1
|
Matsumoto K, Matsumoto Y, Wada J. PARylation-mediated post-transcriptional modifications in cancer immunity and immunotherapy. Front Immunol 2025; 16:1537615. [PMID: 40134437 PMCID: PMC11933034 DOI: 10.3389/fimmu.2025.1537615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Poly-ADP-ribosylation (PARylation) is a post-translational modification in which ADP-ribose is added to substrate proteins. PARylation is mediated by a superfamily of ADP-ribosyl transferases known as PARPs and influences a wide range of cellular functions, including genome integrity maintenance, and the regulation of proliferation and differentiation. We and others have recently reported that PARylation of SH3 domain-binding protein 2 (3BP2) plays a role in bone metabolism, immune system regulation, and cytokine production. Additionally, PARylation has recently gained attention as a target for cancer treatment. In this review, we provide an overview of PARylation, its involvement in several signaling pathways related to cancer immunity, and the potential of combination therapies with PARP inhibitors and immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | |
Collapse
|
2
|
Huang D, Wang J, Chen L, Jiang W, Inuzuka H, Simon DK, Wei W. Targeting the PARylation-Dependent Ubiquitination Signaling Pathway for Cancer Therapies. Biomolecules 2025; 15:237. [PMID: 40001540 PMCID: PMC11852910 DOI: 10.3390/biom15020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a dynamic protein post-translational modification (PTM) mediated by ADP-ribosyltransferases (ARTs), which regulates a plethora of essential biological processes, such as DNA repair, gene expression, and signal transduction. Among these, PAR-dependent ubiquitination (PARdU) plays a pivotal role in tagging PARylated substrates for subsequent ubiquitination and degradation events through the coordinated action of enzymes, including the E3 ligase RNF146 and the ADP-ribosyltransferase tankyrase. Notably, this pathway has emerged as a key regulator of tumorigenesis, immune modulation, and cell death. This review elucidates the molecular mechanisms of the PARdU pathway, including the RNF146-tankyrase interaction, substrate specificity, and upstream regulatory pathways. It also highlights the biological functions of PARdU in DNA damage repair, signaling pathways, and metabolic regulation, with a focus on its therapeutic potential in cancer treatment. Strategies targeting PARdU, such as tankyrase and RNF146 inhibitors, synthetic lethality approaches, and immune checkpoint regulation, offer promising avenues for precision oncology. These developments underscore the potential of PARdU as a transformative therapeutic target in combating various types of human cancer.
Collapse
Affiliation(s)
- Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Weiwei Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David K. Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Wang X, Qu Z, Zhao S, Luo L, Yan L. Wnt/β-catenin signaling pathway: proteins' roles in osteoporosis and cancer diseases and the regulatory effects of natural compounds on osteoporosis. Mol Med 2024; 30:193. [PMID: 39468464 PMCID: PMC11520425 DOI: 10.1186/s10020-024-00957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Osteoblasts are mainly derived from mesenchymal stem cells in the bone marrow. These stem cells can differentiate into osteoblasts, which have the functions of secreting bone matrix, promoting bone formation, and participating in bone remodeling. The abnormality of osteoblasts can cause a variety of bone-related diseases, including osteoporosis, delayed fracture healing, and skeletal deformities. In recent years, with the side effects caused by the application of PTH drugs, biphosphonate drugs, and calmodulin drugs, people have carried out more in-depth research on the mechanism of osteoblast differentiation, and are actively looking for natural compounds for the treatment of osteoporosis. The Wnt/β-catenin signaling pathway is considered to be one of the important pathways of osteoblast differentiation, and has become an important target for the treatment of osteoporosis. The Wnt/β-catenin signaling pathway, whether its activation is enhanced or its expression is weakened, will cause a variety of diseases including tumors. This review will summarize the effect of Wnt/β-catenin signaling pathway on osteoblast differentiation and the correlation between the related proteins in the pathway and human diseases. At the same time, the latest research progress of natural compounds targeting Wnt/β-catenin signaling pathway against osteoporosis is summarized.
Collapse
Affiliation(s)
- Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Medical University, Xi'an, China
| | - Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Luo
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Zhang HR, Wang YH, Xiao ZP, Yang G, Xu YR, Huang ZT, Wang WZ, He F. E3 ubiquitin ligases: key regulators of osteogenesis and potential therapeutic targets for bone disorders. Front Cell Dev Biol 2024; 12:1447093. [PMID: 39211390 PMCID: PMC11358089 DOI: 10.3389/fcell.2024.1447093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitination is a crucial post-translational modification of proteins that mediates the degradation or functional regulation of specific proteins. This process participates in various biological processes such as cell growth, development, and signal transduction. E3 ubiquitin ligases play both positive and negative regulatory roles in osteogenesis and differentiation by ubiquitination-mediated degradation or stabilization of transcription factors, signaling molecules, and cytoskeletal proteins. These activities affect the proliferation, differentiation, survival, and bone formation of osteoblasts (OBs). In recent years, advances in genomics, transcriptomics, and proteomics have led to a deeper understanding of the classification, function, and mechanisms of action of E3 ubiquitin ligases. This understanding provides new insights and approaches for revealing the molecular regulatory mechanisms of bone formation and identifying therapeutic targets for bone metabolic diseases. This review discusses the research progress and significance of the positive and negative regulatory roles and mechanisms of E3 ubiquitin ligases in the process of osteogenic differentiation. Additionally, the review highlights the role of E3 ubiquitin ligases in bone-related diseases. A thorough understanding of the role and mechanisms of E3 ubiquitin ligases in osteogenic differentiation could provide promising therapeutic targets for bone tissue engineering based on stem cells.
Collapse
Affiliation(s)
- Heng-Rui Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Yang-Hao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhen-Ping Xiao
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
- Department of Pain and Rehabilitation, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Guang Yang
- Department of Trauma Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun-Rong Xu
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Zai-Tian Huang
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wei-Zhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| |
Collapse
|
5
|
Hao W, Jialong Z, Jiuzhi Y, Yang Y, Chongning L, Jincai L. ADP-ribosylation, a multifaceted modification: Functions and mechanisms in aging and aging-related diseases. Ageing Res Rev 2024; 98:102347. [PMID: 38815933 DOI: 10.1016/j.arr.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Aging, a complex biological process, plays key roles the development of multiple disorders referred as aging-related diseases involving cardiovascular diseases, stroke, neurodegenerative diseases, cancers, lipid metabolism-related diseases. ADP-ribosylation is a reversible modification onto proteins and nucleic acids to alter their structures and/or functions. Growing evidence support the importance of ADP-ribosylation and ADP-ribosylation-associated enzymes in aging and age-related diseases. In this review, we summarized ADP-ribosylation-associated proteins including ADP-ribosyl transferases, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. Furthermore, we outlined the latest knowledge about regulation of ADP-ribosylation in the pathogenesis and progression of main aging-related diseases, organism aging and cellular senescence, and we also speculated the underlying mechanisms to better disclose this novel molecular network. Moreover, we discussed current issues and provided an outlook for future research, aiming to revealing the unknown bio-properties of ADP-ribosylation, and establishing a novel therapeutic perspective in aging-related diseases and health aging via targeting ADP-ribosylation.
Collapse
Affiliation(s)
- Wu Hao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhao Jialong
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Jiuzhi
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Yang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Lv Chongning
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Lu Jincai
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
6
|
Wu H, Lu A, Yuan J, Yu Y, Lv C, Lu J. Mono-ADP-ribosylation, a MARylationmultifaced modification of protein, DNA and RNA: characterizations, functions and mechanisms. Cell Death Discov 2024; 10:226. [PMID: 38734665 PMCID: PMC11088682 DOI: 10.1038/s41420-024-01994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The functional alterations of proteins and nucleic acids mainly rely on their modifications. ADP-ribosylation is a NAD+-dependent modification of proteins and, in some cases, of nucleic acids. This modification is broadly categorized as Mono(ADP-ribosyl)ation (MARylation) or poly(ADP-ribosyl)ation (PARylation). MARylation catalyzed by mono(ADP-ribosyl) transferases (MARTs) is more common in cells and the number of MARTs is much larger than poly(ADP-ribosyl) transferases. Unlike PARylation is well-characterized, research on MARylation is at the starting stage. However, growing evidence demonstrate the cellular functions of MARylation, supporting its potential roles in human health and diseases. In this review, we outlined MARylation-associated proteins including MARTs, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. We summarized up-to-date findings about MARylation onto newly identified substrates including protein, DNA and RNA, and focused on the functions of these reactions in pathophysiological conditions as well as speculated the potential mechanisms. Furthermore, new strategies of MARylation detection and the current state of MARTs inhibitors were discussed. We also provided an outlook for future study, aiming to revealing the unknown biological properties of MARylation and its relevant mechanisms, and establish a novel therapeutic perspective in human diseases.
Collapse
Affiliation(s)
- Hao Wu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Anqi Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiuzhi Yuan
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Yu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chongning Lv
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
7
|
Li X, Pang W, Fan H, Wang H, Zhang L. FRZB affects Staphylococcus aureus‑induced osteomyelitis in human bone marrow derived stem cells by regulating the Wnt/β‑catenin signaling pathway. Exp Ther Med 2023; 26:531. [PMID: 37869648 PMCID: PMC10587868 DOI: 10.3892/etm.2023.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/29/2023] [Indexed: 10/24/2023] Open
Abstract
Osteomyelitis is an infectious disease of bone tissue caused by bacterial infection, which can infect through hematogenous, traumatic or secondary ways and then lead to acute or chronic bone injury and relative clinical symptoms, bringing physical injury and economic burden to patients. Frizzled related protein (FRZB) participates in the regulation of various diseases (osteoarthritis, cardiovascular diseases and types of cancer) by regulating cell proliferation, motility, differentiation and inflammation, while its function in osteomyelitis remains to be elucidated. The present study aimed to uncover the role and underlying mechanism of FRZB mediation in Staphylococcus aureus (S. aureus)-induced osteomyelitis. Human bone marrow derived stem cells (hBMSCs) were treated with S. aureus to imitate an inflammatory osteomyelitis micro-environment in vitro, then mRNA and protein expression were severally assessed by RT-PCR and western blotting. The activity, apoptosis and differentiation of the cells were characterized via CCK-8, caspase-3 activity and Alizarin red sulfate/alkaline phosphatase staining, respectively. Expression levels of FRZB were upregulated in S. aureus-infected hBMSCs. Over-expression of FRZB significantly reduced hBMSC cell viability and differentiation while promoting cell apoptosis with or without S. aureus infection. However, FRZB knockdown reversed these effects. Once Wnt was impeded, the effect of FRZB downregulation was impeded to a great extent. Taken together, FRZB participated to regulate the osteomyelitis by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xin Li
- Department of Emergency Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550023, P.R. China
| | - Wenyong Pang
- Department of Emergency Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550023, P.R. China
| | - Hongsong Fan
- Department of Emergency Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550023, P.R. China
| | - Hao Wang
- Department of Emergency Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550023, P.R. China
| | - Leibing Zhang
- Department of Emergency Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550023, P.R. China
| |
Collapse
|
8
|
Zhou L, Guo H, Liao Q, Zou J, Le Y, Fang Z, Xiong J, Huang S, Deng J, Xiang X. miR-3133 inhibits gastrointestinal cancer progression through activation of Hippo and p53 signalling pathways via multi-targets. J Cell Mol Med 2023; 27:3090-3106. [PMID: 37555915 PMCID: PMC10568676 DOI: 10.1111/jcmm.17880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Malignant cell growth and chemoresistance, the main obstacles in treating gastrointestinal cancer (GIC), rely on the Hippo and p53 signalling pathways. However, the upstream regulatory mechanisms of these pathways remain complex and poorly understood. METHODS Immunohistochemistry (IHC), western blot and RT-qPCR were used to analyse the expression of RNF146, miR-3133 and key components of Hippo and p53 pathway. CCK-8, colony formation, drug sensitivity assays and murine xenograft models were used to investigate the effect of RNF146 and miR-3133 in GIC. Further exploration of the upstream regulatory mechanism was performed using bioinformatics analysis, dual-luciferase reporter gene, immunoprecipitation assays and bisulfite sequencing PCR (BSP). RESULTS Clinical samples, in vitro and in vivo experiments demonstrated that RNF146 exerts oncogenic effects in GIC by regulating the Hippo pathway. Bioinformatics analysis identified a novel miRNA, miR-3133, as an upstream regulatory factor of RNF146. fluorescence in situ hybridization and RT-qPCR assays revealed that miR-3133 was less expressed in gastrointestinal tumour tissues and was associated with adverse pathological features. Functional assays and animal models showed that miR-3133 promoted the proliferation and chemotherapy sensitivity of GIC cells. miR-3133 affected YAP1 protein expression by targeting RNF146, AGK and CUL4A, thus activating the Hippo pathway. miR-3133 inhibited p53 protein degradation and extended p53's half-life by targeting USP15, SPIN1. BSP experiments confirmed that miR-3133 promoter methylation is an important reason for its low expression. CONCLUSION miR-3133 inhibits GIC progression by activating the Hippo and p53 signalling pathways via multi-targets, including RNF146, thereby providing prognostic factors and valuable potential therapeutic targets for GIC.
Collapse
Affiliation(s)
- Ling Zhou
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Hui Guo
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Quan Liao
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Jianping Zou
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Yi Le
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Ziling Fang
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Jianping Xiong
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Shanshan Huang
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Jun Deng
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Xiaojun Xiang
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| |
Collapse
|
9
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
10
|
Luo W, Zhang G, Wang Z, Wu Y, Xiong Y. Ubiquitin-specific proteases: Vital regulatory molecules in bone and bone-related diseases. Int Immunopharmacol 2023; 118:110075. [PMID: 36989900 DOI: 10.1016/j.intimp.2023.110075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Stabilization of bone structure and function involves multiple cell-to-cell and molecular interactions, in which the regulatory functions of post-translational modifications such as ubiquitination and deubiquitination shouldn't be underestimated. As the largest family of deubiquitinating enzymes, the ubiquitin-specific proteases (USPs) participate in the development of bone homeostasis and bone-related diseases through multiple classical osteogenic and osteolytic signaling pathways, such as BMP/TGF-β pathway, NF-κB/p65 pathway, EGFR-MAPK pathway and Wnt/β-catenin pathway. Meanwhile, USPs may also broadly regulate regulate hormone expression level, cell proliferation and differentiation, and may further influence bone homeostasis from gene fusion and nuclear translocation of transcription factors. The number of patients with bone-related diseases is currently enormous, making exploration of their pathogenesis and targeted therapy a hot topic. Pathological increases in the levels of inflammatory mediators such as IL-1β and TNF-α lead to inflammatory bone diseases such as osteoarthritis, rheumatoid arthritis and periodontitis. While impaired body metabolism greatly increases the probability of osteoporosis. Abnormal physiological activity of bone-associated cells results in a variety of bone tumors. The regulatory role of USPs in bone-related disease has received particular attention from academics in recent studies. In this review, we focuse on the roles and mechanisms of USPs in bone homeostasis and bone-related diseases, with the expectation of informing targeted therapies in the clinic.
Collapse
Affiliation(s)
- Wenxin Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Matsumoto Y, Rottapel R. PARsylation-mediated ubiquitylation: lessons from rare hereditary disease Cherubism. Trends Mol Med 2023; 29:390-405. [PMID: 36948987 DOI: 10.1016/j.molmed.2023.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/24/2023]
Abstract
Modification of proteins by ADP-ribose (PARsylation) is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes exemplified by PARP1, which controls chromatin organization and DNA repair. Additionally, PARsylation induces ubiquitylation and proteasomal degradation of its substrates because PARsylation creates a recognition site for E3-ubiquitin ligase. The steady-state levels of the adaptor protein SH3-domain binding protein 2 (3BP2) is negatively regulated by tankyrase (PARP5), which coordinates ubiquitylation of 3BP2 by the E3-ligase ring finger protein 146 (RNF146). 3BP2 missense mutations uncouple 3BP2 from tankyrase-mediated negative regulation and cause Cherubism, an autosomal dominant autoinflammatory disorder associated with craniofacial dysmorphia. In this review, we summarize the diverse biological processes, including bone dynamics, metabolism, and Toll-like receptor (TLR) signaling controlled by tankyrase-mediated PARsylation of 3BP2, and highlight the therapeutic potential of this pathway.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama 700-8558, Japan.
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Rheumatology, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| |
Collapse
|
12
|
Asano Y, Matsumoto Y, Wada J, Rottapel R. E3-ubiquitin ligases and recent progress in osteoimmunology. Front Immunol 2023; 14:1120710. [PMID: 36911671 PMCID: PMC9996189 DOI: 10.3389/fimmu.2023.1120710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Ubiquitin-mediated proteasomal degradation is a post-transcriptional protein modification that is comprised of various components including the 76-amino acid protein ubiquitin (Ub), Ub-activating enzyme (E1), Ub-conjugating enzyme (E2), ubiquitin ligase (E3), deubiquitinating enzyme (DUB) and proteasome. We and others have recently provided genetic evidence showing that E3-ubiquitin ligases are associated with bone metabolism, the immune system and inflammation through ubiquitylation and subsequent degradation of their substrates. Dysregulation of the E3-ubiquitin ligase RNF146-mediated degradation of the adaptor protein 3BP2 (SH3 domain-binding protein 2) causes cherubism, an autosomal dominant disorder associated with severe inflammatory craniofacial dysmorphia syndrome in children. In this review, on the basis of our discoveries in cherubism, we summarize new insights into the roles of E3-ubiquitin ligases in the development of human disorders caused by an abnormal osteoimmune system by highlighting recent genetic evidence obtained in both human and animal model studies.
Collapse
Affiliation(s)
- Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Rheumatology, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
13
|
Li Y, Yang S, Yang S. Rb1 negatively regulates bone formation and remodeling through inhibiting transcriptional regulation of YAP in Glut1 and OPG expression and glucose metabolism in male mice. Mol Metab 2022; 66:101630. [PMID: 36343919 PMCID: PMC9672361 DOI: 10.1016/j.molmet.2022.101630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Bone is a highly dynamic organ that undergoes constant bone formation and remodeling, and glucose as a major nutrient is necessary for bone formation and remodeling. Retinoblastoma (Rb1) is a critical regulator of mesenchymal stem cells (MSCs) fate, but how Rb1 regulates bone formation and remodeling is poorly understood. METHODS We generated MSCs- and osteoprogenitors-specific Rb1 knockout mouse models and utilized these models to explore the function and mechanism of Rb1 in regulating bone formation and remodeling in vivo and in vitro primary cell culture. RESULTS Rb1 deficiency in MSCs significantly increased bone mass and impaired osteoclastogenesis. Consistently, depletion of Rb1 in osteoprogenitors significantly promoted bone formation. Mechanistically, loss of Rb1 in MSCs elevated YAP nuclear translocation and transcriptional activity of YAP/TEAD1 complex, thereby increasing the transcriptional expression of Glut1 and OPG. Moreover Prx1-Cre; Rb1f/f mice displayed hypoglycemia with increased systemic glucose tolerance instead of increased insulin level. In vitro data revealed that Rb1-mutant MSCs enhanced glucose uptake and lactate and ATP production. Increased osteogenesis caused by increased glucose metabolism and decreased osteoclastogenesis caused by increased expression of OPG eventually resulted in increased bone formation and remodeling. CONCLUSIONS Collectively, these findings demonstrated that Rb1 in MSCs inhibits YAP-medicated Glut1 and OPG expression to control glucose metabolism, osteogenesis and osteoclastogenesis during bone formation and remodeling, which provide new insights that controlling Rb1 signaling may be a potential strategy for osteopetrosis.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; The Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
E3 Ubiquitin Ligases: Potential Therapeutic Targets for Skeletal Pathology and Degeneration. Stem Cells Int 2022; 2022:6948367. [PMID: 36203882 PMCID: PMC9532118 DOI: 10.1155/2022/6948367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation, differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the UPS system is associated with many conditions. Over the past few decades, there have been an increasing number of studies focusing on the UPS system and how it affects bone metabolism. Multiple E3 ubiquitin ligases have been found to mediate osteogenesis or osteolysis through a variety of pathways. In this review, we describe the mechanisms of UPS, especially E3 ubiquitin ligases on bone metabolism. To date, many E3 ubiquitin ligases have been found to regulate osteogenesis or osteoclast differentiation. We review the classification of these E3 enzymes and the mechanisms that influence upstream and downstream molecules and transduction pathways. Finally, this paper reviews the discovery of the relevant UPS inhibitors, drug molecules, and noncoding RNAs so far and prospects the future research and treatment.
Collapse
|
15
|
Li Y, Yang S, Liu Y, Qin L, Yang S. IFT20 governs mesenchymal stem cell fate through positively regulating TGF-β-Smad2/3-Glut1 signaling mediated glucose metabolism. Redox Biol 2022; 54:102373. [PMID: 35751983 PMCID: PMC9243161 DOI: 10.1016/j.redox.2022.102373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Aberrant lineage allocation of mesenchymal stem cells (MSCs) could cause bone marrow osteoblast-adipocyte imbalance, and glucose as an important nutrient is required for the maintenance of the MSCs' fate and function. Intraflagellar transport 20 (IFT20) is one of the IFT complex B protein which regulates osteoblast differentiation, and bone formation, but how IFT20 regulates MSCs' fate remains undefined. Here, we demonstrated that IFT20 controls MSC lineage allocation through regulating glucose metabolism during skeletal development. IFT20 deficiency in the early stage of MSCs caused significantly shortened limbs, decreased bone mass and significant increase in marrow fat. However, deletion of IFT20 in the later stage of MSCs and osteocytes just slightly decreased bone mass and bone growth and increased marrow fat. Additionally, we found that loss of IFT20 in MSCs promotes adipocyte formation, which enhances RANKL expression and bone resorption. Conversely, ablation of IFT20 in adipocytes reversed these phenotypes. Mechanistically, loss of IFT20 in MSCs significantly decreased glucose tolerance and suppressed glucose uptake and lactate and ATP production. Moreover, loss of IFT20 significantly decreased the activity of TGF-β-Smad2/3 signaling and reduced the binding activity of Smad2/3 to Glut1 promoter to downregulate Glut1 expression. These findings indicate that IFT20 plays essential roles for preventing MSC lineage allocation into adipocytes through TGF-β-Smad2/3-Glut1 axis.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Tankyrases inhibit innate antiviral response by PARylating VISA/MAVS and priming it for RNF146-mediated ubiquitination and degradation. Proc Natl Acad Sci U S A 2022; 119:e2122805119. [PMID: 35733260 DOI: 10.1073/pnas.2122805119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During viral infection, sensing of viral RNA by retinoic acid-inducible gene-I-like receptors (RLRs) initiates an antiviral innate immune response, which is mediated by the mitochondrial adaptor protein VISA (virus-induced signal adaptor; also known as mitochondrial antiviral signaling protein [MAVS]). VISA is regulated by various posttranslational modifications (PTMs), such as polyubiquitination, phosphorylation, O-linked β-d-N-acetylglucosaminylation (O-GlcNAcylation), and monomethylation. However, whether other forms of PTMs regulate VISA-mediated innate immune signaling remains elusive. Here, we report that Poly(ADP-ribosyl)ation (PARylation) is a PTM of VISA, which attenuates innate immune response to RNA viruses. Using a biochemical purification approach, we identified tankyrase 1 (TNKS1) as a VISA-associated protein. Viral infection led to the induction of TNKS1 and its homolog TNKS2, which translocated from cytosol to mitochondria and interacted with VISA. TNKS1 and TNKS2 catalyze the PARylation of VISA at Glu137 residue, thereby priming it for K48-linked polyubiquitination by the E3 ligase Ring figure protein 146 (RNF146) and subsequent degradation. Consistently, TNKS1, TNKS2, or RNF146 deficiency increased the RNA virus-triggered induction of downstream effector genes and impaired the replication of the virus. Moreover, TNKS1- or TNKS2-deficient mice produced higher levels of type I interferons (IFNs) and proinflammatory cytokines after virus infection and markedly reduced virus loads in the brains and lungs. Together, our findings uncover an essential role of PARylation of VISA in virus-triggered innate immune signaling, which represents a mechanism to avoid excessive harmful immune response.
Collapse
|
17
|
Shen G, Wang H, Zhu N, Lu Q, Liu J, Xu Q, Huang D. HIF-1/2α-Activated RNF146 Enhances the Proliferation and Glycolysis of Hepatocellular Carcinoma Cells via the PTEN/AKT/mTOR Pathway. Front Cell Dev Biol 2022; 10:893888. [PMID: 35721496 PMCID: PMC9200061 DOI: 10.3389/fcell.2022.893888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Hypoxia microenvironment, a critical feature of hepatocellular carcinoma, contributes to hepatocarcinogenesis, tumor progression and therapeutic resistance. Hypoxia-inducible factors (HIFs)-activated target genes are the main effectors in hypoxia-induced HCC progression. In this study, we identified ubiquitin E3 ligase ring finger protein 146 (RNF146) as a novel HIFs target gene. Either HIF-1α or HIF-2α knockdown significantly repressed hypoxia-induced RNF146 upregulation in Hep3B and Huh7 cells. TCGA data and our immunohistochemistry analysis consistently revealed the overexpression of RNF146 in HCC tissues. The upregulated expression of RNF146 was also detected in HCC cell lines. The high RNF146 level was correlated with poor clinical features and predicted a shorter overall survival of patients with HCC. RNF146 knockdown suppressed the proliferation, colony formation and glycolysis of HCC cells, but suppressed but RNF146 overexpression promoted these malignant behaviors. Moreover, RNF146 silencing weakened HCC growth in mice. RNF146 inversely regulated phosphatase and tensin homolog (PTEN) protein level, thereby activating the AKT/mechanistic target of rapamycin kinase (mTOR) pathway in HCC cells. MG132 reversed RNF146 overexpression-induced PTEN reduction. RNF146 knockdown decreased the ubiquitination and degradation of PTEN in HCC cells. Therefore, we clarified that PTEN knockdown notably abolished the effects of RNF146 silencing on the AKT/mTOR pathway and Hep3B cells’ proliferation, colony formation and glycolysis. To conclude, our data confirmed that RNF146 was transcriptionally regulated by HIF-1/2α and activated the AKT/mTOR pathway by promoting the ubiquitin proteolysis of PTEN, thereby contributing to HCC progression. RNF146 may be a potential new drug target for anti-HCC.
Collapse
Affiliation(s)
- Guoliang Shen
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China.,Department of General Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hao Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Zhu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiliang Lu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Junwei Liu
- Department of General Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
18
|
Matsumoto Y, Dimitriou ID, La Rose J, Lim M, Camilleri S, Law N, Adissu HA, Tong J, Moran MF, Chruscinski A, He F, Asano Y, Katsuyama T, Sada KE, Wada J, Rottapel R. Tankyrase represses autoinflammation through the attenuation of TLR2 signaling. J Clin Invest 2022; 132:140869. [PMID: 35362478 PMCID: PMC8970677 DOI: 10.1172/jci140869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Dysregulation of Toll-like receptor (TLR) signaling contributes to the pathogenesis of autoimmune diseases. Here, we provide genetic evidence that tankyrase, a member of the poly(ADP-ribose) polymerase (PARP) family, negatively regulates TLR2 signaling. We show that mice lacking tankyrase in myeloid cells developed severe systemic inflammation with high serum inflammatory cytokine levels. We provide mechanistic evidence that tankyrase deficiency resulted in tyrosine phosphorylation and activation of TLR2 and show that phosphorylation of tyrosine 647 within the TIR domain by SRC and SYK kinases was critical for TLR2 stabilization and signaling. Last, we show that the elevated cytokine production and inflammation observed in mice lacking tankyrase in myeloid cells were dependent on the adaptor protein 3BP2, which is required for SRC and SYK activation. These data demonstrate that tankyrase provides a checkpoint on the TLR-mediated innate immune response.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ioannis D Dimitriou
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jose La Rose
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Lim
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Susan Camilleri
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
| | - Napoleon Law
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
| | - Hibret A Adissu
- Labcorp Early Development Laboratories Inc., Chantilly, Virginia, USA
| | - Jiefei Tong
- Program in Cell Biology, The Hospital for Sick Children, Department of Molecular Genetics
| | - Michael F Moran
- Program in Cell Biology, The Hospital for Sick Children, Department of Molecular Genetics
| | | | - Fang He
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-Ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine.,Department of Medical Biophysics, and.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Division of Rheumatology, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
20
|
Frangi G, Guicheteau M, Jacquot F, Pyka G, Kerckhofs G, Feyeux M, Veziers J, Guihard P, Halgand B, Sourice S, Guicheux J, Prieur X, Beck L, Beck-Cormier S. PiT2 deficiency prevents increase of bone marrow adipose tissue during skeletal maturation but not in OVX-induced osteoporosis. Front Endocrinol (Lausanne) 2022; 13:921073. [PMID: 36465661 PMCID: PMC9708882 DOI: 10.3389/fendo.2022.921073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The common cellular origin between bone marrow adipocytes (BMAds) and osteoblasts contributes to the intimate link between bone marrow adipose tissue (BMAT) and skeletal health. An imbalance between the differentiation ability of BMSCs towards one of the two lineages occurs in conditions like aging or osteoporosis, where bone mass is decreased. Recently, we showed that the sodium-phosphate co-transporter PiT2/SLC20A2 is an important determinant for bone mineralization, strength and quality. Since bone mass is reduced in homozygous mutant mice, we investigated in this study whether the BMAT was also affected in PiT2-/- mice by assessing the effect of the absence of PiT2 on BMAT volume between 3 and 16 weeks, as well as in an ovariectomy-induced bone loss model. Here we show that the absence of PiT2 in juveniles leads to an increase in the BMAT that does not originate from an increased adipogenic differentiation of bone marrow stromal cells. We show that although PiT2-/- mice have higher BMAT volume than control PiT2+/+ mice at 3 weeks of age, BMAT volume do not increase from 3 to 16 weeks of age, leading to a lower BMAT volume in 16-week-old PiT2-/- compared to PiT2+/+ mice. In contrast, the absence of PiT2 does not prevent the increase in BMAT volume in a model of ovariectomy-induced bone loss. Our data identify SLC20a2/PiT2 as a novel gene essential for the maintenance of the BMAd pool in adult mice, involving mechanisms of action that remain to be elucidated, but which appear to be independent of the balance between osteoblastic and adipogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Giulia Frangi
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Marie Guicheteau
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Frederic Jacquot
- Nantes Université, CHU Nantes, Inserm, CNRS, CRCI2NA, Nantes, France
| | - Grzegorz Pyka
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UC Louvain, Louvain-la-Neuve, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UC Louvain, Louvain-la-Neuve, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
- IREC, Institute of Experimental and Clinical Research, UC Louvain, Woluwé-Saint-Lambert, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Magalie Feyeux
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | - Joëlle Veziers
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Pierre Guihard
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Boris Halgand
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Sophie Sourice
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Xavier Prieur
- Nantes Université, CNRS, Inserm, l’Institut du Thorax, Nantes, France
| | - Laurent Beck
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
| | - Sarah Beck-Cormier
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, SFR Bonamy, Nantes, France
- *Correspondence: Sarah Beck-Cormier,
| |
Collapse
|
21
|
Berger JM, Karsenty G. Osteocalcin and the Physiology of Danger. FEBS Lett 2021; 596:665-680. [PMID: 34913486 PMCID: PMC9020278 DOI: 10.1002/1873-3468.14259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022]
Abstract
Bone biology has long been driven by the question as to what molecules affect cell differentiation or the functions of bone. Exploring this issue has been an extraordinarily powerful way to improve our knowledge of bone development and physiology. More recently, a second question has emerged: does bone have other functions besides making bone? Addressing this conundrum revealed that the bone-derived hormone osteocalcin affects a surprisingly large number of organs and physiological processes, including acute stress response. This review will focus on this emerging aspect of bone biology taking osteocalcin as a case study and will show how classical and endocrine functions of bone help to define a new functional identity for this tissue.
Collapse
Affiliation(s)
- Julian Meyer Berger
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, NY, 10032, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, NY, 10032, USA
| |
Collapse
|
22
|
Yang Y, Yeung KF, Liu J. CoMM-S 4: A Collaborative Mixed Model Using Summary-Level eQTL and GWAS Datasets in Transcriptome-Wide Association Studies. Front Genet 2021; 12:704538. [PMID: 34616426 PMCID: PMC8488198 DOI: 10.3389/fgene.2021.704538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation: Genome-wide association studies (GWAS) have achieved remarkable success in identifying SNP-trait associations in the last decade. However, it is challenging to identify the mechanisms that connect the genetic variants with complex traits as the majority of GWAS associations are in non-coding regions. Methods that integrate genomic and transcriptomic data allow us to investigate how genetic variants may affect a trait through their effect on gene expression. These include CoMM and CoMM-S2, likelihood-ratio-based methods that integrate GWAS and eQTL studies to assess expression-trait association. However, their reliance on individual-level eQTL data render them inapplicable when only summary-level eQTL results, such as those from large-scale eQTL analyses, are available. Result: We develop an efficient probabilistic model, CoMM-S4, to explore the expression-trait association using summary-level eQTL and GWAS datasets. Compared with CoMM-S2, which uses individual-level eQTL data, CoMM-S4 requires only summary-level eQTL data. To test expression-trait association, an efficient variational Bayesian EM algorithm and a likelihood ratio test were constructed. We applied CoMM-S4 to both simulated and real data. The simulation results demonstrate that CoMM-S4 can perform as well as CoMM-S2 and S-PrediXcan, and analyses using GWAS summary statistics from Biobank Japan and eQTL summary statistics from eQTLGen and GTEx suggest novel susceptibility loci for cardiovascular diseases and osteoporosis. Availability and implementation: The developed R package is available at https://github.com/gordonliu810822/CoMM.
Collapse
Affiliation(s)
- Yi Yang
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Kar-Fu Yeung
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Jin Liu
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
23
|
Jiang L, Yang Q, Gao J, Yang J, He J, Xin H, Zhang X. BK Channel Deficiency in Osteoblasts Reduces Bone Formation via the Wnt/β-Catenin Pathway. Mol Cells 2021; 44:557-568. [PMID: 34385407 PMCID: PMC8424144 DOI: 10.14348/molcells.2021.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 11/27/2022] Open
Abstract
Global knockout of the BK channel has been proven to affect bone formation; however, whether it directly affects osteoblast differentiation and the mechanism are elusive. In the current study, we further investigated the role of BK channels in bone development and explored whether BK channels impacted the differentiation and proliferation of osteoblasts via the canonical Wnt signaling pathway. Our findings demonstrated that knockout of Kcnma1 disrupted the osteogenesis of osteoblasts and inhibited the stabilization of β-catenin. Western blot analysis showed that the protein levels of Axin1 and USP7 increased when Kcnma1 was deficient. Together, this study confirmed that BK ablation decreased bone mass via the Wnt/β-catenin signaling pathway. Our findings also showed that USP7 might have the ability to stabilize the activity of Axin1, which would increase the degradation of β-catenin in osteoblasts.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Qianhong Yang
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jianjun Gao
- Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jiahong Yang
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jiaqi He
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| |
Collapse
|
24
|
He F, Matsumoto Y, Asano Y, Yamamura Y, Katsuyama T, La Rose J, Tomonobu N, Komalasari NLGY, Sakaguchi M, Rottapel R, Wada J. RUNX2 Phosphorylation by Tyrosine Kinase ABL Promotes Breast Cancer Invasion. Front Oncol 2021; 11:665273. [PMID: 34136397 PMCID: PMC8201617 DOI: 10.3389/fonc.2021.665273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
Activity of transcription factors is normally regulated through interaction with other transcription factors, chromatin remodeling proteins and transcriptional co-activators. In distinction to these well-established transcriptional controls of gene expression, we have uncovered a unique activation model of transcription factors between tyrosine kinase ABL and RUNX2, an osteoblastic master transcription factor, for cancer invasion. We show that ABL directly binds to, phosphorylates, and activates RUNX2 through its SH2 domain in a kinase activity-dependent manner and that the complex formation of these proteins is required for expression of its target gene MMP13. Additionally, we show that the RUNX2 transcriptional activity is dependent on the number of its tyrosine residues that are phosphorylated by ABL. In addition to regulation of RUNX2 activity, we show that ABL transcriptionally enhances RUNX2 expression through activation of the bone morphogenetic protein (BMP)-SMAD pathway. Lastly, we show that ABL expression in highly metastatic breast cancer MDA-MB231 cells is associated with their invasive capacity and that ABL-mediated invasion is abolished by depletion of endogenous RUNX2 or MMP13. Our genetic and biochemical evidence obtained in this study contributes to a mechanistic insight linking ABL-mediated phosphorylation and activation of RUNX2 to induction of MMP13, which underlies a fundamental invasive capacity in cancer and is different from the previously described model of transcriptional activation.
Collapse
Affiliation(s)
- Fang He
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuriko Yamamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jose La Rose
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ni Luh Gede Yoni Komalasari
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
25
|
Paraiso IL, Tran TQ, Magana AA, Kundu P, Choi J, Maier CS, Bobe G, Raber J, Kioussi C, Stevens JF. Xanthohumol ameliorates Diet-Induced Liver Dysfunction via Farnesoid X Receptor-Dependent and Independent Signaling. Front Pharmacol 2021; 12:643857. [PMID: 33959012 PMCID: PMC8093804 DOI: 10.3389/fphar.2021.643857] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The farnesoid X receptor (FXR) plays a critical role in the regulation of lipid and bile acid (BA) homeostasis. Hepatic FXR loss results in lipid and BA accumulation, and progression from hepatic steatosis to nonalcoholic steatohepatitis (NASH). This study aimed to evaluate the effects of xanthohumol (XN), a hop-derived compound mitigating metabolic syndrome, on liver damage induced by diet and FXR deficiency in mice. Wild-type (WT) and liver-specific FXR-null mice (FXRLiver−/−) were fed a high-fat diet (HFD) containing XN or the vehicle formation followed by histological characterization, lipid, BA and gene profiling. HFD supplemented with XN resulted in amelioration of hepatic steatosis and decreased BA concentrations in FXRLiver−/− mice, the effect being stronger in male mice. XN induced the constitutive androstane receptor (CAR), pregnane X receptor (PXR) and glucocorticoid receptor (GR) gene expression in the liver of FXRLiver−/− mice. These findings suggest that activation of BA detoxification pathways represents the predominant mechanism for controlling hydrophobic BA concentrations in FXRLiver−/− mice. Collectively, these data indicated sex-dependent relationship between FXR, lipids and BAs, and suggest that XN ameliorates HFD-induced liver dysfunction via FXR-dependent and independent signaling.
Collapse
Affiliation(s)
- Ines L Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Thai Q Tran
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Armando Alcazar Magana
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States.,Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Jacob Raber
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States.,Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Department of Neurology, Psychiatry and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
26
|
Endonuclease increases efficiency of osteoblast isolation from murine calvariae. Sci Rep 2021; 11:8502. [PMID: 33875686 PMCID: PMC8055883 DOI: 10.1038/s41598-021-87716-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/25/2021] [Indexed: 11/08/2022] Open
Abstract
Bone is a highly dynamic organ that undergoes remodeling equally regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. To clarify the regulation of osteoblastogenesis, primary murine osteoblasts are required for an in vitro study. Primary osteoblasts are isolated from neonatal calvariae through digestion with collagenase. However, the number of cells collected from one pup is not sufficient for further in vitro experiments, leading to an increase in the use of euthanized pups. We hypothesized that the viscosity of digested calvariae and digestion solution supplemented with collagenase results in cell clumping and reduction of isolated cells from bones. We simply added Benzonase, a genetically engineered endonuclease that shears all forms of DNAs/RNAs, in order to reduce nucleic acid-mediated viscosity. We found that addition of Benzonase increased the number of collected osteoblasts by three fold compared to that without Benzonase through reduction of viscosity. Additionally, Benzonase has no effect on cellular identity and function. The new osteoblast isolation protocol with Benzonase minimizes the number of neonatal pups required for an in vitro study and expands the concept that isolation of other populations of cells including osteocytes that are difficult to be purified could be modified by Benzonase.
Collapse
|
27
|
Zhao Y, Zhai Q, Liu H, Xi X, Chen S, Liu D. TRIM16 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Modulating CHIP-Mediated Degradation of RUNX2. Front Cell Dev Biol 2021; 8:625105. [PMID: 33490087 PMCID: PMC7817816 DOI: 10.3389/fcell.2020.625105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023] Open
Abstract
Bone regeneration is the ultimate goal of periodontal therapies, in which osteogenic differentiation of human periodontal ligament stem cells plays a critical role. The tripartite motif (TRIM)16, an E3 ubiquitin ligase, is downregulated in periodontal tissues of patients with periodontitis, while the role of TRIM16 in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is largely unknown. Firstly, we found that TRIM16 was increased throughout the osteogenic media induced differentiation of hPDLSCs. Then overexpression plasmids and specific short-hairpin RNAs (shRNAs) were constructed to manipulate the expression of target molecules. TRIM16 significantly promoted alkaline phosphatase activity, mineralized nodule formation, and positively regulated the expression of osteo-specific markers RUNX2, COL1A1 and OCN except the mRNA of RUNX2. Mechanistically, TRIM16 serves as a pivotal factor that stabilizes RUNX2 protein levels by decreasing CHIP-mediated K48-linked ubiquitination degradation of the RUNX2 protein. This study identified a novel mechanism of TRIM16 in regulating stability of the RUNX2 protein, which promoted the osteogenic differentiation of hPDLSCs. TRIM16 may be a potential target of stem cell based-bone regeneration for periodontal therapies.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiaoli Zhai
- Center of Translational Medicine, Zibo Central Hospital, Shandong, China
| | - Hong Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xun Xi
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shuai Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongxu Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
28
|
Yao D, Huang L, Ke J, Zhang M, Xiao Q, Zhu X. Bone metabolism regulation: Implications for the treatment of bone diseases. Biomed Pharmacother 2020; 129:110494. [PMID: 32887023 DOI: 10.1016/j.biopha.2020.110494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Bone cells in the human body are continuously engaged in cellular metabolism, including the interaction between bone cells, the interaction between the erythropoietic cells of the bone marrow and stromal cells, for the remodeling and reconstruction of bone. Osteoclasts and osteoblasts play an important role in bone metabolism. Diseases occur when bone metabolism is abnormal, but little is known about the signaling pathways that affect bone metabolism. The study of these signaling pathways will help us to use the relevant techniques to intervene, so as to improve the condition. The study of these signaling pathways will help us to use the relevant techniques to intervene, so as to improve the condition. I believe they will shine in the diagnosis and treatment of future clinical bone diseases.
Collapse
Affiliation(s)
- Danqi Yao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Lianfang Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Jianhao Ke
- College of Agriculture, South China Agricultural University, Guangzhou 510046, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Shandong University, Zibo 255000, China.
| | - Qin Xiao
- Department of Blood Transfusion, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
29
|
Karsenty G. The facts of the matter: What is a hormone? PLoS Genet 2020; 16:e1008938. [PMID: 32589668 PMCID: PMC7319275 DOI: 10.1371/journal.pgen.1008938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Gerard Karsenty
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
30
|
Abstract
The adaptor protein 3BP2 (SH3-domain binding protein 2), which is encoded by the SH3BP2 locus, nucleates a signaling complex comprising ABL, SRC, VAV, and SYK, and facilitates an open active configuration of these proteins, leading to their kinase activation. Gain-of-function missense mutations in the SH3BP2 gene cause cherubism, an autosomal dominant disorder associated with severe craniofacial developmental defects in children. Previous studies have demonstrated that 3BP2 and its degradation pathway regulate bone metabolism, energy metabolism, and inflammation and that dysregulation of the 3BP2 degradation pathway is associated with human disorders. Herein, we discussed lessons from cherubism indicating that 3BP2 studies could elucidate the pathogenesis of bone loss caused by inflammation and identify suitable therapeutic targets.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
Baloghova N, Lidak T, Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-β, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes (Basel) 2019; 10:genes10100815. [PMID: 31623112 PMCID: PMC6826584 DOI: 10.3390/genes10100815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
The Wnt, TGF-β, and Notch signaling pathways are essential for the regulation of cellular polarity, differentiation, proliferation, and migration. Differential activation and mutual crosstalk of these pathways during animal development are crucial instructive forces in the initiation of the body axis and the development of organs and tissues. Due to the ability to initiate cell proliferation, these pathways are vulnerable to somatic mutations selectively producing cells, which ultimately slip through cellular and organismal checkpoints and develop into cancer. The architecture of the Wnt, TGF-β, and Notch signaling pathways is simple. The transmembrane receptor, activated by the extracellular stimulus, induces nuclear translocation of the transcription factor, which subsequently changes the expression of target genes. Nevertheless, these pathways are regulated by a myriad of factors involved in various feedback mechanisms or crosstalk. The most prominent group of regulators is the ubiquitin-proteasome system (UPS). To open the door to UPS-based therapeutic manipulations, a thorough understanding of these regulations at a molecular level and rigorous confirmation in vivo are required. In this quest, mouse models are exceptional and, thanks to the progress in genetic engineering, also an accessible tool. Here, we reviewed the current understanding of how the UPS regulates the Wnt, TGF-β, and Notch pathways and we summarized the knowledge gained from related mouse models.
Collapse
Affiliation(s)
- Nikol Baloghova
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Tomas Lidak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Lukas Cermak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| |
Collapse
|
32
|
Gultekin Y, Steller H. Axin proteolysis by Iduna is required for the regulation of stem cell proliferation and intestinal homeostasis in Drosophila. Development 2019; 146:dev.169284. [PMID: 30796047 DOI: 10.1242/dev.169284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
Abstract
Self-renewal of intestinal stem cells is controlled by Wingless/Wnt-β catenin signaling in both Drosophila and mammals. As Axin is a rate-limiting factor in Wingless signaling, its regulation is essential. Iduna is an evolutionarily conserved ubiquitin E3 ligase that has been identified as a crucial regulator for degradation of ADP-ribosylated Axin and, thus, of Wnt/β-catenin signaling. However, its physiological significance remains to be demonstrated. Here, we generated loss-of-function mutants of Iduna to investigate its physiological role in Drosophila Genetic depletion of Iduna causes the accumulation of both Tankyrase and Axin. Increase of Axin protein in enterocytes non-autonomously enhanced stem cell divisions in the Drosophila midgut. Enterocytes secreted Unpaired proteins and thereby stimulated the activity of the JAK-STAT pathway in intestinal stem cells. A decrease in Axin gene expression suppressed the over-proliferation of stem cells and restored their numbers to normal levels in Iduna mutants. These findings suggest that Iduna-mediated regulation of Axin proteolysis is essential for tissue homeostasis in the Drosophila midgut.
Collapse
Affiliation(s)
- Yetis Gultekin
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
33
|
Xu L, Fu Y, Zhu W, Xu R, Zhang J, Zhang P, Cheng J, Jiang H. microRNA-31 inhibition partially ameliorates the deficiency of bone marrow stromal cells from cleidocranial dysplasia. J Cell Biochem 2018; 120:9472-9486. [PMID: 30506733 DOI: 10.1002/jcb.28223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/15/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND Cleidocranial dysplasia (CCD) in humans is an autosomal-dominant skeletal dysplasia caused by heterozygous mutations of the runt-related transcription factor 2 (RUNX2) and significantly increases the risk of osteoporosis. Increasing evidence demonstrates that the dysfunction of bone marrow stromal cells from CCD patients (BMSCs-CCD) contributes to the bone deficiency, but the characteristics of BMSCs-CCD and the mechanisms that underlie their properties remain undefined. METHODS The clinical manifestations of three CCD patients were collected and the mutations of RUNX2 were analyzed. The properties of proliferation, osteogenesis, stemness, and senescence of BMSCs-CCD were compared with that of BMSCs from healthy donors. The expression of microRNA-31 ( miR-31) between BMSCs-CCD and BMSCs was measured and lentivirus-carried miR-31 inhibitor was used to determine the role of miR-31 in BMSCs-CCD both in vitro and in vivo. The molecular mechanisms underlying RUNX2-miR31 and miR-31 targeting stemness and senescence of BMSCs-CCD were also explored. RESULTS We identified two mutation sites of RUNX2 via exome sequencing from 2 of 3 Chinese CCD patients with typical clinical presentations. Compared with BMSCs from healthy donors, BMSCs-CCD displayed significantly attenuated proliferation, osteogenesis and stemness, and enhanced senescence. Meanwhile, miR-31 knockdown could ameliorate these deficiency phenotypes of BMSCs-CCD by regulating SATB2, BMI1, CDKN, and SP7. Mechanistically, RUNX2 directly repressed miR-31 expression, and therefore RUNX2 haploinsufficiency in CCD leading to miR-31 upregulation contributed to the deficiency of BMSCs-CCD. miR-31 inhibition in BMSCs-CCD showed enhanced osteogenesis through heterotopic subcutaneous implantation in the nude mice. CONCLUSIONS Our results show the functional deficiencies of BMSCs-CCD and a potential role of miR-31 in BMSCs-CCD deficiencies. The application of miR-31 inhibitor in BMSCs-CCD might lend hope for developing BMSC-based therapeutic approaches against CCD-associated skeletal diseases.
Collapse
Affiliation(s)
- Ling Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Weiwen Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Juan Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ping Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Xiong J, Almeida M, O'Brien CA. The YAP/TAZ transcriptional co-activators have opposing effects at different stages of osteoblast differentiation. Bone 2018; 112:1-9. [PMID: 29626544 PMCID: PMC5970058 DOI: 10.1016/j.bone.2018.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023]
Abstract
The related transcriptional co-factors YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) have been proposed to either promote or inhibit osteoblast differentiation. Here we investigated the skeletal consequences of deleting YAP and TAZ at different stages of the osteoblast lineage using Prx1-Cre, Osx1-Cre, and Dmp1-Cre transgenic mice. Prx1-Cre-mediated deletion resulted in embryonic lethality. Mice lacking both copies of TAZ and one copy of YAP in cells targeted by Prx1-Cre were viable and displayed elevated bone mass associated increased bone formation. Deletion of YAP and TAZ using Osx1-Cre mice led to perinatal lethality. Suppression of Osx1-Cre activity until 21 days of age permitted postnatal deletion of YAP and TAZ, which resulted in increased osteoblast number at 12 weeks of age but no change in bone mass. Mechanistic studies revealed that YAP and TAZ suppress canonical Wnt signaling and Runx2 activity in osteoblast progenitors. Consistent with this, deletion of YAP and TAZ from osteoprogenitor cells increased osteoblast differentiation in vitro. Deletion of YAP and TAZ from mature osteoblasts and osteocytes using Dmp1-Cre mice led to reduced osteoblast number and bone formation, as well as increased osteoclast number, but no changes in known regulators of bone turnover such as RANKL, OPG, and Sost. Together these results suggest that YAP and TAZ in osteoblast progenitors oppose differentiation towards the osteoblast lineage but in mature osteoblasts and osteocytes, they promote bone formation and inhibit bone resorption.
Collapse
Affiliation(s)
- Jinhu Xiong
- Department of Orthopaedic Surgery, Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Central Arkansas Veterans Healthcare System, Little Rock, AR, United States.
| | - Maria Almeida
- Department of Orthopaedic Surgery, Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Central Arkansas Veterans Healthcare System, Little Rock, AR, United States
| | - Charles A O'Brien
- Department of Orthopaedic Surgery, Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Central Arkansas Veterans Healthcare System, Little Rock, AR, United States
| |
Collapse
|
35
|
Zhang Q, Xiao K, Liu H, Song L, McGarvey JC, Sneddon WB, Bisello A, Friedman PA. Site-specific polyubiquitination differentially regulates parathyroid hormone receptor-initiated MAPK signaling and cell proliferation. J Biol Chem 2018; 293:5556-5571. [PMID: 29444827 DOI: 10.1074/jbc.ra118.001737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/06/2018] [Indexed: 01/04/2023] Open
Abstract
G protein-coupled receptor (GPCR) signaling and trafficking are essential for cellular function and regulated by phosphorylation, β-arrestin, and ubiquitination. The GPCR parathyroid hormone receptor (PTHR) exhibits time-dependent reversible ubiquitination. The exact ubiquitination sites in PTHR are unknown, but they extend upstream of its intracellular tail. Here, using tandem MS, we identified Lys388 in the third loop and Lys484 in the C-terminal tail as primary ubiquitination sites in PTHR. We found that PTHR ubiquitination requires β-arrestin and does not display a preference for β-arrestin1 or -2. PTH stimulated PTHR phosphorylation at Thr387/Thr392 and within the Ser489-Ser493 region. Such phosphorylation events may recruit β-arrestin, and we observed that chemically or genetically blocking PTHR phosphorylation inhibits its ubiquitination. Specifically, Ala replacement at Thr387/Thr392 suppressed β-arrestin binding and inhibited PTHR ubiquitination, suggesting that PTHR phosphorylation and ubiquitination are interdependent. Of note, Lys-deficient PTHR mutants promoted normal cAMP formation, but exhibited differential mitogen-activated protein kinase (MAPK) signaling. Lys-deficient PTHR triggered early onset and delayed ERK1/2 signaling compared with wildtype PTHR. Moreover, ubiquitination of Lys388 and Lys484 in wildtype PTHR strongly decreased p38 signaling, whereas Lys-deficient PTHR retained signaling comparable to unstimulated wildtype PTHR. Lys-deficient, ubiquitination-refractory PTHR reduced cell proliferation and increased apoptosis. However, elimination of all 11 Lys residues in PTHR did not affect its internalization and recycling. These results pinpoint the ubiquitinated Lys residues in PTHR controlling MAPK signaling and cell proliferation and survival. Our findings suggest new opportunities for targeting PTHR ubiquitination to regulate MAPK signaling or manage PTHR-related disorders.
Collapse
Affiliation(s)
- Qiangmin Zhang
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Kunhong Xiao
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Hongda Liu
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Lei Song
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Jennifer C McGarvey
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - W Bruce Sneddon
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Alessandro Bisello
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Peter A Friedman
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and .,the Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|