1
|
Kumar A, Zeleny A, Bellur S, Kesav N, Oyeniran E, Olke KG, Vitale S, Kongwattananon W, Sen HN, Kodati S. Characterization of Retinal Microvascular Abnormalities in Birdshot Chorioretinopathy Using OCT Angiography. OPHTHALMOLOGY SCIENCE 2024; 4:100559. [PMID: 39165693 PMCID: PMC11334704 DOI: 10.1016/j.xops.2024.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 08/22/2024]
Abstract
Objective To characterize changes in the retinal microvasculature in eyes with birdshot chorioretinopathy (BCR) using OCT angiography (OCTA). Design Retrospective, observational, single center. Subjects Twenty-eight patients (53 eyes) with BCR and 59 age-matched controls (110 eyes). Methods En face OCTA images of the superficial capillary plexus (SCP) and deep capillary plexus (DCP) of each eye were assessed for the presence of microvascular abnormalities and used to measure the vessel and foveal avascular zone (FAZ) areas. A longitudinal analysis was performed with a representative cohort of 23 BCR eyes (16 patients) at baseline and at a 2-year time point. Main Outcome Measures Whole-image vessel density (VD, %), extrafoveal avascular zone (extra-FAZ) VD (%), and FAZ area (%) were calculated and compared between control and BCR eyes. The frequency of microvascular abnormalities in BCR eyes was recorded. Results In the SCP, increased intercapillary space and capillary loops were common features present on OCTA images. Whole-image and extra-FAZ VD were lower in the BCR group compared with controls (P < 0.0001 [SCP and DCP]). Foveal avascular zone area was enlarged in BCR eyes (P = 0.0008 [DCP]). Worsening best-corrected visual acuity was associated with a decrease in whole-image and extra-FAZ VD in the SCP (P < 0.0001 for both) and the DCP (P < 0.005 for both). Multivariable analysis, with vessel analysis parameters as outcomes, demonstrated that increasing age, increasing disease duration, lower central subfield thickness, and treatment-naive eyes (compared with those on only biologics) were associated with a significant decrease in both DCP whole-image and extra-FAZ VD. Increasing disease duration was associated with a significant decrease in both SCP whole-image and extra-FAZ VD. Longitudinal analysis demonstrated no significant difference in any vessel analysis parameters except for an increase in DCP FAZ area. Conclusions Our results demonstrate a significant a decrease in VD in BCR eyes and an association on multivariable analysis with disease duration. Quantifying VD in the retinal microvasculature may be a useful biomarker for monitoring disease severity and progression in patients with BCR. Further studies with extended longitudinal follow-up are needed to characterize its utility in monitoring disease progression and treatment response. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Aman Kumar
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Alexander Zeleny
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Sunil Bellur
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Natasha Kesav
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Enny Oyeniran
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Kübra Gul Olke
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Susan Vitale
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | | | - H. Nida Sen
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Shilpa Kodati
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
- Kellogg Eye Center, Department of Ophthalmology, University of Michigan
| |
Collapse
|
2
|
Chen LM, Kang M, Wang JY, Xu SH, Chen C, Wei H, Ling Q, He LQ, Zou J, Wang YX, Chen X, Ying P, Huang H, Shao Y, Wu R. Microvascular alterations of the ocular surface and retina in connective tissue disease-related interstitial lung disease. Int J Ophthalmol 2024; 17:1869-1879. [PMID: 39430022 PMCID: PMC11422355 DOI: 10.18240/ijo.2024.10.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 10/22/2024] Open
Abstract
AIM To examine the disparities in macular retinal vascular density between individuals with connective tissue disease-related interstitial lung disease (CTD-ILD) and healthy controls (HCs) by optical coherence tomography angiography (OCTA) and to investigate the changes in microvascular density in abnormal eyes. METHODS For a retrospective case-control study, a total of 16 patients (32 eyes) diagnosed with CTD-ILD were selected as the ILD group. The 16 healthy volunteers with 32 eyes, matched in terms of age and sex with the patients, were recruited as control group. The macular retina's superficial retinal layer (SRL) and deep retinal layer (DRL) were examined and scanned using OCTA in each individual eye. The densities of retinal microvascular (MIR), macrovascular (MAR), and total microvascular (TMI) were calculated and compared. Changes in retinal vascular density in the macular region were analyzed using three different segmentation methods: central annuli segmentation method (C1-C6), hemispheric segmentation method [uperior right (SR), superior left (SL), inferior left (IL), and inferior right (IR)], and Early Treatment Diabetic Retinopathy Study (ETDRS) methods [superior (S), inferior (I), left (L), and right (R)]. The data were analyzed using Version 9.0 of GraphPad prism and Pearson analysis. RESULTS The OCTA data demonstrated a statistically significant difference (P<0.05) in macular retinal microvessel density between the two groups. Specifically, in the SRL and DRL analyses, the ILD group exhibited significantly lower surface density of MIR and TMI compared to the HCs group (P<0.05). Furthermore, using the hemispheric segmentation method, the ILD group showed notable reductions in SL, SR, and IL in the superficial retina (P<0.05), as well as marked decreases in SL and IR in the deep retina (P<0.05). Similarly, when employing the ETDRS method, the ILD group displayed substantial drops in superficial retinal S and I (P<0.05), along with notable reductions in deep retinal L, I, and R (P<0.05). In the central annuli segmentation method, the ILD group exhibited a significant decrease in the superficial retinal C2-4 region (P<0.05), whereas the deep retina showed a notable reduction in the C3-5 region (P<0.05). Additionally, there was an observed higher positive likelihood ratio in the superficial SR region and deep MIR. Furthermore, there was a negative correlation between conjunctival vascular density and both deep and superficial retinal TMI (P<0.001). CONCLUSION Patients with CTD-ILD exhibits a significantly higher conjunctival vascular density compared to the HCs group. Conversely, their fundus retinal microvascular density is significantly lower. Furthermore, CTD-ILD patients display notably lower superficial and deep retinal vascular density in comparison to the HCs group. The inverse correlation between conjunctival vascular density and both superficial and deep retinal TMI suggests that detecting subtle changes in ocular microcirculation could potentially serve as an early diagnostic indicator for connective tissue diseases, thereby enhancing disease management.
Collapse
Affiliation(s)
- Li-Ming Chen
- Department of Rheumatology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Min Kang
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jun-Yi Wang
- The First School of Clinical Medicine of Nanchang University, Jiangxi Medical College of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - San-Hua Xu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cheng Chen
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hong Wei
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qian Ling
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Liang-Qi He
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jie Zou
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi-Xin Wang
- School of Optometry and Vision Science, Cardiff University, Cardiff, CF24 4HQ, Wales, UK
| | - Xu Chen
- Ophthalmology Centre of Maastricht University, Maastricht 6200MS, Limburg Provincie, Netherlands
| | - Ping Ying
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hui Huang
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200030, China
| | - Rui Wu
- Department of Rheumatology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
3
|
Moraru AD, Danielescu C, Iorga RE, Moraru RL, Zemba M, Branisteanu DC. Review of Guideline Recommendations for Optimal Anti-VEGF Therapy in Age-Related Macular Degeneration. Life (Basel) 2024; 14:1220. [PMID: 39459520 PMCID: PMC11508937 DOI: 10.3390/life14101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Neovascular age-related macular degeneration is a progressive, blinding macular disease that has become a burden both in healthcare systems and the global economy. The vascular endothelial growth factor (VEGF) is the main agent involved in the pathogenic process of the disease. The main goal of the age-related macular degeneration treatment is to maintain and improve visual acuity by injecting intravitreal anti-VEGF agents in either a reactive or proactive manner. Subretinal and intraretinal fluids are the main biomarkers that should be considered when managing the frequency of the therapy. This review discusses both functional and morphological treatment criteria according to current recommendations as opposed to real-life situations encountered during day-to-day clinical practice and highlights situations in which the benefits of continuing therapy are arguable in terms of improving patients' quality of life. Optimizing the treatment regimen represents an important aim of current clinical ophthalmological practice, as age-related macular degeneration patients usually have a long follow-up period.
Collapse
Affiliation(s)
- Andreea Dana Moraru
- Department of Ophthalmology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania; (A.D.M.); (D.C.B.)
- Department of Ophthalmology, ‘N. Oblu’ Clinical Hospital, 700309 Iași, Romania
| | - Ciprian Danielescu
- Department of Ophthalmology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania; (A.D.M.); (D.C.B.)
- Department of Ophthalmology, ‘N. Oblu’ Clinical Hospital, 700309 Iași, Romania
| | - Raluca Eugenia Iorga
- Department of Ophthalmology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania; (A.D.M.); (D.C.B.)
- Department of Ophthalmology, ‘N. Oblu’ Clinical Hospital, 700309 Iași, Romania
| | | | - Mihail Zemba
- Department of Ophthalmology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Daniel Constantin Branisteanu
- Department of Ophthalmology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania; (A.D.M.); (D.C.B.)
- Department of Ophthalmology, Railway Clinical Hospital, 700506 Iași, Romania
| |
Collapse
|
4
|
Moreno-Martínez A, Blanco-Marchite C, Andres-Pretel F, López-Martínez F, Donate-Tercero A, González-Aquino E, Cava-Valenciano C, Panozzo G, Copete S. ESASO classification relevance in the diagnosis and evolution in diabetic macular edema patients after dexamethasone implant treatment. Graefes Arch Clin Exp Ophthalmol 2024; 262:2813-2821. [PMID: 38573350 DOI: 10.1007/s00417-024-06473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
PURPOSE To assess the clinical relevance of The European School for Advanced Studies in Ophthalmology (ESASO) classification in patients with diabetic macular edema (DME) after their first dexamethasone implant (DEXI) treatment. METHODS Retrospective real-world study conducted on consecutive DME patients who underwent DEXI treatment and were controlled at month-2. Subjects were initially classified according to the ESASO classification stages. The outcomes were anatomical biomarkers with spectral-domain optical coherence tomography (SD-OCT) and best-corrected visual acuity (BCVA). RESULTS A total of 128 patients were classified according to ESASO classification stages as early (7; 5.5%), advanced (100; 78.1%), and severe (21; 16.4%). At baseline, there were significant differences between stages in BCVA, central macular thickness (CMT), and tomography anatomical biomarkers (p < 0.05). Initial BCVA (logMAR) was 0.33 ± 0.10, 0.58 ± 0.34, and 0.71 ± 0.35 in the early, advanced, and severe stages, respectively (p < 0.05). At month-2, BCVA was 0.17 ± 0.15, 0.46 ± 0.29, and 0.69 ± 0.27 in those classified as early, advanced, and severe stages, respectively. At month-2, DME was resolved or improved in 6 (85.7%), 60 (60%), and 12 (60%) patients classified as early, advanced, and severe stages, respectively. CONCLUSIONS There was a good correlation between BCVA and ESASO classification stages. Patients in the severe stage did not achieve visual acuity improvement over the study period.
Collapse
Affiliation(s)
- Almudena Moreno-Martínez
- Department of Ophthalmology, Albacete University Hospital Complex, C/ Seminario, 4, E-02006, Albacete, Spain.
| | - Cristina Blanco-Marchite
- Department of Ophthalmology, Albacete University Hospital Complex, C/ Seminario, 4, E-02006, Albacete, Spain
| | - Fernando Andres-Pretel
- Department of Ophthalmology, Albacete University Hospital Complex, C/ Seminario, 4, E-02006, Albacete, Spain
| | - Francisco López-Martínez
- Department of Ophthalmology, Albacete University Hospital Complex, C/ Seminario, 4, E-02006, Albacete, Spain
| | - Antonio Donate-Tercero
- Department of Ophthalmology, Albacete University Hospital Complex, C/ Seminario, 4, E-02006, Albacete, Spain
| | - Eva González-Aquino
- Department of Ophthalmology, Albacete University Hospital Complex, C/ Seminario, 4, E-02006, Albacete, Spain
| | - Carlos Cava-Valenciano
- Department of Ophthalmology, Albacete University Hospital Complex, C/ Seminario, 4, E-02006, Albacete, Spain
| | | | - Sergio Copete
- Department of Ophthalmology, Albacete University Hospital Complex, C/ Seminario, 4, E-02006, Albacete, Spain
| |
Collapse
|
5
|
Zhang Y, Shen X, Deng S, Chen Q, Xu B. Neural Regulation of Vascular Development: Molecular Mechanisms and Interactions. Biomolecules 2024; 14:966. [PMID: 39199354 PMCID: PMC11353022 DOI: 10.3390/biom14080966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
As a critical part of the circulatory system, blood vessels transport oxygen and nutrients to every corner of the body, nourishing each cell, and also remove waste and toxins. Defects in vascular development and function are closely associated with many diseases, such as heart disease, stroke, and atherosclerosis. In the nervous system, the nervous and vascular systems are intricately connected in both development and function. First, peripheral blood vessels and nerves exhibit parallel distribution patterns. In the central nervous system (CNS), nerves and blood vessels form a complex interface known as the neurovascular unit. Second, the vascular system employs similar cellular and molecular mechanisms as the nervous system for its development. Third, the development and function of CNS vasculature are tightly regulated by CNS-specific signaling pathways and neural activity. Additionally, vascular endothelial cells within the CNS are tightly connected and interact with pericytes, astrocytes, neurons, and microglia to form the blood-brain barrier (BBB). The BBB strictly controls material exchanges between the blood and brain, maintaining the brain's microenvironmental homeostasis, which is crucial for the normal development and function of the CNS. Here, we comprehensively summarize research on neural regulation of vascular and BBB development and propose directions for future research.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xinyu Shen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Shunze Deng
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Qiurong Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
6
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. Neuron 2024; 112:1978-1996.e6. [PMID: 38599212 PMCID: PMC11189759 DOI: 10.1016/j.neuron.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Interactions among neuronal, glial, and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA sequencing (scRNA-seq), and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1-/- retinas where neurons fail to release glutamate. By contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1-/- retinas, where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1-/- retinas and upregulated in Gnat1-/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1-/- retinas rescues defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Panos Arvanitis
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Danny Jamoul
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; John Jay College of Criminal Justice, City University of New York, New York, NY 10019, USA
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dritan Agalliu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
7
|
Johnson DA, Doble N, Choi SS. Quantitative Analysis of the Vasculature and Cone Photoreceptors in Subjects With Diabetes Without Diabetic Retinopathy. Curr Eye Res 2024; 49:650-662. [PMID: 38407181 DOI: 10.1080/02713683.2024.2320787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
PURPOSE To characterize any differences in the vasculature and cone photoreceptor packing geometry (CPG) between subjects with diabetes without/no diabetic retinopathy (NDR) and healthy controls. METHODS Eight NDR and five controls were enrolled. Optical coherence tomography angiography (OCTA) taken at the macula was used to measure vessel density, vessel length density, and vessel density index (VDI) in three vascular plexuses, namely, the superficial vascular plexus, intermediate capillary plexus, and deep capillary plexus (DCP). The choriocapillaris (CC) flow deficit (FD) was also measured. OCTA images were binarized and processed to extrapolate the parafovea and parafoveal quadrants and the OCTA indices mentioned above. The CC was processed with six different radii to quantify FD. Adaptive optics - scanning laser ophthalmoscopy images were acquired and processed to extract CPG indices, i.e., cone density (CD), cone-to-cone spacing (CS), linear dispersion index, heterogeneity packing index and percent of cells with six neighbors at 3.6° in the temporal retina. RESULTS In all eyes, statistically significant differences were found (i) in parafoveal FD across the six radii (p < 0.001) and (ii) in the correlation between the parafoveal temporal quadrant (PTQ) DCP VDI and CS (r = 0.606, p = 0.048). No other significant correlations were found. For OCTA or CPG indices, no significant differences were found between the cohorts in the parafovea or parafoveal quadrants. CONCLUSIONS CS is the most sensitive CPG index for detecting alterations in the cone mosaic. The DCP and the cone photoreceptors are significantly correlated, indicating that alterations in the DCP can affect the cones. Future work elucidating the vascular alterations and neurodegeneration present in diabetic eyes should focus on the DCP and multiple CPG indices, not solely CD. Moreover, such alterations are highly localized, hence using larger regions e.g. parafovea versus smaller areas, such as the PTQ, will potentially mask significant correlations.
Collapse
Affiliation(s)
- Danae A Johnson
- College of Optometry, The Ohio State University, Columbus, OH, USA
| | - Nathan Doble
- College of Optometry, The Ohio State University, Columbus, OH, USA
- Department of Ophthalmology and Vision Science, Havener Eye Institute, The Ohio State University, Columbus, OH, USA
| | - Stacey S Choi
- College of Optometry, The Ohio State University, Columbus, OH, USA
- Department of Ophthalmology and Vision Science, Havener Eye Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Toma K, Zhao M, Zhang S, Wang F, Graham HK, Zou J, Modgil S, Shang WH, Tsai NY, Cai Z, Liu L, Hong G, Kriegstein AR, Hu Y, Körbelin J, Zhang R, Liao YJ, Kim TN, Ye X, Duan X. Perivascular neurons instruct 3D vascular lattice formation via neurovascular contact. Cell 2024; 187:2767-2784.e23. [PMID: 38733989 PMCID: PMC11223890 DOI: 10.1016/j.cell.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.
Collapse
Affiliation(s)
- Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Mengya Zhao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Shaobo Zhang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Fei Wang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Hannah K Graham
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Zou
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Shweta Modgil
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wenhao H Shang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Y Tsai
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Zhishun Cai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Liping Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Guiying Hong
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruobing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tyson N Kim
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Xin Ye
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA.
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA; Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Haddad C, Baleine M, Motulsky E. An OCT-A Analysis of the Importance of Intermediate Capillary Plexus in Diabetic Retinopathy: A Brief Review. J Clin Med 2024; 13:2516. [PMID: 38731048 PMCID: PMC11084716 DOI: 10.3390/jcm13092516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Optical coherence tomography-angiography is a technique that allows us to non-invasively study in vivo the different retinal vascular networks. This allows a deeper understanding of retinal capillary anatomy and function, in addition to the pathophysiologic changes encountered in diverse diseases. The four retinal capillary layers have different anatomies and functions, implying distinct adaptation and roles in the course of the diseases. Diabetic retinopathy is the leading cause of blindness in working-age adults. Several studies have evaluated how each retinal capillary layer is specifically affected according to the stage of the disease. Unfortunately, too few studies have considered the intermediate capillary plexus as a separate layer, as it has often been incorporated in another layer. In this review, we shed light on the potential role the intermediate capillary plexus plays in the physiopathology of diabetic retinal disease as well as its potential use in grading diabetic retinopathy and its clinical added value in estimating the disease prognosis.
Collapse
Affiliation(s)
| | | | - Elie Motulsky
- Department of Ophthalmology, Hôpital Universitaire de Bruxelles, Erasme Hospital, 1070 Brussels, Belgium; (C.H.); (M.B.)
| |
Collapse
|
10
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548410. [PMID: 37503079 PMCID: PMC10369888 DOI: 10.1101/2023.07.10.548410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Interactions among neuronal, glial and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA-sequencing and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1 -/- retinas where neurons fail to release glutamate. In contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1 -/- retinas where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1 -/- retinas, and upregulated in Gnat1 -/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1 -/- retinas rescued defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
|
12
|
Britten-Jones AC, Thai L, Flanagan JPM, Bedggood PA, Edwards TL, Metha AB, Ayton LN. Adaptive optics imaging in inherited retinal diseases: A scoping review of the clinical literature. Surv Ophthalmol 2024; 69:51-66. [PMID: 37778667 DOI: 10.1016/j.survophthal.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Adaptive optics (AO) imaging enables direct, objective assessments of retinal cells. Applications of AO show great promise in advancing our understanding of the etiology of inherited retinal disease (IRDs) and discovering new imaging biomarkers. This scoping review systematically identifies and summarizes clinical studies evaluating AO imaging in IRDs. Ovid MEDLINE and EMBASE were searched on February 6, 2023. Studies describing AO imaging in monogenic IRDs were included. Study screening and data extraction were performed by 2 reviewers independently. This review presents (1) a broad overview of the dominant areas of research; (2) a summary of IRD characteristics revealed by AO imaging; and (3) a discussion of methodological considerations relating to AO imaging in IRDs. From 140 studies with AO outcomes, including 2 following subretinal gene therapy treatments, 75% included fewer than 10 participants with AO imaging data. Of 100 studies that included participants' genetic diagnoses, the most common IRD genes with AO outcomes are CNGA3, CNGB3, CHM, USH2A, and ABCA4. Confocal reflectance AO scanning laser ophthalmoscopy was the most reported imaging modality, followed by flood-illuminated AO and split-detector AO. The most common outcome was cone density, reported quantitatively in 56% of studies. Future research areas include guidelines to reduce variability in the reporting of AO methodology and a focus on functional AO techniques to guide the development of therapeutic interventions.
Collapse
Affiliation(s)
- Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| | - Lawrence Thai
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jeremy P M Flanagan
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Phillip A Bedggood
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Thomas L Edwards
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Andrew B Metha
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Westenskow PD. Neurovascular signaling: Irrigating the retina. Curr Biol 2023; 33:R1193-R1194. [PMID: 37989097 DOI: 10.1016/j.cub.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A new study shows that retinal ganglion cell neurons can optimize local oxygen and nutrient availability at a key developmental timepoint in a surprising manner: by generating a temporally restricted burst of dopamine that patterns their dedicated vasculature.
Collapse
Affiliation(s)
- Peter D Westenskow
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland.
| |
Collapse
|
14
|
Zhang YS, Taha AT, Thompson IJB, Keenan JD, Yang D, Wu J, Stewart JM. Association of Male Sex and Microvascular Alterations on Optical Coherence Tomography Angiography in Diabetes. Transl Vis Sci Technol 2023; 12:30. [PMID: 38010281 PMCID: PMC10683768 DOI: 10.1167/tvst.12.11.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023] Open
Abstract
Purpose Epidemiologically, men have a higher incidence, severity, and progression of diabetic retinopathy (DR) than women. We investigated microvascular differences between men and women with diabetes on optical coherence tomography angiography (OCTA). Methods Three × 3 mm OCTA macula scans of non-diabetic and patients with diabetes were obtained. Vascular parameters included parafoveal vessel density (VD), vessel length density (VLD), and flow index (FI) of the superficial capillary plexus (SCP) and deep capillary plexus (DCP) as well as foveal avascular zone (FAZ) area and perimeter. Multivariable linear regression was used for statistical analysis. Results There were 1809 patients with diabetes and 217 non-diabetic participants that were included in this study. Diabetic individuals included those with no DR (n = 1356), mild non-proliferative DR (NPDR; n = 286), moderate NPDR (n = 126), and severe NPDR/proliferative DR (PDR; n = 41). Male sex was significantly associated with smaller FAZ area/perimeter and lower DCP VLD in both non-diabetic subjects and patients with diabetes. Male sex in the diabetic group was additionally associated with lower SCP VD/VLD and DCP VD. Addition of an interaction between male sex and diabetes status in the interaction analysis showed that being male and diabetic conferred increased reduction in DCP VD and VLD compared to sex-based changes in non-diabetics. Larger FAZ perimeter, lower SCP VD/VLD, and lower DCP VLD were associated with poorer visual acuity in diabetics. Conclusions On OCTA, male patients with diabetes may have more severe microvascular disease especially in the DCP compared to women. Translational Evidence Sex-based alterations in diabetic microvascular disease has the potential to influence future basic and clinical studies as well as the implementation of OCTA disease markers.
Collapse
Affiliation(s)
- Yi Stephanie Zhang
- University of California – San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Abu T. Taha
- University of California – San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Isabel J. B. Thompson
- University of California – San Francisco, Department of Ophthalmology, San Francisco, CA, USA
| | - Jeremy D. Keenan
- University of California – San Francisco, Department of Ophthalmology, San Francisco, CA, USA
| | - Daphne Yang
- University of California – San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Joshua Wu
- University of California – San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Jay M. Stewart
- University of California – San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| |
Collapse
|
15
|
Abstract
Because the central nervous system is largely nonrenewing, neurons and their synapses must be maintained over the lifetime of an individual to ensure circuit function. Age is a dominant risk factor for neural diseases, and declines in nervous system function are a common feature of aging even in the absence of disease. These alterations extend to the visual system and, in particular, to the retina. The retina is a site of clinically relevant age-related alterations but has also proven to be a uniquely approachable system for discovering principles that govern neural aging because it is well mapped, contains diverse neuron types, and is experimentally accessible. In this article, we review the structural and molecular impacts of aging on neurons within the inner and outer retina circuits. We further discuss the contribution of non-neuronal cell types and systems to retinal aging outcomes. Understanding how and why the retina ages is critical to efforts aimed at preventing age-related neural decline and restoring neural function.
Collapse
Affiliation(s)
- Jeffrey D Zhu
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Sharma Pooja Tarachand
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Qudrat Abdulwahab
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Melanie A Samuel
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
16
|
He C, Xiu W, Chen Q, Peng K, Zhu X, Wang Z, Xu X, Chen Y, Zhang G, Fu J, Dong Q, Wu X, Li A, Liu D, Gao Y, Wang J, Wang Z, Deng B, Shuai P, Gao C, Chen Y, Yu L, Lu F. Gut-licensed β7 + CD4 + T cells contribute to progressive retinal ganglion cell damage in glaucoma. Sci Transl Med 2023; 15:eadg1656. [PMID: 37531415 DOI: 10.1126/scitranslmed.adg1656] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness. Currently, most therapeutic strategies aim to reduce elevated intraocular pressure (EIOP), but this does not always halt disease progression. Evidence suggests a role for T cells in glaucoma pathogenesis, but the underlying mechanisms remain largely unknown. Here, we found that the percentage of circulating CD4+ T cells expressing a gut-homing integrin β7 was increased in patients with glaucoma and was associated with disease stage. In an EIOP-triggered glaucoma mouse model, β7+ CD4+ T cells infiltrated the retina in the progressive phase of glaucoma via eliciting retinal endothelial cell expression of mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1). MAdCAM-1 was minimally detected in retinas of healthy mice, and neutralization with an MAdCAM-1 antibody ameliorated retinal ganglion cell (RGC) loss and glial activity in mice with glaucoma. We furthermore found that EIOP-induced β7+ CD4+ T cells homed to the gut during the acute phase of glaucoma, which was essential for progressive RGC damage in diseased mice. Gut-homing β7+ CD4+ T cells underwent transcriptional reprogramming, showing up-regulated pathways enriched in autoimmune diseases, bacteria responses, mucosal immunity, and glial activity. Gut-homing β7+ CD4+ T cells gained the competence to induce retinal MAdCAM-1 expression and to cross the blood-retina barrier. Together, our study reveals a role of gut-licensed β7+ CD4+ T cells and MAdCAM-1 in RGC degeneration and emphasizes the importance of the "gut-retina" axis in glaucoma.
Collapse
Affiliation(s)
- Chong He
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenbo Xiu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinyuan Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Peng
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiong Zhu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Prenatal Diagnosis, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zuo Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Xu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Gao Zhang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Fu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiwei Dong
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqiong Wu
- Department of Ophthalmology, Luzhou Meternal and Child Health Hospital, Luzhou, China
| | - An Li
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Donghua Liu
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanping Gao
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinxia Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao Wang
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Bolin Deng
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Shuai
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Caiping Gao
- Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yilian Chen
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Yu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| | - Fang Lu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Hu S, Chen Y, Xie D, Xu K, Fu Y, Chi W, Liu H, Huang J. Nme 2 Cas9-mediated therapeutic editing in inhibiting angiogenesis after wet age-related macular degeneration onset. Clin Transl Med 2023; 13:e1383. [PMID: 37598400 PMCID: PMC10440058 DOI: 10.1002/ctm2.1383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD), particularly wet AMD characterised by choroidal neovascularization (CNV), is a leading cause of vision loss in the elderly. The hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) pathway contributes to CNV pathogenesis. Previous gene editing research indicated that disrupting these genes in retinal pigment epithelial cells could have a preventive effect on CNV progression. However, no studies have yet been conducted using gene editing to disrupt VEGF signalling after CNV induction for therapeutic validation, which is critical to the clinical application of wet AMD gene editing therapies. METHOD Here, we employed the single-adeno-associated virus-mediated Nme2 Cas9 to disrupt key molecules in VEGF signalling, Hif1α, Vegfa and Vegfr2 after inducing CNV and estimated their therapeutic effects. RESULTS We found that Nme2 Cas9 made efficient editing in target genes up to 71.8% post 11 days in vivo. And only Nme2 Cas9-Vegfa treatment during the early stage of CNV development reduced the CNV lesion area by 49.5%, compared to the negative control, while Nme2 Cas9-Hif1α or Nme2 Cas9-Vegfr2 treatment did not show therapeutic effect. Besides, no off-target effects were observed in Nme2 Cas9-mediated gene editing in vivo. CONCLUSIONS This study provides proof-of-concept possibility of employing Nme2 Cas9 for potential anti-angiogenesis therapy in wet AMD.
Collapse
Affiliation(s)
- Sihui Hu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Dongchun Xie
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Kan Xu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yunzhao Fu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Wei Chi
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Reproductive Medicine of Guangdong ProvinceSchool of Life Sciences and the First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Reproductive Medicine of Guangdong ProvinceSchool of Life Sciences and the First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
18
|
Luo Q, Jiang Z, Jiang J, Wan L, Li Y, Huang Y, Qiu J, Yu K, Zhuang J. Tsp-1 + microglia attenuate retinal neovascularization by maintaining the expression of Smad3 in endothelial cells through exosomes with decreased miR-27a-5p. Theranostics 2023; 13:3689-3706. [PMID: 37441592 PMCID: PMC10334831 DOI: 10.7150/thno.84236] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Rationale: Microglia with a repertoire of functions are critical in pathological regulation of angiogenesis in the retina. However, retinal microglia with beneficial contributions and corresponding mechanisms during pathological neovascularization are poorly understood. Methods: We conducted a bioinformatic comparison of public single-cell RNA transcriptome data between retinal microglia from mice with oxygen-induced retinopathy (OIR) and an antiangiogenic microglial population named MG3 from the spine. The essential beneficial factor thrombospondin-1 (Tsp-1) from microglia was discovered and then validated in the retina of mice with OIR at P17. Exosomes were isolated from Tsp-1-knockout microglia (KO-Exos) and Tsp-1+ microglia (NT-Exos). Human umbilical vein endothelial cells (HUVEC) morphology studies, exosomes' miRNA sequencing, luciferase reporter assay, miRNA loss of function studies, and intravitreal injection were used to explore the mechanism of Tsp-1 and microglia-associated retinal angiogenesis. Results: The bioinformatic analyses of single-cell RNA-seq data indicated that a subtype of retinal microglia named RMG1 shares features with MG3 in regulating wound healing, cell adhesion, and angiogenesis. Remarkably, Tsp-1, an extracellular matrix protein with robust inhibition of angiogenesis, was especially expressed in both MG3 and RMG1. However, the scarcity of Tsp-1+ cells was observed in RMG1, which could be an obstacle to attenuating retinal neovascularization. Subsequently, we found that exosomes derived from Tsp-1+ microglia inhibit the migration and tube formation of HUVEC. Moreover, the knockout of Tsp-1 led to the enrichment of miR-27a-5p in exosomes from microglia and promoted angiogenesis compared to that of NT-Exos in vitro. Furthermore, in the luciferase reporter assay on the transcriptional activity of the promoter, we demonstrated that Tsp-1 negatively regulates miR-27a-5p expression. In addition, SMAD family member 3 (Smad3), a receptor-activated Smad protein that is conducive to vascular homeostasis, was defined as a functional target gene of miR-27a-5p. These data were consistently confirmed in vivo in the retina of mice with OIR. Conclusion: Collectively, the Tsp-1/miR-27a-5p/Smad3 axis is involved in microglia-related and exosome-mediated antiangiogenic regulation of the retina. Therefore, this study reveals a novel mechanism by which retinal microglia maintain vascular homeostasis, thereby providing a new therapeutic target for pathological neovascularization.
Collapse
Affiliation(s)
- Qian Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zihua Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jingyi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Linxi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| |
Collapse
|
19
|
Hein M, Vukmirovic A, Constable IJ, Raja V, Athwal A, Freund KB, Balaratnasingam C. Angiographic biomarkers are significant predictors of treatment response to intravitreal aflibercept in diabetic macular edema. Sci Rep 2023; 13:8128. [PMID: 37208427 DOI: 10.1038/s41598-023-35286-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
This prospective single-center study aims to identify biomarkers that predict improvement in best-corrected visual acuity (BCVA) and central retinal thickness (CRT) at 6 months, in 76 eyes with diabetic macular edema (DME) treated monthly with intravitreal aflibercept. At baseline, all patients underwent standardized imaging with color photography, optical coherence tomography (OCT), fluorescein angiography (FA) and OCT angiography (OCTA). Glycosylated hemoglobin, renal function, dyslipidemia, hypertension, cardiovascular disease and smoking were recorded. Retinal images were graded in a masked fashion. Baseline imaging, systemic and demographic variables were investigated to detect associations to BCVA and CRT change post aflibercept. Predictors of BCVA improvement included greater macular vessel density quantified using OCTA (p = 0.001) and low-density lipoprotein (LDL) ≥ 2.6 mmol/L (p = 0.017). Lower macular vessel density eyes showed a significant reduction in CRT but no BCVA improvement. Predictors of CRT reduction included peripheral non-perfusion seen on ultrawide-field FA (p = 0.005) and LDL ≥ 2.6 mmol/L (p < 0.001). Retinal angiographic biomarkers derived from OCTA and ultrawide-field FA may help predict functional and anatomic response to anti-vascular endothelial growth factor (VEGF) therapy in patients with DME. Elevated LDL is associated with treatment response in DME. These results may be used to better-select patients who will benefit from intravitreal aflibercept for treatment of DME.
Collapse
Affiliation(s)
- Martin Hein
- Lions Eye Institute, Perth, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Aleksandar Vukmirovic
- Lions Eye Institute, Perth, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Ian J Constable
- Lions Eye Institute, Perth, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Vignesh Raja
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Perth, Australia
- Joondalup Eye Clinic, Perth, Australia
| | - Arman Athwal
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Department of Medical Physics and Biomedical Engineering, University College London, London, England
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Chandrakumar Balaratnasingam
- Lions Eye Institute, Perth, Australia.
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia.
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Perth, Australia.
| |
Collapse
|
20
|
Zhou J, Chen B. Retinal Cell Damage in Diabetic Retinopathy. Cells 2023; 12:1342. [PMID: 37174742 PMCID: PMC10177610 DOI: 10.3390/cells12091342] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular complication that occurs in diabetes mellitus (DM), is the leading cause of vision loss in working-age adults. The prevalence of diabetic retinopathy is approximately 30% of the diabetic population and untreated DR can eventually cause blindness. For decades, diabetic retinopathy was considered a microvascular complication and clinically staged by its vascular manifestations. In recent years, emerging evidence has shown that diabetic retinopathy causes early neuronal dysfunction and neurodegeneration that may precede vascular pathology and affect retinal neurons as well as glial cells. This knowledge leads to new therapeutic strategies aiming to prevent dysfunction of retinal neurons at the early stage of DR. Early detection and timely treatment to protect retinal neurons are critical to preventing visual loss in DR. This review provides an overview of DR and the structural and functional changes associated with DR, and discusses neuronal degeneration during diabetic retinopathy, the mechanisms underlying retinal neurodegeneration and microvascular complications, and perspectives on current and future clinic therapies.
Collapse
Affiliation(s)
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
21
|
Derbyshire ML, Akula S, Wong A, Rawlins K, Voura EB, Brunken WJ, Zuber ME, Fuhrmann S, Moon AM, Viczian AS. Loss of Tbx3 in Mouse Eye Causes Retinal Angiogenesis Defects Reminiscent of Human Disease. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 37126314 PMCID: PMC10155871 DOI: 10.1167/iovs.64.5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Purpose Familial exudative vitreoretinopathy (FEVR) and Norrie disease are examples of genetic disorders in which the retinal vasculature fails to fully form (hypovascular), leading to congenital blindness. While studying the role of a factor expressed during retinal development, T-box factor Tbx3, we discovered that optic cup loss of Tbx3 caused the retina to become hypovascular. The purpose of this study was to characterize how loss of Tbx3 affects retinal vasculature formation. Methods Conditional removal of Tbx3 from both retinal progenitors and astrocytes was done using the optic cup-Cre recombinase driver BAC-Dkk3-Cre and was analyzed using standard immunohistochemical techniques. Results With Tbx3 loss, the retinas were hypovascular, as seen in patients with retinopathy of prematurity (ROP) and FEVR. Retinal vasculature failed to form the stereotypic tri-layered plexus in the dorsal-temporal region. Astrocyte precursors were reduced in number and failed to form a lattice at the dorsal-temporal edge. We next examined retinal ganglion cells, as they have been shown to play a critical role in retinal angiogenesis. We found that melanopsin expression and Islet1/2-positive retinal ganglion cells were reduced in the dorsal half of the retina. In previous studies, the loss of melanopsin has been linked to hyaloid vessel persistence, which we also observed in the Tbx3 conditional knockout (cKO) retinas, as well as in infants with ROP or FEVR. Conclusions To the best of our knowledge, these studies are the first demonstration that Tbx3 is required for normal mammalian eye formation. Together, the results provide a potential genetic model for retinal hypovascular diseases.
Collapse
Affiliation(s)
- Mark L Derbyshire
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
- College of Medicine, Upstate Medical University, Syracuse, New York, United States
| | - Sruti Akula
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
- College of Medicine, Upstate Medical University, Syracuse, New York, United States
| | - Austin Wong
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
- College of Medicine, Upstate Medical University, Syracuse, New York, United States
| | - Karisa Rawlins
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - Evelyn B Voura
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - William J Brunken
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - Michael E Zuber
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - Sabine Fuhrmann
- Ophthalmology and Visual Sciences Department, Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, United States
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, United States
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, New York, United States
| | - Andrea S Viczian
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| |
Collapse
|
22
|
Yu J, Yin Y, Leng Y, Zhang J, Wang C, Chen Y, Li X, Wang X, Liu H, Liao Y, Jin Y, Zhang Y, Lu K, Wang K, Wang X, Wang L, Zheng F, Gu Z, Li Y, Fan Y. Emerging strategies of engineering retinal organoids and organoid-on-a-chip in modeling intraocular drug delivery: current progress and future perspectives. Adv Drug Deliv Rev 2023; 197:114842. [PMID: 37105398 DOI: 10.1016/j.addr.2023.114842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Retinal diseases are a rising concern as major causes of blindness in an aging society; therapeutic options are limited, and the precise pathogenesis of these diseases remains largely unknown. Intraocular drug delivery and nanomedicines offering targeted, sustained, and controllable delivery are the most challenging and popular topics in ocular drug development and toxicological evaluation. Retinal organoids (ROs) and organoid-on-a-chip (ROoC) are both emerging as promising in-vitro models to faithfully recapitulate human eyes for retinal research in the replacement of experimental animals and primary cells. In this study, we review the generation and application of ROs resembling the human retina in cell subtypes and laminated structures and introduce the emerging engineered ROoC as a technological opportunity to address critical issues. On-chip vascularization, perfusion, and close inter-tissue interactions recreate physiological environments in vitro, whilst integrating with biosensors facilitates real-time analysis and monitoring during organogenesis of the retina representing engineering efforts in ROoC models. We also emphasize that ROs and ROoCs hold the potential for applications in modeling intraocular drug delivery in vitro and developing next-generation retinal drug delivery strategies.
Collapse
Affiliation(s)
- Jiaheng Yu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuqi Yin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubing Leng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jingcheng Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yanyun Chen
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiaorui Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xudong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yulong Liao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yishan Jin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yihan Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Keyu Lu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kehao Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Xiaofei Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China
| | - Fuyin Zheng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, and with the School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100083, China.
| |
Collapse
|
23
|
Li M, Gao L, Zhao L, Zou T, Xu H. Toward the next generation of vascularized human neural organoids. Med Res Rev 2023; 43:31-54. [PMID: 35993813 DOI: 10.1002/med.21922] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Thanks to progress in the development of three-dimensional (3D) culture technologies, human central nervous system (CNS) development and diseases have been gradually deciphered by using organoids derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs). Selforganized neural organoids (NOs) have been used to mimic morphogenesis and functions of specific organs in vitro. Many NOs have been reproduced in vitro, such as those mimicking the human brain, retina, and spinal cord. However, NOs fail to capitulate to the maturation and complexity of in vivo neural tissues. The persistent issues with current NO cultivation protocols are inadequate oxygen supply and nutrient diffusion due to the absence of vascular networks. In vivo, the developing CNS is interpenetrated by vasculature that not only supplies oxygen and nutrients but also provides a structural template for neuronal growth. To address these deficiencies, recent studies have begun to couple NO culture with bioengineering techniques and methodologies, including genetic engineering, coculture, multidifferentiation, microfluidics and 3D bioprinting, and transplantation, which might promote NO maturation and create more functional NOs. These cutting-edge methods could generate an ever more reliable NO model in vitro for deciphering the codes of human CNS development, disease progression, and translational application. In this review, we will summarize recent technological advances in culture strategies to generate vascularized NOs (vNOs), with a special focus on cerebral- and retinal-organoid models.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
24
|
Chen X, Li W, Jin X, Zhang Y, Li R, Liu T. Macular microcirculation changes after repair of rhegmatogenous retinal detachment assessed with optical coherence tomography angiography: A systematic review and meta-analysis. Front Physiol 2022; 13:995353. [PMID: 36589420 PMCID: PMC9795227 DOI: 10.3389/fphys.2022.995353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose: The aim of the study was to investigate microcirculation changes in the macula evaluated by optical coherence tomography angiography (OCTA)in patients receiving anatomical repair after surgery for rhegmatogenous retinal detachment (RRD). Methods: A literature search was conducted in PubMed, EMBASE, Web of Science and the Cochrane Library. Studies including patients with macula-on or macula-off RRD and repaired successfully through primary surgery were selected. Foveal avascular zone (FAZ) area and macular vascular density (VD) in both the superficial capillary plexus (SCP) and deep capillary plexus (DCP) were analyzed using RevMan 5.4 software. Results: Twelve studies including 430 RRD eyes and 430 control eyes were selected. In eyes with macula-on RRD, FAZ area, VD in the foveal SCP and DCP, and VD in the parafoveal SCP and DCP were not altered compared with control eyes, after the retina was reattached. In eyes with macula-off RRD that was repaired successfully through surgery, FAZ area in the DCP (0.13 mm2, 95% CI: 0.02 to 0.25, p = 0.02) remained enlarged compared with control eyes. Meanwhile, VD in the foveal DCP was also significantly reduced (-3.12%, 95% CI: -6.15 to -0.09%, p = 0.04), even though retinal reattachment was achieved by surgery in eyes with macula-off RRD. Conclusion: In patients with macula-off rhegmatogenous retinal detachment, foveal avascular zone area in the deep capillary plexuses was enlarged and vascular density in the foveal deep capillary plexus was reduced, even after the retina was successfully reattached through a primary surgery.
Collapse
|
25
|
Wang XN, Cai X, Li SW, Li T, Long D, Wu Q. Wide-field swept-source OCTA in the assessment of retinal microvasculature in early-stage diabetic retinopathy. BMC Ophthalmol 2022; 22:473. [PMID: 36474199 PMCID: PMC9727974 DOI: 10.1186/s12886-022-02724-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To perform a quantitative analysis of retinal microvasculature in patients with early-stage diabetic retinopathy (DR) using wide-field swept-source optical coherence tomography angiography (SS-OCTA). METHODS: One hundred nineteen eyes of 119 patents (67 eyes with no DR and 52 eyes with mild-moderate nonproliferative diabetic retinopathy (NPDR)) were enrolled in this observational and cross-sectional cohort study, and an age-matched group consisting of 39 eyes of 39 non-diabetic subjects were set as the control. Each participant underwent a full ophthalmic examination, including wide-field SS-OCTA imaging. On OCTA scans (12 mm * 12 mm), the mean perfusion area (PA) and vessel density (VD) were independently measured in all 16 Early Treatment Diabetic Retinopathy Study (ETDRS) sectors. Linear regression analyses were conducted to evaluate the influences of PA. RESULTS In the central ring, there were no significant differences in the average PA and VD among the groups. In the 3 mm radius, the PA and VD of the no DR and mild-moderate NPDR were significantly decreased compared with the control group in superior and inferior quadrants. In the wide-field scans (9 and 12 mm radius), there was no significant difference in average PA and VD between the groups in each sectors (p > 0.05). Regression analysis found that the effect of VD on PA was statistically different (b = 1.311, p < 0.001). CONCLUSION Wide-field OCTA imaging is useful for evaluating peripheral capillary perfusion in eyes with early-stage DR. Decrease in PA and VD was greater in the S3 and I3 sectors, and reductions in PA and VD were uneven in wide-filed sectors (9 and 12 mm radius).
Collapse
Affiliation(s)
- Xiang-ning Wang
- grid.412528.80000 0004 1798 5117Department of Ophthalmology, Shanghai Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 Xuhui District China
| | - Xuan Cai
- grid.412528.80000 0004 1798 5117Department of Ophthalmology, Shanghai Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 Xuhui District China
| | - Shi-wei Li
- grid.412528.80000 0004 1798 5117Department of Ophthalmology, Shanghai Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 Xuhui District China
| | - Tingting Li
- grid.412528.80000 0004 1798 5117Department of Ophthalmology, Shanghai Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 Xuhui District China
| | - Da Long
- grid.412528.80000 0004 1798 5117Department of Ophthalmology, Shanghai Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 Xuhui District China
| | - Qiang Wu
- grid.412528.80000 0004 1798 5117Department of Ophthalmology, Shanghai Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 Xuhui District China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233 China
| |
Collapse
|
26
|
Pitale PM, Shen G, Sigireddi RR, Polo-Prieto M, Park YH, Gibson SE, Westenskow PD, Channa R, Frankfort BJ. Selective vulnerability of the intermediate retinal capillary plexus precedes retinal ganglion cell loss in ocular hypertension. Front Cell Neurosci 2022; 16:1073786. [PMID: 36545655 PMCID: PMC9760765 DOI: 10.3389/fncel.2022.1073786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 12/08/2022] Open
Abstract
Introduction: Glaucoma, a disease of retinal ganglion cell (RGC) injury and potentially devastating vision loss, is associated with both ocular hypertension (OHT) and reduced ocular blood flow. However, the relationship between OHT and retinal capillary architecture is not well understood. In this project, we studied microvasculature damage in mice exposed to mild levels of induced OHT. Methods: Mild OHT was induced with the microbead model for 2 weeks. At this time point, some retinas were immunostained with CD31 (endothelium), Collagen IV (basement membrane), and RBPMS (RGCs) for z-stack confocal microscopy. We processed these confocal images to distinguish the three retinal capillary plexi (superficial, intermediate, and deep). We manually counted RGC density, analyzed vascular complexity, and identified topographical and spatial vascular features of the retinal capillaries using a combination of novel manual and automated workflows. Other retinas were dissociated and immunopanned to isolate RGCs and amacrine cells (ACs) for hypoxia gene array analysis. Results: RGC counts were normal but there was decreased overall retinal capillary complexity. This reduced complexity could be explained by abnormalities in the intermediate retinal capillary plexus (IRCP) that spared the other plexi. Capillary junction density, vessel length, and vascular area were all significantly reduced, and the number of acellular capillaries was dramatically increased. ACs, which share a neurovascular unit (NVU) with the IRCP, displayed a marked increase in the relative expression of many hypoxia-related genes compared to RGCs from the same preparations. Discussion: We have discovered a rapidly occurring, IRCP-specific, OHT-induced vascular phenotype that precedes RGC loss. AC/IRCP NVU dysfunction may be a mechanistic link for early vascular remodeling in glaucoma.
Collapse
Affiliation(s)
- Priyamvada M. Pitale
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Guofu Shen
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Rohini R. Sigireddi
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Maria Polo-Prieto
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Yong H. Park
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Solomon E. Gibson
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Peter D. Westenskow
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Roomasa Channa
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Benjamin J. Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Benjamin J. Frankfort
| |
Collapse
|
27
|
Konecny L, Quadir R, Ninan A, Rodríguez-Contreras A. Neurovascular responses to neuronal activity during sensory development. Front Cell Neurosci 2022; 16:1025429. [DOI: 10.3389/fncel.2022.1025429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the development of intercellular communication in sensory regions is relevant to elucidate mechanisms of physiological and pathological responses to oxygen shortage in the newborn brain. Decades of studies in laboratory rodents show that neuronal activity impacts sensory maturation during two periods of postnatal development distinguished by the maturation of accessory structures at the sensory periphery. During the first of these developmental periods, angiogenesis is modulated by neuronal activity, and physiological levels of neuronal activity cause local tissue hypoxic events. This correlation suggests that neuronal activity is upstream of the production of angiogenic factors, a process that is mediated by intermittent hypoxia caused by neuronal oxygen consumption. In this perspective article we address three theoretical implications based on this hypothesis: first, that spontaneous activity of sensory neurons has properties that favor the generation of intermittent tissue hypoxia in neonate rodents; second, that intermittent hypoxia promotes the expression of hypoxia inducible transcription factors (HIFs) in sensory neurons and astrocytes; and third, that activity-dependent production of angiogenic factors is involved in pathological oxygen contexts.
Collapse
|
28
|
Heloterä H, Kaarniranta K. A Linkage between Angiogenesis and Inflammation in Neovascular Age-Related Macular Degeneration. Cells 2022; 11:cells11213453. [PMID: 36359849 PMCID: PMC9654543 DOI: 10.3390/cells11213453] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with a limited understanding of its pathogenesis and the number of patients are all the time increasing. AMD is classified into two main forms: dry and neovascular AMD (nAMD). Dry AMD is the most prevalent form (80–90%) of AMD cases. Neovascular AMD (10–20% of AMD cases) is treated with monthly or more sparsely given intravitreal anti-vascular endothelial growth factor inhibitors, but unfortunately, not all patients respond to the current treatments. A clinical hallmark of nAMD is choroidal neovascularization. The progression of AMD is initially characterized by atrophic alterations in the retinal pigment epithelium, as well as the formation of lysosomal lipofuscin and extracellular drusen deposits. Cellular damage caused by chronic oxidative stress, protein aggregation and inflammatory processes may lead to advanced geographic atrophy and/or choroidal neovascularization and fibrosis. Currently, it is not fully known why different AMD phenotypes develop. In this review, we connect angiogenesis and inflammatory regulators in the development of nAMD and discuss therapy challenges and hopes.
Collapse
Affiliation(s)
- Hanna Heloterä
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
29
|
Buscho S, Palacios E, Xia F, Shi S, Li S, Luisi J, Kayed R, Motamedi M, Zhang W, Liu H. Longitudinal characterization of retinal vasculature alterations with optical coherence tomography angiography in a mouse model of tauopathy. Exp Eye Res 2022; 224:109240. [PMID: 36096190 PMCID: PMC10162407 DOI: 10.1016/j.exer.2022.109240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 01/16/2023]
Abstract
Tauopathies are a family of neurodegenerative diseases which predominately afflict the rapidly growing aging population suffering from various brain disorders including Alzheimer's disease, frontotemporal dementia with parkinsonism-17 and Pick disease. As the only visually accessible region of the central nervous system, in recent years, the retina has attracted extensive attention for its potential as a target for visualizing and quantifying emerging biomarkers of neurodegenerative diseases. Our previous study has found that retinal vascular inflammation and leakage occur at the very early stage of tauopathic mouse model. Here, we aimed to non-invasively visualize age-dependent alterations of retinal vasculature assessing the potential for using changes in retinal vasculature as the biomarker for the early diagnosis of tauopathy. Optical coherence tomography angiography (OCTA), a non-invasive depth-resolved high-resolution imaging technique was used to visualize and quantify tauopathy-induced alterations of retinal vasculature in P301S transgenic mice overexpressing the P301S mutant form of human tau and age-matched wild type littermate mice at 3, 6 and 10 months of age. We observed significant alterations of vascular features in the intermediate capillary plexus (ICP) and deep capillary plexus (DCP) but not in the superficial vascular complex (SVC) of P301S mice at early stages of tauopathy. With aging, alterations of vascular features in P301S mice became more prominent in all three vascular plexuses. Staining of retinal vasculature in flatmounts and trypsin digests of P301S mice at 10 months of age revealed decreased vessel density and increased acellular capillary formation, indicating that vascular degeneration also occurs during tauopathy. Overall, our results demonstrate that the changes in retinal vascular features accelerate during the progression of tauopathy. Vessels in the ICP and DCP may be more susceptible to tauopathy than vessels in the SVC. Since changes in retinal vasculature often precede tau pathology in the brain, non-invasive identification of retinal vascular alterations with OCTA may be a useful biomarker for the early diagnosis of tauopathy and monitoring its progression.
Collapse
Affiliation(s)
- Seth Buscho
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Erick Palacios
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Shengguo Li
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Jonathan Luisi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Massoud Motamedi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA; Departments of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
30
|
Jidigam VK, Sawant OB, Fuller RD, Wilcots K, Singh R, Lang RA, Rao S. Neuronal Bmal1 regulates retinal angiogenesis and neovascularization in mice. Commun Biol 2022; 5:792. [PMID: 35933488 PMCID: PMC9357084 DOI: 10.1038/s42003-022-03774-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks in the mammalian retina regulate a diverse range of retinal functions that allow the retina to adapt to the light-dark cycle. Emerging evidence suggests a link between the circadian clock and retinopathies though the causality has not been established. Here we report that clock genes are expressed in the mouse embryonic retina, and the embryonic retina requires light cues to maintain robust circadian expression of the core clock gene, Bmal1. Deletion of Bmal1 and Per2 from the retinal neurons results in retinal angiogenic defects similar to when animals are maintained under constant light conditions. Using two different models to assess pathological neovascularization, we show that neuronal Bmal1 deletion reduces neovascularization with reduced vascular leakage, suggesting that a dysregulated circadian clock primarily drives neovascularization. Chromatin immunoprecipitation sequencing analysis suggests that semaphorin signaling is the dominant pathway regulated by Bmal1. Our data indicate that therapeutic silencing of the retinal clock could be a common approach for the treatment of certain retinopathies like diabetic retinopathy and retinopathy of prematurity.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Onkar B Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Eversight, Cleveland, OH, 44103, USA
| | - Rebecca D Fuller
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kenya Wilcots
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, 44115, USA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Richard A Lang
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
31
|
Rattner A, Wang Y, Nathans J. Signaling Pathways in Neurovascular Development. Annu Rev Neurosci 2022; 45:87-108. [PMID: 35803586 DOI: 10.1146/annurev-neuro-111020-102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development, the central nervous system (CNS) vasculature grows to precisely meet the metabolic demands of neurons and glia. In addition, the vast majority of the CNS vasculature acquires a unique set of molecular and cellular properties-collectively referred to as the blood-brain barrier-that minimize passive diffusion of molecules between the blood and the CNS parenchyma. Both of these processes are controlled by signals emanating from neurons and glia. In this review, we describe the nature and mechanisms-of-action of these signals, with an emphasis on vascular endothelial growth factor (VEGF) and beta-catenin (canonical Wnt) signaling, the two best-understood systems that regulate CNS vascular development. We highlight foundational discoveries, interactions between different signaling systems, the integration of genetic and cell biological studies, advances that are of clinical relevance, and questions for future research.
Collapse
Affiliation(s)
- Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States;
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; .,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; .,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Departments of Neuroscience and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
32
|
Cheung CMG, Fawzi A, Teo KY, Fukuyama H, Sen S, Tsai WS, Sivaprasad S. Diabetic macular ischaemia- a new therapeutic target? Prog Retin Eye Res 2022; 89:101033. [PMID: 34902545 PMCID: PMC11268431 DOI: 10.1016/j.preteyeres.2021.101033] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022]
Abstract
Diabetic macular ischaemia (DMI) is traditionally defined and graded based on the angiographic evidence of an enlarged and irregular foveal avascular zone. However, these anatomical changes are not surrogate markers for visual impairment. We postulate that there are vascular phenotypes of DMI based on the relative perfusion deficits of various retinal capillary plexuses and choriocapillaris. This review highlights several mechanistic pathways, including the role of hypoxia and the complex relation between neurons, glia, and microvasculature. The current animal models are reviewed, with shortcomings noted. Therefore, utilising the advancing technology of optical coherence tomography angiography (OCTA) to identify the reversible DMI phenotypes may be the key to successful therapeutic interventions for DMI. However, there is a need to standardise the nomenclature of OCTA perfusion status. Visual acuity is not an ideal endpoint for DMI clinical trials. New trial endpoints that represent disease progression need to be developed before irreversible vision loss in patients with DMI. Natural history studies are required to determine the course of each vascular and neuronal parameter to define the DMI phenotypes. These DMI phenotypes may also partly explain the development and recurrence of diabetic macular oedema. It is also currently unclear where and how DMI fits into the diabetic retinopathy severity scales, further highlighting the need to better define the progression of diabetic retinopathy and DMI based on both multimodal imaging and visual function. Finally, we discuss a complete set of proposed therapeutic pathways for DMI, including cell-based therapies that may provide restorative potential.
Collapse
Affiliation(s)
- Chui Ming Gemmy Cheung
- Singapore Eye Research Institution, Singapore National Eye Centre, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | | | - Kelvin Yc Teo
- Singapore Eye Research Institution, Singapore National Eye Centre, Singapore
| | | | | | - Wei-Shan Tsai
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom.
| |
Collapse
|
33
|
Marra KV, Aguilar E, Wei G, Usui-Ouchi A, Ideguchi Y, Sakimoto S, Friedlander M. Bioactive extracellular vesicles from a subset of endothelial progenitor cells rescue retinal ischemia and neurodegeneration. JCI Insight 2022; 7:e155928. [PMID: 35639473 PMCID: PMC9309054 DOI: 10.1172/jci.insight.155928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Disruption of the neurovascular unit (NVU) underlies the pathophysiology of various CNS diseases. One strategy to repair NVU dysfunction uses stem/progenitor cells to provide trophic support to the NVU's functionally coupled and interdependent vasculature and surrounding CNS parenchyma. A subset of endothelial progenitor cells, endothelial colony-forming cells (ECFCs) with high expression of the CD44 hyaluronan receptor (CD44hi), provides such neurovasculotrophic support via a paracrine mechanism. Here, we report that bioactive extracellular vesicles from CD44hi ECFCs (EVshi) are paracrine mediators, recapitulating the effects of intact cell therapy in murine models of ischemic/neurodegenerative retinopathy; vesicles from ECFCs with low expression levels of CD44 (EVslo) were ineffective. Small RNA sequencing comparing the microRNA cargo from EVshi and EVslo identified candidate microRNAs that contribute to these effects. EVshi may be used to repair NVU dysfunction through multiple mechanisms to stabilize hypoxic vasculature, promote vascular growth, and support neural cells.
Collapse
Affiliation(s)
- Kyle V. Marra
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Edith Aguilar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Guoqin Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Ayumi Usui-Ouchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Yoichiro Ideguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Susumu Sakimoto
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Martin Friedlander
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Lowy Medical Research Institute, La Jolla, California, USA
| |
Collapse
|
34
|
Fort PE, Losiewicz MK, Elghazi L, Kong D, Cras-Méneur C, Fingar DC, Kimball SR, Rajala RVS, Smith AJ, Ali RR, Abcouwer SF, Gardner TW. mTORC1 regulates high levels of protein synthesis in retinal ganglion cells of adult mice. J Biol Chem 2022; 298:101944. [PMID: 35447116 PMCID: PMC9117545 DOI: 10.1016/j.jbc.2022.101944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) and mTOR complex 1 (mTORC1), linchpins of the nutrient sensing and protein synthesis pathways, are present at relatively high levels in the ganglion cell layer (GCL) and retinal ganglion cells (RGCs) of rodent and human retinas. However, the role of mTORCs in the control of protein synthesis in RGC is unknown. Here, we applied the SUrface SEnsing of Translation (SUnSET) method of nascent protein labeling to localize and quantify protein synthesis in the retinas of adult mice. We also used intravitreal injection of an adeno-associated virus 2 vector encoding Cre recombinase in the eyes of mtor- or rptor-floxed mice to conditionally knockout either both mTORCs or only mTORC1, respectively, in cells within the GCL. A novel vector encoding an inactive Cre mutant (CreΔC) served as control. We found that retinal protein synthesis was highest in the GCL, particularly in RGC. Negation of both complexes or only mTORC1 significantly reduced protein synthesis in RGC. In addition, loss of mTORC1 function caused a significant reduction in the pan-RGC marker, RNA-binding protein with multiple splicing, with little decrease of the total number of cells in the RGC layer, even at 25 weeks after adeno-associated virus-Cre injection. These findings reveal that mTORC1 signaling is necessary for maintaining the high rate of protein synthesis in RGCs of adult rodents, but it may not be essential to maintain RGC viability. These findings may also be relevant to understanding the pathophysiology of RGC disorders, including glaucoma, diabetic retinopathy, and optic neuropathies.
Collapse
Affiliation(s)
- Patrice E Fort
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mandy K Losiewicz
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lynda Elghazi
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dejuan Kong
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Corentin Cras-Méneur
- Internal Medicine (MEND Division), University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane C Fingar
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scot R Kimball
- Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Raju V S Rajala
- Departments of Ophthalmology and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alexander J Smith
- Centre for Gene Therapy and Regenerative Medicine, King's College London, England, United Kingdom
| | - Robin R Ali
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Centre for Gene Therapy and Regenerative Medicine, King's College London, England, United Kingdom
| | - Steven F Abcouwer
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Thomas W Gardner
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Internal Medicine (MEND Division), University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Nagaoka K, Kurauchi Y, Asano D, Morita A, Sakamoto K, Nakahara T. Pharmacological inhibition of Na +/K +-ATPase induces neurovascular degeneration and glial cell alteration in the rat retina. Exp Eye Res 2022; 220:109107. [PMID: 35568201 DOI: 10.1016/j.exer.2022.109107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/03/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
Na+/K+-ATPase (NKA) plays an important role in ion homeostasis and neurotransmitter uptake. In the retina, multidirectional communications among neurons, glia, and blood vessels (that is, neuro-glio-vascular interaction) are crucial for maintaining tissue homeostasis. We investigated the role of NKA in the elements of neuro-glio-vascular unit in neonatal and adult rat retinas. Male Sprague-Dawley rats (1- and 8-week-old) were injected intravitreally with ouabain (20 nmol/eye), an inhibitor of NKA. Morphological changes in retinal neurons, glia, and blood vessels were examined. The intravitreal injection of ouabain decreased the number of cells in the ganglion cell layer, as well as the thicknesses of the inner plexiform and inner nuclear layers in neonatal and adult rats compared to age-matched controls. The ouabain-induced neuronal cell damage was partially prevented by D-(-)-2-amino-5-phosphonopentanoic acid, an antagonist of N-methyl-D-aspartic acid receptors. In the deep retinal vascular plexus of the ouabain-injected eyes, angiogenesis was delayed in neonatal rats, whereas capillary degeneration occurred in adult rats. The immunoreactivity of glutamine synthetase and vascular endothelial growth factor (VEGF) decreased in the retinas of neonatal and adult rats injected intravitreally with ouabain. The immunoreactivity of glial fibrillary acidic protein was enhanced in the retinas of ouabain-injected adult eyes. After the ouabain injection, CD45-positive leukocytes and Iba1-positive microglia increased in the inner retinal layer of neonatal rats, whereas they increased in the middle retinal layer of adult rats. These results suggest that the inhibition of NKA induces the degeneration of neuronal and vascular cells and alteration of glial cells in both neonatal and adult retinas. In addition to the direct effects of NKA inhibition, the disturbance of retinal glutamate metabolism and decreased VEGF expression may contribute to neurovascular degeneration. The activity of NKA is crucial for maintaining elements of neuro-glio-vascular unit in the retina.
Collapse
Affiliation(s)
- Koki Nagaoka
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Daiki Asano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
36
|
Gardiner TA, Branagh T, Tipping N, McDonald DM. Markers of Hypoxia and Metabolism Correlate With Cell Differentiation in Retina and Lens Development. FRONTIERS IN OPHTHALMOLOGY 2022; 2:867326. [PMID: 38983523 PMCID: PMC11182328 DOI: 10.3389/fopht.2022.867326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 07/11/2024]
Abstract
Recent studies have provided novel insights of co-development of the neural and vascular elements of the retina. Knowledge of these relationships are crucial to understand the impact of therapeutic measures in Retinopathy of Prematurity (ROP). ROP is imposed by therapeutic oxygen upon immature retinal blood vessels and neural cells causing delayed development and vascular regression. However, the impact of hyperoxia on developing retinal neurons is less understood because some aspects of normal development remain unknown. The metabolic changes during differentiation of retinal progenitor cells to functional neurons is one such aspect. We correlated immunomarkers of hypoxia with markers of metabolic change in developing retinal neurons during the early postnatal period in mice. The same marker proteins were studied in secondary lens fiber differentiation at postnatal day-3 (P3). Nuclear localization of the oxygen-sensitive subunits of hypoxia inducible factor, HIF-1α and HIF-2α was correlated with increasing mitochondrial content in differentiating neurons. Nuclear HIF was also correlated with AMP-dependent protein kinase (AMPK), and the AMPK phosphorylation target PPAR-gamma coactivator-1alpha (PGC-1α), the principal regulator of mitochondrial biogenesis. Expression of AMPK, PGC1α and HIF-2α in secondary fiber differentiation was visible in each profile of the lens equator. Strong nuclear localization for all markers was present at the onset of secondary fiber differentiation, and reflected changes in size, mitochondrial content, and metabolism. We speculate that the 'physiological hypoxia' that drives retinal vascular development is cell-specific and reliant upon neuronal differentiation and mitochondrial biogenesis. We suggest that the onset of differentiation increases energy consumption that is detected by AMPK. In turn AMPK increases mitochondrial biogenesis via PGC-1α. Mitochondrial oxygen consumption may then create intracellular hypoxia that activates HIF. This progression is congruent with the expression of these markers in secondary lens fiber differentiation and nuclear localization of HIF-2α. Nuclear localization of HIF-1α and HIF-2α in the postnatal retina is less defined than in the lens as it may involve the remnant of HIF expression from the embryonic period that is sustained and increased by intracellular hypoxia caused by increasing mitochondrial oxygen consumption. This the first report of the involvement of HIF-2α, AMPK and PGC-1α in lens development.
Collapse
Affiliation(s)
- Tom A Gardiner
- Centre for Biomedical Sciences Education, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Tiarnan Branagh
- Centre for Biomedical Sciences Education, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Nuala Tipping
- Centre for Biomedical Sciences Education, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Denise M McDonald
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
37
|
Collin GB, Shi L, Yu M, Akturk N, Charette JR, Hyde LF, Weatherly SM, Pera MF, Naggert JK, Peachey NS, Nishina PM, Krebs MP. A Splicing Mutation in Slc4a5 Results in Retinal Detachment and Retinal Pigment Epithelium Dysfunction. Int J Mol Sci 2022; 23:2220. [PMID: 35216333 PMCID: PMC8875008 DOI: 10.3390/ijms23042220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood-retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, which exhibit hypopigmented patches in the central retina. Mapping and nucleotide sequencing of tvrm77 mice revealed a disrupted 5' splice donor sequence in Slc4a5, a sodium bicarbonate cotransporter gene. Slc4a5 expression was reduced 19.7-fold in tvrm77 RPE relative to controls, and alternative splice variants were detected. SLC4A5 was localized to the Golgi apparatus of cultured human RPE cells and in apical and basal membranes. Fundus imaging, optical coherence tomography, microscopy, and electroretinography (ERG) of tvrm77 mice revealed retinal detachment, hypopigmented patches corresponding to neovascular lesions, and retinal folds. Detachment worsened and outer nuclear layer thickness decreased with age. ERG a- and b-wave response amplitudes were initially normal but declined in older mice. The direct current ERG fast oscillation and light peak were reduced in amplitude at all ages, whereas other RPE-associated responses were unaffected. These results link a new Slc4a5 mutation to subretinal fluid accumulation and altered light-evoked RPE electrophysiological responses, suggesting that SLC4A5 functions at the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Lanying Shi
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; (M.Y.); (N.S.P.)
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Nurten Akturk
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Jeremy R. Charette
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Sonia M. Weatherly
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Martin F. Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; (M.Y.); (N.S.P.)
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Research Service, Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Patsy M. Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Mark P. Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| |
Collapse
|
38
|
It is time for a moonshot to find “Cures” for diabetic retinal disease. Prog Retin Eye Res 2022; 90:101051. [DOI: 10.1016/j.preteyeres.2022.101051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
|
39
|
Age dependence of retinal vascular plexus attenuation in the triple transgenic mouse model of Alzheimer's disease. Exp Eye Res 2021; 214:108879. [PMID: 34896306 PMCID: PMC10155044 DOI: 10.1016/j.exer.2021.108879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
The influence of Alzheimer's disease (AD) progression and severity on the structural and functional integrity of the cerebral vasculature is well recognized. The retina is an extension of the brain; thus, changes in retinal vascular features may serve as markers of AD cerebrovascular pathologies. However, differentiating normal aging-versus AD-induced retinal vascular changes is unresolved. Therefore, we compared and quantified changes in superficial (SVP), intermediate (IVP), and deep (DVP) retinal vascular plexuses in young, middle-age, and old triple transgenic mouse model of AD (3xT-AD) to the changes that occur in age-matched controls (C57BL/6j). We used immunostaining combined with a novel tissue optical clearing approach along with a computational tool for quantitative analysis of vascular network alterations (vessel length and density) in SVP, IVP, and DVP. All three layers had comparable structural features and densities in young 3xTg-AD and control animals. In controls, IVP and DVP densities decreased with aging (-14% to -32% change from young to old, p < 0.05), while no changes were observed in SVP. In contrast, vascular parameters in the transgenic group decreased in all three layers with aging (-12% to -49% change from young to old, p < 0.05). Furthermore, in the old group, SVP and DVP vascular parameters were lower in the transgenics compared to age-matched controls (p < 0.05). Our analysis demonstrates that normal aging and progression of AD lead to various degrees of vascular alterations in the retina. Specifically, compared to normal aging, changes in vascular features of SVP and DVP regions of the retina are accelerated during AD progression. Considering recent advances in the field of depth-resolved imaging of retinal capillary network and microangiography, noninvasive quantitative monitoring of changes in retinal vascular network parameters of SVP and DVP may serve as markers for diagnosis and staging of Alzheimer's disease and discriminating AD-induced vascular attenuation from age-related vasculopathy.
Collapse
|
40
|
Kawai K, Murakami T, Sakaguchi S, Yamada T, Kadomoto S, Uji A, Tsujikawa A. Peripheral Chorioretinal Imaging Through a Front Prism on Optical Coherence Tomography Angiography. Transl Vis Sci Technol 2021; 10:36. [PMID: 34967832 PMCID: PMC8727309 DOI: 10.1167/tvst.10.14.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate the clinical feasibility of peripheral chorioretinal imaging through a front prism on swept-source optical coherence tomography angiography (SS-OCTA). Methods We prospectively obtained en face OCTA images using SS-OCTA in 10 eyes of 10 healthy volunteers. For the peripheral chorioretinal imaging, the scanning laser passed and refracted through a 45°-90°-45° right-angle prism. We evaluated the qualitative and quantitative characteristics of chorioretinal vessels in the periphery. Results Using peripheral chorioretinal imaging through a prism, the retinal vasculature was delineated to the equator on the OCTA images, and varices of the vortex vein ampullae were observed on choroidal OCT images. The 3 × 3-mm images revealed three-dimensional morphologies unique to the peripheral vasculature, such as the gap between retinal arterioles and venules in the superficial capillary plexus (SCP) and elliptical and greater lobules in the choriocapillaris layer. Compared with OCTA images obtained without the prism, those obtained through the prism demonstrated an approximately 1.24-fold increase in the lengths in the base apex direction, whereas the lengths in the perpendicular direction showed concordance. The peripheral vessel density (VD) in the inferior quadrant was lower than those in the other quadrants on the SCP and deep capillary plexus, whereas on the SCP images of the macula the lowest VD was observed in the temporal subfield. Conclusions Peripheral chorioretinal imaging allowed us to generate ultra-widefield panoramic OCTA images and demonstrated morphologic characteristics unique to peripheral chorioretinal vessels. Translational Relevance OCTA imaging through a front prism can be a technique for acquiring chorioretinal vasculature images in the periphery.
Collapse
Affiliation(s)
- Kentaro Kawai
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoaki Murakami
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saori Sakaguchi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuya Yamada
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shin Kadomoto
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihito Uji
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
41
|
Shinojima A, Lee D, Tsubota K, Negishi K, Kurihara T. Retinal Diseases Regulated by Hypoxia-Basic and Clinical Perspectives: A Comprehensive Review. J Clin Med 2021; 10:jcm10235496. [PMID: 34884197 PMCID: PMC8658588 DOI: 10.3390/jcm10235496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, the number of patients with age-related macular degeneration (AMD) is increasing worldwide along with increased life expectancy. Currently, the standard treatment for wet-AMD is intravitreal injection of anti-vascular endothelial growth factor (VEGF) drugs. The upstream of VEGF is hypoxia-inducible factor (HIF), a master regulator of hypoxia-responsive genes responsive to acute and chronic hypoxia. HIF activation induces various pathological pro-angiogenic gene expressions including VEGF under retinal hypoxia, ultimately leading to the development of ocular ischemic neovascular diseases. In this regard, HIF is considered as a promising therapeutic target in ocular ischemic diseases. In clinical ophthalmology, abnormal hypofluorescent areas have been detected in the late-phase of indocyanine green angiography, which are thought to be lipid deposits at the level of Bruch’s membrane to choriocapillaris in vitreoretinal diseases. These deposits may interfere with the oxygen and nutrients that should be supplied to the retinal pigment epithelium, and that HIF/VEGF is highly suspected to be expressed in the hypoxic retinal pigment epithelium, leading to neovascularization. In this review, we comprehensively summarize pathophysiology of AMD-related ocular diseases with the HIF/VEGF pathway from basic and clinic researches with recent findings.
Collapse
Affiliation(s)
- Ari Shinojima
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (D.L.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (K.T.); (K.N.)
| | - Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (D.L.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (K.T.); (K.N.)
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (K.T.); (K.N.)
- Tsubota Laboratory, Inc., Tokyo 160-0016, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (K.T.); (K.N.)
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (D.L.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (K.T.); (K.N.)
- Correspondence: ; Tel.: +81-3-5313-4132; Fax: +81-3-5363-3274
| |
Collapse
|
42
|
Yang M, Chen Y, Vagionitis S, Körtvely E, Ueffing M, Schmachtenberg O, Hu Z, Jiao K, Paquet-Durand F. Expression of glucose transporter-2 in murine retina: Evidence for glucose transport from horizontal cells to photoreceptor synapses. J Neurochem 2021; 160:283-296. [PMID: 34726780 DOI: 10.1111/jnc.15533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 01/30/2023]
Abstract
The retina has the highest relative energy consumption of any tissue, depending on a steady supply of glucose from the bloodstream. Glucose uptake is mediated by specific transporters whose regulation and expression are critical for the pathogenesis of many diseases, including diabetes and diabetic retinopathy. Here, we used immunofluorescence to show that glucose transporter-2 (GLUT2) is expressed in horizontal cells of the mouse neuroretina in proximity to inner retinal capillaries. To study the function of GLUT2 in the murine retina, we used organotypic retinal explants, cultivated under entirely controlled, serum-free conditions and exposed them to streptozotocin, a cytotoxic drug transported exclusively by GLUT2. Contrary to our expectations, streptozotocin did not measurably affect horizontal cell viability, while it ablated rod and cone photoreceptors in a concentration-dependent manner. Staining for poly-ADP-ribose (PAR) indicated that the detrimental effect of streptozotocin on photoreceptors may be associated with DNA damage. The negative effect of streptozotocin on the viability of rod photoreceptors was counteracted by co-administration of either the inhibitor of connexin-formed hemi-channels meclofenamic acid or the blocker of clathrin-mediated endocytosis dynasore. Remarkably, cone photoreceptors were not protected from streptozotocin-induced degeneration by neither of the two drugs. Overall, these data suggest the existence of a GLUT2-dependent glucose transport shuttle, from horizontal cells into photoreceptor synapses. Moreover, our study points at different glucose uptake mechanisms in rod and cone photoreceptors.
Collapse
Affiliation(s)
- Ming Yang
- Affiliated Hospital of Yunnan University & 2nd People's Hospital of Yunnan Province, Kunming, China.,Yunnan Eye Institute & Key Laboratory of Yunnan Province, Kunming, China.,1st Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiyi Chen
- Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, Germany
| | - Stavros Vagionitis
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Elöd Körtvely
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O), Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, Germany
| | - Oliver Schmachtenberg
- CINV, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Zhulin Hu
- Affiliated Hospital of Yunnan University & 2nd People's Hospital of Yunnan Province, Kunming, China.,Yunnan Eye Institute & Key Laboratory of Yunnan Province, Kunming, China
| | - Kangwei Jiao
- Affiliated Hospital of Yunnan University & 2nd People's Hospital of Yunnan Province, Kunming, China.,Yunnan Eye Institute & Key Laboratory of Yunnan Province, Kunming, China
| | | |
Collapse
|
43
|
Abrishami M, Hassanpour K, Hosseini S, Emamverdian Z, Ansari-Astaneh MR, Zamani G, Gharib B, Abrishami M. Macular vessel density reduction in patients recovered from COVID-19: a longitudinal optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 2021; 260:771-779. [PMID: 34636996 PMCID: PMC8505785 DOI: 10.1007/s00417-021-05429-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background/aims To quantify the longitudinal changes of the macular microvasculature and the foveal avascular zone (FAZ) parameters in patients recovered from coronavirus disease-2019 (COVID-19) using optical coherence tomography angiography (OCTA) analysis. Methods This observational, longitudinal study was performed on patients recovered from COVID-19. The OCTA images were recorded at baseline and after 1 and 3 months at the follow-up examination. Vessel density (VD) of the retinal superficial (SCP) and deep capillary plexus (DCP), as well as the area of the FAZ of patients who had recovered from COVID-19, were measured. Results In total, 36 eyes of 18 patients (62.2% female) with a mean age of 34.5 ± 7.5 years old were included. Regarding SCP, while the VDs of the whole image, fovea, and parafovea were comparable at different time points, the mean VDs in inferior hemifield, as well as superior and inferior regions of perifovea, underwent significant reductions at month 3, compared to the baseline. In DCP, the mean of VD in the whole image was 54.3 ± 2.7 at the first visit which significantly decreased to 52.1 ± 3.8(P = 0.003) and 51.4 ± 2.7(P = 0.001) after 1 and 3 months, respectively. The VDs in all regions of parafovea and perifovea revealed a significant reduction after 1 and 3 months, compared to the first visit. The mean FAZ area was 0.27 ± 0.08 mm2, 0.26 ± 0.08 mm2, and 0.27 ± 0.08 mm2 at the baseline, month 1, and month 3, respectively (P > 0.05). Conclusion Based on the results, the patients who had recovered from COVID-19 had a progressive decrease of VD at the follow-up visit 3 months after COVID-19 infection.
![]()
Collapse
Affiliation(s)
- Mojtaba Abrishami
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Eye Research Center, Khatam-al-Anbia Eye Hospital, Qarani Blvd, Mashhad, 9195965919, Iran.
| | - Kiana Hassanpour
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Emamverdian
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ghodsieh Zamani
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Gharib
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Abrishami
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Bajtl D, Bjeloš M, Bušić M, Križanović A, Marković L, Kuzmanović Elabjer B. Macular perfusion normative data acquired with optical coherence tomography angiography in healthy four-year-old Caucasian children. BMC Ophthalmol 2021; 21:354. [PMID: 34610816 PMCID: PMC8491392 DOI: 10.1186/s12886-021-02122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this cross-sectional study involving healthy emmetropic four-year-old Caucasian children was to provide a macular perfusion normative database acquired with optical coherence tomography angiography (OCTA). One eye of each examinee underwent OCTA imaging. The following parameters were analyzed using AngioTool Image J software: vessels area (VA), vessels density (VD), total number of junctions (TNJ), junctions density (JD), total vessel length (TVL), average vessel length (AVL), total number of endpoints (TNEP), lacunarity (L), vessel diameter index (VDI), tortuosity (T) and foveal avascular zone (FAZ). Average central macular thickness (CMT) and average central macular volume (CMV) were measured. RESULT Sixty-two eyes of 62 children of average age 50.4 ± 3.8 months were examined. VA, VD, and T increased from the inner towards the outer layers of the retina. The intermediate capillary plexus had the highest JD and TNEP and narrowest FAZ. Retinal sexual differentiation was supported with higher values of the retinal VA, VDI and TNEP, and chorioretinal VA, VDI and L in males. The choriocapillaris presented with the highest VD, AVL, and T and the lowest L and TNEP. CONCLUSION The study provides the first detailed normative database of the macular vascular network in the youngest uniform cohort of emmetropic four-year-old children.
Collapse
Affiliation(s)
- Dunja Bajtl
- University Eye Department, University Hospital Centre Osijek, Osijek, Croatia
| | - Mirjana Bjeloš
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia. .,University Eye Department, University Hospital "Sveti Duh", Sveti Duh 64, 10 000, Zagreb, Croatia. .,Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| | - Mladen Bušić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,University Eye Department, University Hospital "Sveti Duh", Sveti Duh 64, 10 000, Zagreb, Croatia.,Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ana Križanović
- University Eye Department, University Hospital "Sveti Duh", Sveti Duh 64, 10 000, Zagreb, Croatia.,Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Leon Marković
- University Eye Department, University Hospital "Sveti Duh", Sveti Duh 64, 10 000, Zagreb, Croatia.,Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Biljana Kuzmanović Elabjer
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,University Eye Department, University Hospital "Sveti Duh", Sveti Duh 64, 10 000, Zagreb, Croatia.,Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
45
|
Qiang W, Wei R, Chen Y, Chen D. Clinical Pathological Features and Current Animal Models of Type 3 Macular Neovascularization. Front Neurosci 2021; 15:734860. [PMID: 34512255 PMCID: PMC8427186 DOI: 10.3389/fnins.2021.734860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Type 3 macular neovascularization (MNV3), or retinal angiomatous proliferation (RAP), is a distinct type of neovascular age-related macular degeneration (AMD), which is a leading cause of vision loss in older persons. During the past decade, systematic investigation into the clinical, multimodal imaging, and histopathological features and therapeutic outcomes has provided important new insight into this disease. These studies favor the retinal origin of MNV3 and suggest the involvement of retinal hypoxia, inflammation, von Hippel–Lindau (VHL)–hypoxia-inducible factor (HIF)–vascular endothelial growth factor (VEGF) pathway, and multiple cell types in the development and progression of MNV3. Several mouse models, including the recently built Rb/p107/Vhl triple knockout mouse model by our group, have induced many of the histological features of MNV3 and provided much insight into the underlying pathological mechanisms. These models have revealed the roles of retinal hypoxia, inflammation, lipid metabolism, VHL/HIF pathway, and retinoblastoma tumor suppressor (Rb)–E2F cell cycle pathway in the development of MNV3. This article will summarize the clinical, multimodal imaging, and pathological features of MNV3 and the diversity of animal models that exist for MNV3, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Wei Qiang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Wei
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Midena E, Torresin T, Longhin E, Midena G, Pilotto E, Frizziero L. Early Microvascular and Oscillatory Potentials Changes in Human Diabetic Retina: Amacrine Cells and the Intraretinal Neurovascular Crosstalk. J Clin Med 2021; 10:jcm10184035. [PMID: 34575150 PMCID: PMC8466765 DOI: 10.3390/jcm10184035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
To analyze the early microvascular retinal changes and oscillatory potentials alterations secondary to diabetic retinal damage, 44 eyes of 22 diabetic patients without and with mild diabetic retinopathy (DR) and 18 eyes of 9 healthy controls were examined. All subjects underwent spectral domain optical coherence tomography (SD-OCT), OCT angiography (OCTA), and electroretinography of oscillatory potentials (OPs). At OCTA, vessel area density (VAD), vessel length fraction (VLF), and fractal dimension (FD) were significantly reduced in the superficial vascular plexus (SVP), VLF and FD in the intermediate capillary plexus (ICP), and FD in the deep capillary plexus (DCP) in the diabetic group compared to the control group. The amplitude (A) of OP2, OP3, OP4 and the sum of OPs were significantly reduced in the diabetic group versus the controls, and the last two parameters were reduced also in patients without DR versus the controls. Moreover, in the diabetic group, a significant direct correlation was found between the A of OP1, OP2, OP3 and sOP and the VLF and FD in the SVP, while a statistically significant inverse correlation was found between the A of OP3 and OP4 and the VDI in the ICP and DCP. The reduced oscillatory potentials suggest a precocious involvement of amacrine cells in diabetic eyes, independently of DR presence, and their correlation with vascular parameters underlines the relevance of the crosstalk between these cells and vascular components in the pathophysiology of this chronic disease.
Collapse
Affiliation(s)
- Edoardo Midena
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
- IRCCS—Fondazione Bietti, 00198 Rome, Italy;
- Correspondence: ; Tel.: +39-049-821-2110
| | - Tommaso Torresin
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
| | - Evelyn Longhin
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
| | | | - Elisabetta Pilotto
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
| | - Luisa Frizziero
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (T.T.); (E.L.); (E.P.); (L.F.)
| |
Collapse
|
47
|
Cheng SY, Punzo C. Ocular Inflammation with Anti-Vascular Endothelial Growth Factor Treatments. Hum Gene Ther 2021; 32:639-641. [PMID: 34283642 DOI: 10.1089/hum.2021.29167.syc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shun-Yun Cheng
- Department of Ophthalmology, Gene Therapy Center, Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Claudio Punzo
- Department of Ophthalmology, Gene Therapy Center, Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
48
|
Cheng SY, Luo Y, Malachi A, Ko J, Su Q, Xie J, Tian B, Lin H, Ke X, Zheng Q, Tai PWL, Gao G, Punzo C. Low-Dose Recombinant Adeno-Associated Virus-Mediated Inhibition of Vascular Endothelial Growth Factor Can Treat Neovascular Pathologies Without Inducing Retinal Vasculitis. Hum Gene Ther 2021; 32:649-666. [PMID: 34182803 PMCID: PMC8312021 DOI: 10.1089/hum.2021.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The wet form of age-related macular degeneration is characterized by neovascular pathologies that, if untreated, can result in edemas followed by rapid vision loss. Inhibition of vascular endothelial growth factor (VEGF) has been used to successfully treat neovascular pathologies of the eye. Nonetheless, some patients require frequent intravitreal injections of anti-VEGF drugs, increasing the burden and risk of complications from the procedure to affected individuals. Recombinant adeno-associated virus (rAAV)-mediated expression of anti-VEGF proteins is an attractive alternative to reduce risk and burden to patients. However, controversy remains as to the safety of prolonged VEGF inhibition in the eye. Here, we show that two out of four rAAV serotypes tested by intravitreal delivery to express the anti-VEGF drug conbercept lead to a dose-dependent vascular sheathing pathology that is characterized by immune cell infiltrates, reminiscent of vasculitis in humans. We show that this pathology is accompanied by increased expression in vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM1), both of which promote extravasation of immune cells from the vasculature. While formation of the vascular sheathing pathology is prevented in immunodeficient Rag-1 mice that lack B and T cells, increased expression of VACM1 and ICAM1 still occurs, indicating that inhibition of VEGF function leads to expression changes in cell adhesion molecules that promote extravasation of immune cells. Importantly, a 10-fold lower dose of one of the vectors that cause a vascular sheathing pathology is still able to reduce edemas resulting from choroidal neovascularization without causing any vascular sheathing pathology and only a minimal increase in VCAM1 expression. The data suggest that treatments of neovascular eye pathologies with rAAV-mediated expression of anti VEGF drugs can be developed safely. However, viral load needs to be adjusted to the tropisms of the serotype and the expression pattern of the promoter.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Anneliese Malachi
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jihye Ko
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bo Tian
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Haijiang Lin
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiao Ke
- Chengdu Kanghong Pharmaceutical Group Co. Ltd, Chengdu, Sichuan, China
| | - Qiang Zheng
- Chengdu Kanghong Pharmaceutical Group Co. Ltd, Chengdu, Sichuan, China
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
49
|
Jones I, Hägglund AC, Carlsson L. Reduced mTORC1-signaling in retinal ganglion cells leads to vascular retinopathy. Dev Dyn 2021; 251:321-335. [PMID: 34148274 DOI: 10.1002/dvdy.389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The coordinated wiring of neurons, glia and endothelial cells into neurovascular units is critical for central nervous system development. This is best exemplified in the mammalian retina where interneurons, astrocytes and retinal ganglion cells sculpt their vascular environment to meet the metabolic demands of visual function. Identifying the molecular networks that underlie neurovascular unit formation is an important step towards a deeper understanding of nervous system development and function. RESULTS Here, we report that cell-to-cell mTORC1-signaling is essential for neurovascular unit formation during mouse retinal development. Using a conditional knockout approach we demonstrate that reduced mTORC1 activity in asymmetrically positioned retinal ganglion cells induces a delay in postnatal vascular network formation in addition to the production of rudimentary and tortuous vessel networks in adult animals. The severity of this vascular phenotype is directly correlated to the degree of mTORC1 down regulation within the neighboring retinal ganglion cell population. CONCLUSIONS This study establishes a cell nonautonomous role for mTORC1-signaling during retinal development. These findings contribute to our current understanding of neurovascular unit formation and demonstrate how ganglion cells actively sculpt their local environment to ensure that the retina is perfused with an appropriate supply of oxygen and nutrients.
Collapse
Affiliation(s)
- Iwan Jones
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | | | - Leif Carlsson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
50
|
CHARACTERIZATION BY FRACTAL DIMENSION ANALYSIS OF THE RETINAL CAPILLARY NETWORK IN PARKINSON DISEASE. Retina 2021; 40:1483-1491. [PMID: 31479087 DOI: 10.1097/iae.0000000000002641] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE To characterize retinal capillary complexity by optical coherence tomography angiography in Parkinson disease. METHOD Twenty-five Parkinson disease patients and 25 age- and gender-matched healthy controls were recruited. Optical coherence tomography angiography and optical coherence tomography imaged the superficial and deep retinal capillary plexuses and retinal structure. Retinal capillary skeleton density, retinal capillary perfusion density, and fractal dimension analysis of retinal capillary complexity were performed in the total annular zone and quadrant sectors. The thickness of retinal nerve fiber layer, ganglion cell layer and inner plexiform layer, and total retinal thickness were extracted from retinal structural images. Relationships among the retinal capillaries, retinal structure, and clinical parameters were analyzed. RESULTS The superficial retinal capillary plexus in Parkinson disease patients had lower retinal capillary skeleton and perfusion densities and capillary complexity in the total annular zone and all quadrant sectors compared with healthy control subjects. The deep retinal capillary plexus retinal capillary complexity was decreased in the total annular zone and the superior and inferior quadrants. The retinal capillary complexity in the inferior quadrant was negatively correlated with the best-corrected visual acuity and disease duration (r = -0.61, r = -0.43, respectively, both P < 0.05). CONCLUSION As determined by fractal analysis, retinal capillary complexity can be an objective biomarker in Parkinson disease.
Collapse
|