helpful for clinical management and treatment decision making. A thalassemia severity score has been developed from Mediterranean β-thalassemia patients. However, different ethnic groups may have different allele frequency and linkage disequilibrium structures. Here, Thai β0-thalassemia/HbE disease genome-wild association studies (GWAS) data of 487 patients were analyzed by SNP interaction prioritization algorithm, interacting Loci (iLoci), to find predictive SNPs for disease severity. Three SNPs from two SNP interaction pairs associated with disease severity were identifies. The three-SNP disease severity risk score composed of rs766432 in BCL11A, rs9399137 in HBS1L-MYB and rs72872548 in HBE1 showed more than 85% specificity and 75% accuracy. The three-SNP predictive score was then validated in two independent cohorts of Thai and Malaysian β0-thalassemia/HbE patients with comparable specificity and accuracy. The SNP risk score could be used for prediction of clinical severity for Southeast Asia β0-thalassemia/HbE population.
Collapse
|
47
|
Boontanrart MY, Schröder MS, Stehli GM, Banović M, Wyman SK, Lew RJ, Bordi M, Gowen BG, DeWitt MA, Corn JE. ATF4 Regulates MYB to Increase γ-Globin in Response to Loss of β-Globin. Cell Rep 2021; 32:107993. [PMID: 32755585 DOI: 10.1016/j.celrep.2020.107993] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/20/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
β-Hemoglobinopathies can trigger rapid production of red blood cells in a process known as stress erythropoiesis. Cellular stress prompts differentiating erythroid precursors to express high levels of fetal γ-globin. However, the mechanisms underlying γ-globin production during cellular stress are still poorly defined. Here, we use CRISPR-Cas genome editing to model the stress caused by reduced levels of adult β-globin. We find that decreased β-globin is sufficient to induce robust re-expression of γ-globin, and RNA sequencing (RNA-seq) of differentiating isogenic erythroid precursors implicates ATF4 as a causal regulator of this response. ATF4 binds within the HBS1L-MYB intergenic enhancer and regulates expression of MYB, a known γ-globin regulator. Overall, the reduction of ATF4 upon β-globin knockout decreases the levels of MYB and BCL11A. Identification of ATF4 as a key regulator of globin compensation adds mechanistic insight to the poorly understood phenomenon of stress-induced globin compensation and could inform strategies to treat hemoglobinopathies.
Collapse
Affiliation(s)
- Mandy Y Boontanrart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | - Marija Banović
- Department of Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Stacia K Wyman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel J Lew
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matteo Bordi
- Department of Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Benjamin G Gowen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mark A DeWitt
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob E Corn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, ETH Zurich, Zurich 8092, Switzerland; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
48
|
p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood 2021; 137:89-102. [PMID: 32818241 DOI: 10.1182/blood.2019003439] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
The role of ribosome biogenesis in erythroid development is supported by the recognition of erythroid defects in ribosomopathies in both Diamond-Blackfan anemia and 5q- syndrome. Whether ribosome biogenesis exerts a regulatory function on normal erythroid development is still unknown. In the present study, a detailed characterization of ribosome biogenesis dynamics during human and murine erythropoiesis showed that ribosome biogenesis is abruptly interrupted by the decline in ribosomal DNA transcription and the collapse of ribosomal protein neosynthesis. Its premature arrest by the RNA Pol I inhibitor CX-5461 targeted the proliferation of immature erythroblasts. p53 was activated spontaneously or in response to CX-5461, concomitant to ribosome biogenesis arrest, and drove a transcriptional program in which genes involved in cell cycle-arrested, negative regulation of apoptosis, and DNA damage response were upregulated. RNA Pol I transcriptional stress resulted in nucleolar disruption and activation of the ATR-CHK1-p53 pathway. Our results imply that the timing of ribosome biogenesis extinction and p53 activation is crucial for erythroid development. In ribosomopathies in which ribosome availability is altered by unbalanced production of ribosomal proteins, the threshold downregulation of ribosome biogenesis could be prematurely reached and, together with pathological p53 activation, prevents a normal expansion of erythroid progenitors.
Collapse
|
49
|
Barbarani G, Labedz A, Stucchi S, Abbiati A, Ronchi AE. Physiological and Aberrant γ-Globin Transcription During Development. Front Cell Dev Biol 2021; 9:640060. [PMID: 33869190 PMCID: PMC8047207 DOI: 10.3389/fcell.2021.640060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
The expression of the fetal Gγ- and Aγ-globin genes in normal development is confined to the fetal period, where two γ-globin chains assemble with two α-globin chains to form α2γ2 tetramers (HbF). HbF sustains oxygen delivery to tissues until birth, when β-globin replaces γ-globin, leading to the formation of α2β2 tetramers (HbA). However, in different benign and pathological conditions, HbF is expressed in adult cells, as it happens in the hereditary persistence of fetal hemoglobin, in anemias and in some leukemias. The molecular basis of γ-globin differential expression in the fetus and of its inappropriate activation in adult cells is largely unknown, although in recent years, a few transcription factors involved in this process have been identified. The recent discovery that fetal cells can persist to adulthood and contribute to disease raises the possibility that postnatal γ-globin expression could, in some cases, represent the signature of the fetal cellular origin.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Agata Labedz
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Sarah Stucchi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Alessia Abbiati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| |
Collapse
|
50
|
Giraud G, Kolovos P, Boltsis I, van Staalduinen J, Guyot B, Weiss-Gayet M, IJcken WV, Morlé F, Grosveld F. Interplay between FLI-1 and the LDB1 complex in murine erythroleukemia cells and during megakaryopoiesis. iScience 2021; 24:102210. [PMID: 33733070 PMCID: PMC7940982 DOI: 10.1016/j.isci.2021.102210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/22/2020] [Accepted: 02/17/2021] [Indexed: 11/29/2022] Open
Abstract
Transcription factors are key players in a broad range of cellular processes such as cell-fate decision. Understanding how they act to control these processes is of critical importance for therapy purposes. FLI-1 controls several hematopoietic lineage differentiation including megakaryopoiesis and erythropoiesis. Its aberrant expression is often observed in cancer and is associated with poor prognosis. We showed that FLI-1 interacts with the LDB1 complex, which also plays critical roles in erythropoiesis and megakaryopoiesis. In this study, we aimed to unravel how FLI-1 and the LDB1 complex act together in murine erythroleukemia cells and in megakaryocyte. Combining omics techniques, we show that FLI-1 enables the recruitment of the LDB1 complex to regulatory sequences of megakaryocytic genes and to enhancers. We show as well for the first time that FLI-1 is able to modulate the 3D chromatin organization by promoting chromatin looping between enhancers and promoters most likely through the LDB1 complex. FLI-1 is important for the recruitment of the LDB1 complex FLI-1 is important for chromatin looping FLI-1 and the LDB1 complex co-regulate megakaryopoiesis
Collapse
Affiliation(s)
- Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, 3015CN Rotterdam, the Netherlands
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, 3015CN Rotterdam, the Netherlands
| | - Jente van Staalduinen
- Department of Cell Biology, Erasmus Medical Centre, 3015CN Rotterdam, the Netherlands
| | - Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Department of Immunity, Virus and Microenvironment, Lyon, France
| | - Michele Weiss-Gayet
- Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Wilfred van IJcken
- Biomics Center, Erasmus University Medical Center, 3015CN Rotterdam, the Netherlands
| | - François Morlé
- Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, 3015CN Rotterdam, the Netherlands
| |
Collapse
|