1
|
Elsayh KI, Saad K, Hetta HF, Youssef MAM, Embaby MM, Mohamed IL, Abdel-Aziz SM, Zahran ZAM, Elhoufey A, Ghandour AMA, Zahran AM. Impact of hydroxyurea on lymphocyte subsets in children with sickle cell anemia. Pediatr Res 2023; 93:918-923. [PMID: 34897281 DOI: 10.1038/s41390-021-01892-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/27/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hydroxyurea (HU) has beneficial effects in the management of sickle cell anemia (SCA), but there is a paucity of data on the effect of HU on immune cells in SCA. Herein we aimed to evaluate the effect of HU on immune profiles of Egyptian children with SCA. METHODS This was a controlled prospective cohort study conducted in 30 children with SCA and 30 healthy age-matched controls. Flow cytometry was used to evaluate lymphocyte profiles, including CD8+ T, CD19+ B, CD3+, CD4+, natural killer (NK), NK T, T helper 1 (Th1), Th2, T cytotoxic (Tc1), and Tc2 cells, prior to and after 1 year of treatment with HU. RESULTS HU treatment led to significant increases in hemoglobin (Hb), red blood cell, and hematocrit counts and a significant decrease in the percentage of sickle Hb, with subsequent improvement in SCA complications. Compared with baseline values, CD3+, CD4+, Th1, and CD8+ T cells were significantly increased, while NK, Th2, and Tc2 cells were significantly decreased, with a resulting increase in the Th1/Th2 and Tc1/Tc2 ratios. CONCLUSIONS HU has the beneficial effect of restoring the abnormally elevated immune parameters in children with SCA. IMPACT Hydroxyurea treatment restores the abnormal immune parameters in children with sickle cell anemia. HU treatment led to significantly increased CD3+, CD4+, Th1, and CD8+ T cells, while NK, Th2, and Tc2 cells were significantly decreased, with a resulting increase in the Th1/Th2 and Tc1/Tc2 ratios. Our study showed the impact of HU therapy on immune parameters in children with SCA.
Collapse
Affiliation(s)
- Khalid I Elsayh
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mervat A M Youssef
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mostafa M Embaby
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ismail L Mohamed
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Safwat M Abdel-Aziz
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Amira Elhoufey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan, Saudi Arabia
| | - Aliaa M A Ghandour
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Luo Y, Chen H, Huang R, Wu Q, Li Y, He Y. Guanosine and uridine alleviate airway inflammation via inhibition of the MAPK and NF-κB signals in OVA-induced asthmatic mice. Pulm Pharmacol Ther 2021; 69:102049. [PMID: 34102301 DOI: 10.1016/j.pupt.2021.102049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 05/30/2021] [Indexed: 02/05/2023]
Abstract
Asthma is one of the most common respiratory diseases. Lack of response or poor adherence to corticosteroids demands the development of new drug candidates for asthma. Endogenous nucleosides could be potential options since uridine has been reported to have an anti-inflammatory effect in asthma model. However, its molecular pathways and whether other nucleosides have similar therapeutic effects remain untouched. Thus, we herein report our investigation into the anti-inflammatory effects of guanosine and uridine, and the related inner signaling pathways in asthma model. Present study shows that administration of guanosine or uridine can reduce lung inflammation in OVA-challenged mice. Total cell counts in BALF, cytokines such as IL-4, IL-6, IL-13, OVA-specific IgE and mRNA level of Cxcl1, Cxlc3, IL-17 and Muc5ac were decreased in asthmatic mice after treatment. Besides, the production of IL-6 in LPS/IFN-γ induced THP-1 cells was also decreased by both nucleosides. In vivo and in vitro expressions of key molecules in the MAPK and NF-κB pathways were reduced after the treatment of both compounds. These findings suggest that guanosine has a similar potential therapeutic value in asthma as uridine and they exert anti-inflammatory effects through suppression of the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Yujiao Luo
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Qiong Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Ying Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
Lu X, Li R, Yan X. Airway hyperresponsiveness development and the toxicity of PM2.5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6374-6391. [PMID: 33394441 DOI: 10.1007/s11356-020-12051-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/10/2020] [Indexed: 04/16/2023]
Abstract
Airway hyperresponsiveness (AHR) is characterized by excessive bronchoconstriction in response to nonspecific stimuli, thereby leading to airway stenosis and increased airway resistance. AHR is recognized as a key characteristic of asthma and is associated with significant morbidity. At present, many studies on the molecular mechanisms of AHR have mainly focused on the imbalance in Th1/Th2 cell function and the abnormal contraction of airway smooth muscle cells. However, the specific mechanisms of AHR remain unclear and need to be systematically elaborated. In addition, the effect of air pollution on the respiratory system has become a worldwide concern. To date, numerous studies have indicated that certain concentrations of fine particulate matter (PM2.5) can increase airway responsiveness and induce acute exacerbation of asthma. Of note, the concentration of PM2.5 does correlate with the degree of AHR. Numerous studies exploring the toxicity of PM2.5 have mainly focused on the inflammatory response, oxidative stress, genotoxicity, apoptosis, autophagy, and so on. However, there have been few reviews systematically elaborating the molecular mechanisms by which PM2.5 induces AHR. The present review separately sheds light on the underlying molecular mechanisms of AHR and PM2.5-induced AHR.
Collapse
Affiliation(s)
- Xi Lu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Rongqin Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
4
|
Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2021; 11:561917. [PMID: 33584641 PMCID: PMC7873693 DOI: 10.3389/fimmu.2020.561917] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maria G. Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Wonkam A, Chimusa ER, Mnika K, Pule GD, Ngo Bitoungui VJ, Mulder N, Shriner D, Rotimi CN, Adeyemo A. Genetic modifiers of long-term survival in sickle cell anemia. Clin Transl Med 2020; 10:e152. [PMID: 32898326 PMCID: PMC7423184 DOI: 10.1002/ctm2.152] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sickle cell anemia (SCA) is a clinically heterogeneous, monogenic disorder. Medical care has less-than-optimal impact on clinical outcomes in SCA in Africa due to several factors, including patient accessibility, poor access to resources, and non-availability of specific effective interventions for SCA. METHODS Against this background, we investigated 192 African participants who underwent whole exome sequencing. Participants included 105 SCA patients spanning variable clinical expression: a "long survivor" group (age over 40 years), a "stroke" group (at least one episode of overt stroke), and a "random" group (patients younger than 40 years without overt cerebrovascular disease). Fifty-eight ethnically matched homozygous hemoglobin A controls were also studied. Findings were validated in an independently recruited sample of 29 SCA patients. Statistical significance of the mutational burden of deleterious and loss-of-function variants per gene against a null model was estimated for each group, and gene-set association tests were conducted to test differences between groups. RESULTS In the "long survivor" group, deleterious/loss-of-function variants were enriched in genes including CLCN6 (a voltage-dependent chloride channel for which rare deleterious variants have been associated with lower blood pressure) and OGHDL (important in arginine metabolism, which is a therapeutic target in SCA). In the "stroke" group, significant genes implicated were associated with increased activity of the blood coagulation cascade and increased complement activation, for example, SERPINC1, which encodes antithrombin. Oxidative stress and glutamate biosynthesis pathways were enriched in "long survivors" group. Published transcriptomic evidence provides functional support for the role of the identified pathways. CONCLUSIONS This study provides new gene sets that contribute to variability in clinical expression of SCA. Identified genes and pathways suggest new avenues for other interventions.
Collapse
Affiliation(s)
- Ambroise Wonkam
- Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Emile R. Chimusa
- Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Khuthala Mnika
- Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Gift Dineo Pule
- Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Valentina Josiane Ngo Bitoungui
- Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Daniel Shriner
- Center for Research on Genomics and Global HealthNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Charles N. Rotimi
- Center for Research on Genomics and Global HealthNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global HealthNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
6
|
Kapetanaki MG, Gbotosho OT, Sharma D, Weidert F, Ofori-Acquah SF, Kato GJ. Free heme regulates placenta growth factor through NRF2-antioxidant response signaling. Free Radic Biol Med 2019; 143:300-308. [PMID: 31408727 PMCID: PMC6848791 DOI: 10.1016/j.freeradbiomed.2019.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
Free heme activates erythroblasts to express and secrete Placenta Growth Factor (PlGF), an angiogenic peptide of the VEGF family. High circulating levels of PlGF have been associated in experimental animals and in patients with sickle cell disease with echocardiographic markers of pulmonary hypertension, a life-limiting complication associated with more intense hemolysis. We now show that the mechanism of heme regulation of PlGF requires the contribution of the key antioxidant response regulator NRF2. Mimicking the effect of heme, the NRF2 agonist sulforaphane stimulates the PlGF transcript level nearly 30-fold in cultured human erythroblastoid cells. Heme and sulforaphane also induce transcripts for NRF2 itself, its partners MAFF and MAFG, and its competitor BACH1. Furthermore, heme induction of the PlGF transcript is significantly diminished by the NRF2 inhibitor brusatol and by siRNA knockdown of the NRF2 and/or MAFG transcription factors. Chromatin immunoprecipitation experiments show that heme induces NRF2 to bind directly to the PlGF promoter region. In complementary in vivo experiments, mice injected with heme show a significant increase in their plasma PlGF protein as early as 3 h after treatment. Our results reveal an important mechanism of PlGF regulation, adding to the growing literature that supports the pivotal importance of the NRF2 axis in the pathobiology of sickle cell disease.
Collapse
Affiliation(s)
- Maria G Kapetanaki
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Oluwabukola T Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Deva Sharma
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frances Weidert
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Solomon F Ofori-Acquah
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Translational and International Hematology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory J Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
De A, Agrawal S, Morrone K, Zhang J, Bjorklund NL, Manwani D, Rastogi D. Airway Inflammation and Lung Function in Sickle Cell Disease. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2019; 32:92-102. [PMID: 31559108 DOI: 10.1089/ped.2019.1014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/29/2019] [Indexed: 12/20/2022]
Abstract
Rationale: Asthma is a common comorbid condition in sickle cell disease (SCD). However, obstructive lung disease is prevalent in SCD, independent of a diagnosis of asthma. It is speculated that the heightened state of inflammation in SCD, involving pathways distinct from allergic asthma, may underlie the SCD-specific obstructive disease. Objective: The objective of the study was to compare airway and systemic inflammatory markers between SCD patients with pulmonary manifestations and patients with allergic asthma, and correlate the discriminating inflammatory markers with clinical measures of pulmonary disease. Materials and Methods: In a pilot translational study conducted at the Children's Hospital at Montefiore, 15 patients with SCD, and history of asthma, airway obstruction, or airway hyper-reactivity, and 15 control patients with allergic asthma 6-21 years of age were recruited. Inflammatory markers, including peripheral blood T helper cell subsets, serum and exhaled breath condensate (EBC) cytokines and chemokines of the Th-1/Th-17, Th-2, and monocytic pathways, and serum cysteinyl leukotrienes B4 (LTB4), were quantified, compared between the study groups, and correlated with atopic sensitization, pulmonary function tests, and markers of hemolysis. Results: White blood cells (P < 0.05) and monocytes (P < 0.001) were elevated in the SCD group, while atopic characteristics were higher in the control asthma group. Tumor necrosis factor-alpha (P < 0.01), interferon gamma inducible protein (IP)-10 (P < 0.05), and interleukin-4 (P < 0.01) in serum and monocyte chemotactic protein (MCP)-1 in EBC were higher in the SCD group (P ≤ 0.05). Forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) in patients with SCD inversely correlated with serum IP-10 and LTB4 levels. Conclusions: Compared with atopic asthmatic patients, inflammatory markers involving Th-1, Th-2, and monocytic pathways were higher in the SCD group, among which Th-1 measures correlated with pulmonary function deficits.
Collapse
Affiliation(s)
- Aliva De
- Division of Pediatric Pulmonology, Columbia University Medical Center, Vagelos College of Physicians and Surgeons, New York, New York
| | - Sabhyata Agrawal
- Division of Respiratory and Sleep Medicine, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Kerry Morrone
- Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Nicole L Bjorklund
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Deepa Manwani
- Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Deepa Rastogi
- Division of Respiratory and Sleep Medicine, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
8
|
Ruhl AP, Sadreameli SC, Allen JL, Bennett DP, Campbell AD, Coates TD, Diallo DA, Field JJ, Fiorino EK, Gladwin MT, Glassberg JA, Gordeuk VR, Graham LM, Greenough A, Howard J, Kato GJ, Knight-Madden J, Kopp BT, Koumbourlis AC, Lanzkron SM, Liem RI, Machado RF, Mehari A, Morris CR, Ogunlesi FO, Rosen CL, Smith-Whitley K, Tauber D, Terry N, Thein SL, Vichinsky E, Weir NA, Cohen RT, on behalf of the American Thoracic Society Assembly on Pediatrics. Identifying Clinical and Research Priorities in Sickle Cell Lung Disease. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2019; 16:e17-e32. [PMID: 31469310 PMCID: PMC6812163 DOI: 10.1513/annalsats.201906-433st] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Pulmonary complications of sickle cell disease (SCD) are diverse and encompass acute and chronic disease. The understanding of the natural history of pulmonary complications of SCD is limited, no specific therapies exist, and these complications are a primary cause of morbidity and mortality.Methods: We gathered a multidisciplinary group of pediatric and adult hematologists, pulmonologists, and emergency medicine physicians with expertise in SCD-related lung disease along with an SCD patient advocate for an American Thoracic Society-sponsored workshop to review the literature and identify key unanswered clinical and research questions. Participants were divided into four subcommittees on the basis of expertise: 1) acute chest syndrome, 2) lower airways disease and pulmonary function, 3) sleep-disordered breathing and hypoxia, and 4) pulmonary vascular complications of SCD. Before the workshop, a comprehensive literature review of each subtopic was conducted. Clinically important questions were developed after literature review and were finalized by group discussion and consensus.Results: Current knowledge is based on small, predominantly observational studies, few multicenter longitudinal studies, and even fewer high-quality interventional trials specifically targeting the pulmonary complications of SCD. Each subcommittee identified the three or four most important unanswered questions in their topic area for researchers to direct the next steps of clinical investigation.Conclusions: Important and clinically relevant questions regarding sickle cell lung disease remain unanswered. High-quality, multicenter, longitudinal studies and randomized clinical trials designed and implemented by teams of multidisciplinary clinician-investigators are needed to improve the care of individuals with SCD.
Collapse
|
9
|
Gbotosho OT, Ghosh S, Kapetanaki MG, Lin Y, Weidert F, Bullock GC, Ofori-Acquah SF, Kato GJ. Cardiac expression of HMOX1 and PGF in sickle cell mice and haem-treated wild type mice dominates organ expression profiles via Nrf2 (Nfe2l2). Br J Haematol 2019; 187:666-675. [PMID: 31389006 DOI: 10.1111/bjh.16129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
Haemolysis is a major feature of sickle cell disease (SCD) that contributes to organ damage. It is well established that haem, a product of haemolysis, induces expression of the enzyme that degrades it, haem oxygenase-1 (HMOX1). We have also shown that haem induces expression of placental growth factor (PGF), but the organ specificity of these responses has not been well-defined. As expected, we found high level expression of Hmox1 and Pgf transcripts in the reticuloendothelial system organs of transgenic sickle cell mice, but surprisingly strong expression in the heart (P < 0·0001). This pattern was largely replicated in wild type mice by intravenous injection of exogenous haem. In the heart, haem induced unexpectedly strong mRNA responses for Hmox1 (18-fold), Pgf (4-fold), and the haem transporter Slc48a1 (also termed Hrg1; 2·4-fold). This was comparable to the liver, the principal known haem-detoxifying organ. The NFE2L2 (also termed NRF2) transcription factor mediated much of the haem induction of Hmox1 and Hrg1 in all organs, but less so for Pgf. Our results indicate that the heart expresses haem response pathway genes at surprisingly high basal levels and shares with the liver a similar transcriptional response to circulating haem. The role of the heart in haem response should be investigated further.
Collapse
Affiliation(s)
- Oluwabukola T Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samit Ghosh
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Center for Translational and International Hematology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria G Kapetanaki
- Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yu Lin
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frances Weidert
- Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Grant C Bullock
- Division of Hematopathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Solomon F Ofori-Acquah
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Center for Translational and International Hematology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Gregory J Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Cunningham F, Van Bergen T, Canning P, Lengyel I, Feyen JHM, Stitt AW. The Placental Growth Factor Pathway and Its Potential Role in Macular Degenerative Disease. Curr Eye Res 2019; 44:813-822. [PMID: 31055948 DOI: 10.1080/02713683.2019.1614197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is growing evidence that placental growth factor (PlGF) is an important player in multiple pathologies, including tumorigenesis, inflammatory disorders and degenerative retinopathies. PlGF is a member of the vascular endothelial growth factor (VEGF) family and in the retina, binding of this growth factor to specific receptors is associated with pathological angiogenesis, vascular leakage, neurodegeneration and inflammation. Although they share some receptor signalling pathways, many of the actions of PlGF are distinct from VEGF and this has revealed the enticing prospect that it could be a useful therapeutic target for treating early and late stages of diabetic retinopathy (DR) and neovascular age-related macular degeneration (AMD). Recent research suggests that modulation of PlGF could also be important in the geographic atrophy (GA) form of late AMD by protecting the outer retina and the retinal pigment epithelium (RPE). This review discusses PlGF and its signalling pathways and highlights the potential of blocking the bioactivity of this growth factor to treat irreversible visual loss due to the two main forms of AMD.
Collapse
Affiliation(s)
- Fiona Cunningham
- a Centre for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland
| | | | - Paul Canning
- a Centre for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland
| | - Imre Lengyel
- a Centre for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland
| | | | - Alan W Stitt
- a Centre for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland
| |
Collapse
|
11
|
Jiang C, Gavitt TD, Szczepanek SM. House Dust Mite-Induced Allergic Lung Inflammation Is Not Exacerbated in Sickle Cell Disease Mice. Int Arch Allergy Immunol 2019; 179:192-200. [PMID: 30999298 DOI: 10.1159/000499043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/14/2019] [Indexed: 11/19/2022] Open
Abstract
AIM Asthma appears to be a common comorbid condition in children with sickle cell disease (SCD), and such individuals may be at a higher risk for increased morbidity and mortality. However, several reports have indicated that asthma severity is not particularly high in those with SCD, and airway hyperreactivity and wheeze may be independently associated with SCD. In SCD mice, exacerbated allergic airway disease (AAD) has been observed in response to the model antigen ovalbumin (OVA). We sought to determine if allergic lung inflammation is also exacerbated in SCD mice when they are exposed to the human allergen, house dust mite (HDM). METHODS AND RESULTS Eosinophil counts in bronchoalveolar lavage fluid were determined by cytocentrifugation and increased in both wild-type (WT) and SCD mice after acute exposure to a high dose (25 µg) of HDM, which then decreased in chronically exposed mice. WT mice exposed to a low dose of HDM (1 µg) followed the same pattern of eosinophil flux, but SCD mice did not induce much eosinophilia after acute exposure to HDM. As was observed in previous studies, lung lesions similarly increased in severity in both WT and SCD mice after acute exposure to HDM, which remained elevated after chronic exposure. Furthermore, serum HDM-specific IgE titers similarly increased and selected serum cytokines were similar in both WT and SCD mice. CONCLUSION These results contrast with previous reports of exacerbated AAD in SCD mice exposed to OVA and support the alternative hypothesis that asthmatic responses are normal in those with SCD.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
| | - Tyler D Gavitt
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
| | - Steven M Szczepanek
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA,
| |
Collapse
|
12
|
Telen MJ, Malik P, Vercellotti GM. Therapeutic strategies for sickle cell disease: towards a multi-agent approach. Nat Rev Drug Discov 2019; 18:139-158. [PMID: 30514970 PMCID: PMC6645400 DOI: 10.1038/s41573-018-0003-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For over 100 years, clinicians and scientists have been unravelling the consequences of the A to T substitution in the β-globin gene that produces haemoglobin S, which leads to the systemic manifestations of sickle cell disease (SCD), including vaso-occlusion, anaemia, haemolysis, organ injury and pain. However, despite growing understanding of the mechanisms of haemoglobin S polymerization and its effects on red blood cells, only two therapies for SCD - hydroxyurea and L-glutamine - are approved by the US Food and Drug Administration. Moreover, these treatment options do not fully address the manifestations of SCD, which arise from a complex network of interdependent pathophysiological processes. In this article, we review efforts to develop new drugs targeting these processes, including agents that reactivate fetal haemoglobin, anti-sickling agents, anti-adhesion agents, modulators of ischaemia-reperfusion and oxidative stress, agents that counteract free haemoglobin and haem, anti-inflammatory agents, anti-thrombotic agents and anti-platelet agents. We also discuss gene therapy, which holds promise of a cure, although its widespread application is currently limited by technical challenges and the expense of treatment. We thus propose that developing systems-oriented multi-agent strategies on the basis of SCD pathophysiology is needed to improve the quality of life and survival of people with SCD.
Collapse
Affiliation(s)
- Marilyn J Telen
- Division of Hematology, Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, USA.
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology and the Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Lunt A, Sturrock SS, Greenough A. Asthma and the outcome of sickle cell disease. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1547964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alan Lunt
- Department of Child Health, King’s College Hospital NHS Foundation Trust, London, UK
| | - Sarah S. Sturrock
- Department of Child Health, King’s College Hospital NHS Foundation Trust, London, UK
| | - Anne Greenough
- Department of Child Health, King’s College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Liou CJ, Cheng CY, Yeh KW, Wu YH, Huang WC. Protective Effects of Casticin From Vitex trifolia Alleviate Eosinophilic Airway Inflammation and Oxidative Stress in a Murine Asthma Model. Front Pharmacol 2018; 9:635. [PMID: 29962952 PMCID: PMC6010522 DOI: 10.3389/fphar.2018.00635] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/29/2018] [Indexed: 01/09/2023] Open
Abstract
Casticin has been isolated from Vitex trifolia and found to have anti-inflammatory and anti-tumor properties. We also previously discovered that casticin can reduce pro-inflammatory cytokines and ICAM-1 expression in inflammatory pulmonary epithelial cells. In the present study, we evaluated whether casticin reduced airway hyper-responsiveness (AHR), airway inflammation, and oxidative stress in the lungs of a murine asthma model and alleviated inflammatory and oxidative responses in tracheal epithelial cells. Female BALB/c mice were randomly divided into five groups: normal controls, ovalbumin (OVA)-induced asthma, and OVA-induced asthma treated with intraperitoneal injection of casticin (5 or 10 mg/kg) or prednisolone (5 mg/kg). Casticin reduced AHR, goblet cell hyperplasia, and oxidative responses in the lungs of mice with asthma. Mechanistic studies revealed that casticin attenuated the levels of Th2 cytokine in bronchoalveolar lavage fluids and regulated the expression of Th2 cytokine and chemokine genes in the lung. Casticin also significantly regulated oxidative stress and reduced inflammation in the lungs of mice with asthma. Consequently, inflammatory tracheal epithelial BEAS-2B cells treated with casticin had significantly suppressed levels of pro-inflammatory cytokines and eotaxin, and reduced THP-1 monocyte cell adherence to BEAS-2B cells via suppressed ICAM-1 expression. Thus, casticin is a powerful immunomodulator, ameliorating pathological changes by suppressing Th2 cytokine expression in mice with asthma.
Collapse
Affiliation(s)
- Chian-Jiun Liou
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yi-Hong Wu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Chung Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| |
Collapse
|
15
|
Kelaidi C, Kattamis A, Apostolakou F, Poziopoulos C, Lazaropoulou C, Delaporta P, Kanavaki I, Papassotiriou I. PlGF and sFlt-1 levels in patients with non-transfusion-dependent thalassemia: Correlations with markers of iron burden and endothelial dysfunction. Eur J Haematol 2018. [PMID: 29543340 DOI: 10.1111/ejh.13061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Levels of the angiogenic cytokines placental growth factor (PlGF) and soluble Fms-like tyrosine kinase-1 (sFlt-1) and the angiogenic balance, expressed by sFlt-1/PlGF ratio, are perturbed in sickle-cell disease and iron overload, but they have not been evaluated in non-transfusion-dependent thalassemia (NTDT). PATIENTS AND METHODS We measured levels of PlGF, sFlt-1 and vWF:antigen in patients with NTDT of beta-thalassemia genotype, and correlated them with erythrocytic indices and markers of iron overload, inflammation, and tissue hypoxia. Thirty-four NTDT patients with mean hemoglobin level of 8.4 g/dL were included in the study along with 20 apparently healthy individuals who served as controls. RESULTS Ferritin, LDH, and hs-CRP were higher in patients as compared to controls. We found significant differences between patients and controls in regard to levels of PlGF (52.2 vs 17.2 pg/mL, P < .001), sFlt-1/PlGF (2 vs 4.7, P < .001), and vWF:antigen (88 vs 77.1 IU/dL, P < .01). There was a strong correlation of ferritin with PlGF (r = .653, P < .001) and with vWF:antigen (r = .503, P = .003). CONCLUSIONS In this study, we demonstrated an association between increased PlGF and iron overload and the degree of tissue hypoxia in patients with NTDT. High vWF:antigen expressing endothelial damage may be associated with specific NTDT comorbidities.
Collapse
Affiliation(s)
- Charikleia Kelaidi
- Department of Pediatric Hematology-Oncology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Filia Apostolakou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christos Poziopoulos
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | | | - Polyxeni Delaporta
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ino Kanavaki
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
16
|
De A, Manwani D, Rastogi D. Airway inflammation in sickle cell disease-A translational perspective. Pediatr Pulmonol 2018; 53:400-411. [PMID: 29314737 DOI: 10.1002/ppul.23932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022]
Abstract
Asthma and sickle cell disease (SCD) are common chronic conditions in children of African ancestry that are characterized by cough, wheeze, and obstructive patterns on pulmonary function. Pulmonary function testing in children with SCD has estimated a prevalence of obstructive lung disease ranging from 13% to 57%, and airway hyper-responsiveness of up to 77%, independent of a diagnosis of asthma. Asthma co-existing with SCD is associated with increased risk of acute chest syndrome (ACS), respiratory symptoms, pain episodes, and death. However, there are inherent differences in the pathophysiology of SCD and asthma. While classic allergic asthma in the general population is associated with a T-helper 2 cell (Th-2 cells) pattern of cell inflammation, increased IgE levels and often positive allergy testing, inflammation in SCD is associated with different inflammatory pathways, involving neutrophilic and monocytic pathways, which have been explored to a limited extent in mouse models and with a dearth of human studies. The current review summarizes the existent literature on sickle cell related airway inflammation and its cross roads with allergic asthma-related inflammation, and discusses the importance of further elucidating and understanding these common and divergent inflammatory pathways in human studies to facilitate development of targeted therapy for children with SCD and pulmonary morbidity.
Collapse
Affiliation(s)
- Aliva De
- Division of Respiratory and Sleep Medicine, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Deepa Manwani
- Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Deepa Rastogi
- Division of Respiratory and Sleep Medicine, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
17
|
Willen SM, Rodeghier M, Strunk RC, Bacharier LB, Rosen CL, Kirkham FJ, DeBaun MR, Cohen RT. Aeroallergen sensitization predicts acute chest syndrome in children with sickle cell anaemia. Br J Haematol 2018; 180:571-577. [PMID: 29363738 DOI: 10.1111/bjh.15076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/21/2017] [Indexed: 12/15/2022]
Abstract
Asthma is associated with higher rates of acute chest syndrome (ACS) and vaso-occlusive pain episodes among children with sickle cell anaemia (SCA). Aeroallergen sensitization is a risk factor for asthma. We hypothesized that aeroallergen sensitization is associated with an increased incidence of hospitalizations for ACS and pain. Participants in a multicentre, longitudinal cohort study, aged 4-18 years with SCA, underwent skin prick testing to ten aeroallergens. ACS and pain episodes were collected from birth until the end of the follow-up period. The number of positive skin tests were tested for associations with prospective rates of ACS and pain. Multivariable models demonstrated additive effects of having positive skin tests on future rates of ACS (incidence rate ratio (IRR) for each positive test 1·23, 95% confidence interval [CI] 1·11-1·36, P < 0·001). Aeroallergen sensitization was not associated with future pain (IRR 1·14, 95%CI 0·97-1·33, P = 0·11). Our study demonstrated that children with SCA and aeroallergen sensitization are at increased risk for future ACS. Future research is needed to determine whether identification of specific sensitizations and allergen avoidance and treatment reduce the risk of ACS for children with SCA.
Collapse
Affiliation(s)
- Shaina M Willen
- Department of Pediatrics, Division of Hematology/Oncology, Vanderbilt-Meharry Center for Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Robert C Strunk
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Leonard B Bacharier
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Carol L Rosen
- Department of Pediatrics, Division of Pediatric Pulmonary, Allergy/Immunology and Sleep, University Hospitals-Cleveland Medical Center, Rainbow Babies and Children's Hospitals, Cleveland, OH, USA
| | - Fenella J Kirkham
- Developmental Neurosciences Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Michael R DeBaun
- Department of Pediatrics, Division of Hematology/Oncology, Vanderbilt-Meharry Center for Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robyn T Cohen
- Department of Pediatrics, Division of Pediatric Pulmonary & Allergy, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
18
|
Cohen RT, Klings ES. Commentary: Heterogeneity of respiratory disease in children and young adults with sickle cell disease. Thorax 2018; 73:503. [PMID: 29353255 DOI: 10.1136/thoraxjnl-2017-211370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Robyn T Cohen
- Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Elizabeth S Klings
- Department of Medicine, The Pulmonary Center, Boston University Medical Campus, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Gu JM, Yuan S, Sim D, Abe K, Liu P, Rosenbruch M, Bringmann P, Kauser K. Blockade of placental growth factor reduces vaso-occlusive complications in murine models of sickle cell disease. Exp Hematol 2018; 60:73-82.e3. [PMID: 29337222 DOI: 10.1016/j.exphem.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
Vaso-occlusive crisis (VOC) is the most common and debilitating complication of sickle cell disease (SCD); recurrent episodes cause organ damage and contribute to early mortality. Plasma placental growth factor (PlGF) levels are elevated in SCD and can further increase under hypoxic conditions in SCD mice. Treatment with a PlGF-neutralizing antibody (anti-PlGF Ab) in SCD mice reduced levels of monocyte chemoattractant protein-3, eotaxin, macrophage colony-stimulating factor, and plasminogen activator inhibitor-1 significantly, and of macrophage-derived chemokine and macrophage inflammatory protein-3β moderately; this may contribute to inhibition of leukocyte recruitment, activation, and thrombosis. In subsequent experiments, anti-PlGF Ab treatment significantly reduced plasma lactate dehydrogenase levels, indicating possible reduction in cellular destruction and/or hemolysis. Histopathology studies revealed decreased incidence and severity of congestion in the lungs and spleen with repeated anti-PlGF Ab treatment. Furthermore, anti-PlGF Ab significantly reduced vaso-occlusion events under hypoxic conditions in a modified dorsal skinfold chamber model in SCD mice. Therefore, elevated PlGF levels may contribute to recruitment and activation of leukocytes. This can subsequently lead to increased pathology of affected organs in addition to mediating acute hypoxia/reoxygenation-triggered vaso-occlusion under SCD conditions. Thus, targeting PlGF may offer a therapeutic approach to reduce acute VOC and possibly alleviate long-term vascular complications in patients with SCD.
Collapse
Affiliation(s)
- Jian-Ming Gu
- Bayer, U.S. Innovation Center, San Francisco, California.
| | - Shujun Yuan
- Bayer, U.S. Innovation Center, San Francisco, California.
| | - Derek Sim
- Bayer, U.S. Innovation Center, San Francisco, California
| | - Keith Abe
- Bayer, U.S. Innovation Center, San Francisco, California
| | - Perry Liu
- Bayer, U.S. Innovation Center, San Francisco, California
| | | | | | - Katalin Kauser
- Bayer, U.S. Innovation Center, San Francisco, California
| |
Collapse
|
20
|
Willen SM, Rodeghier M, Strunk RC, Rosen CL, Kirkham FJ, Field JJ, DeBaun MR, Cohen RT. Airway Hyperresponsiveness Does Not Predict Morbidity in Children with Sickle Cell Anemia. Am J Respir Crit Care Med 2017; 195:1533-1534. [PMID: 28569575 DOI: 10.1164/rccm.201610-1970le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Shaina M Willen
- 1 Vanderbilt University School of Medicine Nashville, Tennessee.,2 Monroe Carell Jr. Children's Hospital at Vanderbilt Nashville, Tennessee
| | | | - Robert C Strunk
- 4 Washington University School of Medicine St Louis, Missouri
| | - Carol L Rosen
- 5 University Hospitals-Cleveland Medical Center Cleveland, Ohio
| | | | | | - Michael R DeBaun
- 1 Vanderbilt University School of Medicine Nashville, Tennessee.,2 Monroe Carell Jr. Children's Hospital at Vanderbilt Nashville, Tennessee
| | - Robyn T Cohen
- 8 Boston University School of Medicine Boston, Massachusetts
| |
Collapse
|
21
|
Ko JW, Shin NR, Park SH, Cho YK, Kim JC, Seo CS, Shin IS. Genipin inhibits allergic responses in ovalbumin-induced asthmatic mice. Int Immunopharmacol 2017; 53:49-55. [PMID: 29035815 DOI: 10.1016/j.intimp.2017.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 12/18/2022]
Abstract
Genipin is a natural compound isolated from the fruit of Gardenia jasminoides with various pharmacological effects. In this study, we investigated whether genipin effectively alleviates allergic responses in a murine model of ovalbumin (OVA)-induced asthma. The mice were administered an intraperitoneal injection of OVA on day 0 and 14 to boost the immune response; genipin was then administered from day 18 to 23 by oral gavage. On days 21 to 23, mice were OVA-challenged using am ultrasonic nebulizer, and airway hyperresponsiveness (AHR) was determined on day 24 by plethysmography. Genipin significantly reduced the inflammatory cell count in bronchoalveolar lavage fluids (BALF) and AHR, which were accompanied by lower interleukin-5 (IL-5), IL-13 and OVA-specific immunoglobulin (Ig) E levels in the BALF or serum from OVA-induced asthmatic mice. In histology, genipin significantly decreased airway inflammation and mucus hypersecretion in OVA-induced asthmatic mice. Additionally, genipin inhibited OVA-induced increases in the expression of inducible nitric oxide synthase and cyclooxygenase-2 proteins. Further, genipin reduced the activity and protein levels of matrix metalloproteinase-9 in lung tissue from OVA induced asthmatic mice. Overall, genipin effectively alleviated the asthmatic inflammatory response in an OVA-induced asthmatic model. Therefore, our results suggest that genipin has therapeutic potential for treating asthma.
Collapse
Affiliation(s)
- Je-Won Ko
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Na-Rae Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sung-Hyeuk Park
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu Cheongju-si, Chungbuk 28503, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Chang-Seob Seo
- K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
22
|
Placenta growth factor mediated gene regulation in sickle cell disease. Blood Rev 2017; 32:61-70. [PMID: 28823762 DOI: 10.1016/j.blre.2017.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023]
Abstract
Sickle cell anemia (SCA) is an autosomal recessive disorder caused by mutation in the β-globin gene. Pulmonary hypertension (PH), a complication of SCA, results in severe morbidity and mortality. PH is a multifactorial disease: systemic vasculopathy, pulmonary vasoconstriction, and endothelial dysfunction and remodeling. Placenta growth factor (PlGF), an angiogenic growth factor, elaborated from erythroid cells, has been shown to contribute to inflammation, pulmonary vasoconstriction and airway hyper-responsiveness (AH) in mouse models of sickle cell disease. In this review, we summarize the cell-signaling mechanism(s) by which PlGF regulates the expression of genes involved in inflammation, PH and AH in cell culture and corroborate these findings in mouse models of SCA and in individuals with SCA. The role of microRNAs (miRNAs) in the post-transcriptional regulation of these genes is presented and how these miRNAs located in their host genes are transcriptionally regulated. An understanding of the transcriptional regulation of these miRNAs provides a new therapeutic approach to ameliorate the clinical manifestations of SCA.
Collapse
|
23
|
Abstract
Leukotrienes are proinflammatory lipid mediators that have been shown to be upregulated in several diseases, including asthma, aspirin-exacerbated respiratory disease (AERD), inflammatory bowel disease, and acute respiratory distress syndrome. Leukotrienes have been explored as therapeutic targets for these diseases and others; however, leukotriene inhibitors have had limited success in the clinic. There are noted differences in the incidence of leukotriene-mediated diseases in males and females, but sex as a factor in the response to leukotriene inhibitors has not been fully explored. In this issue of the JCI, Pace and colleagues present evidence that there are sex-specific differences in the effectiveness of certain leukotriene inhibitors and link the differences in response to the presence of androgens. The results of this study indicate that sex needs to be taken into consideration in the future evaluation of leukotriene inhibitors to treat disease.
Collapse
|
24
|
Jensen-Jarolim E, Pali-Schöll I, Roth-Walter F. Outstanding animal studies in allergy I. From asthma to food allergy and anaphylaxis. Curr Opin Allergy Clin Immunol 2017; 17:169-179. [PMID: 28346234 PMCID: PMC5424575 DOI: 10.1097/aci.0000000000000363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Animal models published within the past 18 months on asthma, food allergy and anaphylaxis, all conditions of rising public health concern, were reviewed. RECENT FINDINGS While domestic animals spontaneously develop asthma, food allergy and anaphylaxis, in animal models, divergent sensitization and challenge routes, dosages, intervals and antigens are used to induce asthmatic, food allergic or anaphylactic phenotypes. This must be considered in the interpretation of results. Instead of model antigens, gradually relevant allergens such as house dust mite in asthma, and food allergens like peanut, apple and peach in food allergy research were used. Novel engineered mouse models such as a mouse with a T-cell receptor for house dust mite allergen Der p 1, or with transgenic human hFcγR genes, facilitated the investigation of single molecules of interest. Whole-body plethysmography has become a state-of-the-art in-vivo readout in asthma research. In food allergy and anaphylaxis research, novel techniques were developed allowing real-time monitoring of in-vivo effects following allergen challenge. Networks to share tissues were established as an effort to reduce animal experiments in allergy which cannot be replaced by in-vitro measures. SUMMARY Natural and artificial animal models were used to explore the pathophysiology of asthma, food allergy and anaphylaxis and to improve prophylactic and therapeutic measures. Especially the novel mouse models mimicking molecular aspects of the complex immune network in asthma, food allergy and anaphylaxis will facilitate proof-of-concept studies under controlled conditions.
Collapse
Affiliation(s)
- Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
| | - Franziska Roth-Walter
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Neutrophilic Inflammation in the Immune Responses of Chronic Obstructive Pulmonary Disease: Lessons from Animal Models. J Immunol Res 2017; 2017:7915975. [PMID: 28536707 PMCID: PMC5426078 DOI: 10.1155/2017/7915975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of mortality worldwide, which is characterized by chronic bronchitis, destruction of small airways, and enlargement/disorganization of alveoli. It is generally accepted that the neutrophilic airway inflammation observed in the lungs of COPD patients is intrinsically linked to the tissue destruction and alveolar airspace enlargement, leading to disease progression. Animal models play an important role in studying the underlying mechanisms of COPD as they address questions involving integrated whole body responses. This review aims to summarize the current animal models of COPD, focusing on their advantages and disadvantages on immune responses and neutrophilic inflammation. Also, we propose a potential new animal model of COPD, which may mimic the most characteristics of human COPD pathogenesis, including persistent moderate-to-high levels of neutrophilic inflammation.
Collapse
|
26
|
Newell LF, Holtan SG. Placental growth factor: What hematologists need to know. Blood Rev 2017; 31:57-62. [PMID: 27608972 PMCID: PMC5916812 DOI: 10.1016/j.blre.2016.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022]
Abstract
Although first identified in placenta, the angiogenic factor known as placental growth factor (PlGF) can be widely expressed in ischemic or damaged tissues. Recent studies have indicated that PlGF is a relevant factor in the pathobiology of blood diseases including hemoglobinopathies and hematologic malignancies. Therapies for such blood diseases may one day be based upon these and ongoing investigations into the role of PlGF in sickle cell disease, acute and chronic leukemias, and complications related to hematopoietic cell transplantation. In this review, we summarize recent studies regarding the potential role of PlGF in blood disorders and suggest avenues for future research.
Collapse
Affiliation(s)
- Laura F Newell
- Oregon Health and Science University, Center for Hematologic Malignancies, Portland, OR, USA.
| | - Shernan G Holtan
- University of Minnesota, Blood and Marrow Transplant Program, Minneapolis, MN, USA.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Sickle cell disease (SCD) afflicts millions worldwide. The simplicity of its single nucleotide mutation belies the biological and psychosocial complexity of the disease. Despite only a single approved drug specifically for the treatment of SCD, new findings reviewed from 2015 provide the direction forward. RECENT FINDINGS The last year has provided a wealth of support for mechanisms affecting the red cell, hemolysis and vasculopathy, the innate immune system activation, blood cell and endothelial adhesiveness, central sensitization to pain, and chronic brain injury. The evidence supporting expanded use of hydroxyurea continues to mount. Many promising therapies are reaching clinical trial, including curative therapies, with more on the horizon. SUMMARY Evidence is compelling that the use of hydroxyurea must be expanded by clinicians to gain the full pleiotropic benefits of this approved drug. Clinicians must become aware that severe acute and chronic pain has a biological and neurologic basis, and the understanding of this basis is growing. Researchers are testing investigational therapies at an unprecedented pace in SCD, and partnership between patients, researchers, and the private sector provides the most rapid and productive way forward.
Collapse
|
28
|
Telen MJ. Developing new pharmacotherapeutic approaches to treating sickle-cell disease. ACTA ACUST UNITED AC 2016; 12:239-247. [PMID: 28484512 DOI: 10.1111/voxs.12305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Survival for patients with SCD has been prolonged by improvements in supportive care, including vaccinations, antibiotic prophylaxis, and overall medical management, including tra nsfusion. However, there remains only one approved, partially effective drug for sickle cell disease-hydroxyurea (hydroxycarbamide). The world desperately needs better ways of both treating and preventing the recurrent painful vaso-occlusive episodes pathognomonic of sickle cell disease as well as the end-organ damage that still leads inexorably to severely shortened life expectancies throughout the world. Based on accumulating knowledge about how the abnormal red blood cells of sickle cell disease cause the double scourge of acute painful episodes and progressive end-organ damage, both pharmaceutical enterprises and individual investigators are now pursuing multiple new avenues for treating sickle cell disease. As a result, many compounds are in active development, both in preclinical models as well as in phase I, II, and III clinical trials. These agents target many pathophysiologic processes thought to be critical in sickle cell disease, including the chemical and physical behavior of haemoglobin S, cell adhesion, coagulation pathways, platelet activation, inflammatory pathways, and upregulation of haemoglobin F expression. In addition, recent explorations of the genetic variations that predispose to certain types of sickle cell disease-related tissue injury, such as stroke or nephropathy, are expected to lead to identification of drugs targeting the pathways uncovered by such work. Thus, the next five to ten years holds a promise of new treatments for sickle cell disease.
Collapse
Affiliation(s)
- Marilyn J Telen
- Division of Hematology, Department of Medicine, Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, USA, Box 2615 DUMC, Durham, NC 27710, TEL: +1 919 684 5378, FAX: +1 919 681 7688,
| |
Collapse
|
29
|
Knockdown of placental growth factor (PLGF) mitigates hyperoxia-induced acute lung injury in neonatal rats: Suppressive effects on NFκB signaling pathway. Int Immunopharmacol 2016; 38:167-74. [DOI: 10.1016/j.intimp.2016.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/20/2016] [Accepted: 05/30/2016] [Indexed: 11/17/2022]
|
30
|
The heart in sickle cell disease, a model for heart failure with preserved ejection fraction. Proc Natl Acad Sci U S A 2016; 113:9670-2. [PMID: 27512036 DOI: 10.1073/pnas.1611899113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|