1
|
Nicastro M, Vermeer AMC, Postema PG, Tadros R, Bowling FZ, Aegisdottir HM, Tragante V, Mach L, Postma AV, Lodder EM, van Duijvenboden K, Zwart R, Beekman L, Wu L, Jurgens SJ, van der Zwaag PA, Alders M, Allouba M, Aguib Y, Santome JL, de Una D, Monserrat L, Miranda AMA, Kanemaru K, Cranley J, van Zeggeren IE, Aronica EMA, Ripolone M, Zanotti S, Sveinbjornsson G, Ivarsdottir EV, Hólm H, Guðbjartsson DF, Skúladóttir ÁT, Stefánsson K, Nadauld L, Knowlton KU, Ostrowski SR, Sørensen E, Vesterager Pedersen OB, Ghouse J, Rand SA, Bundgaard H, Ullum H, Erikstrup C, Aagaard B, Bruun MT, Christiansen M, Jensen HK, Carere DA, Cummings CT, Fishler K, Tørring PM, Brusgaard K, Juul TM, Saaby L, Winkel BG, Mogensen J, Fortunato F, Comi GP, Ronchi D, van Tintelen JP, Noseda M, Airola MV, Christiaans I, Wilde AAM, Wilders R, Clur SA, Verkerk AO, Bezzina CR, Lahrouchi N. Bi-allelic variants in POPDC2 cause an autosomal recessive syndrome presenting with cardiac conduction defects and hypertrophic cardiomyopathy. Am J Hum Genet 2025:S0002-9297(25)00179-X. [PMID: 40409267 DOI: 10.1016/j.ajhg.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/25/2025] Open
Abstract
POPDC2 encodes the Popeye domain-containing protein 2, which has an important role in cardiac pacemaking and conduction, due in part to its cyclic AMP (cAMP)-dependent binding and regulation of TREK-1 potassium channels. Loss of Popdc2 in mice results in sinus pauses and bradycardia, and morpholino-mediated knockdown of popdc2 in zebrafish results in atrioventricular (AV) block. We identified bi-allelic variants in POPDC2 in four families with a phenotypic spectrum consisting of sinus node dysfunction, AV conduction defects, and hypertrophic cardiomyopathy. Using homology modeling, we show that the identified variants are predicted to diminish the ability of POPDC2 to bind cAMP. In in vitro electrophysiological studies, we demonstrated that, in contrast with wild-type POPDC2, variants found in affected individuals failed to increase TREK-1 current density. While muscle biopsy of an affected individual did not show clear myopathic disease, it showed significantly reduced abundance of both POPDC1 and POPDC2, suggesting that stability and/or membrane trafficking of the POPDC1-POPDC2 complex is impaired by pathogenic variants in either protein. Single-cell RNA sequencing from human hearts demonstrated that co-expression of POPDC1 and POPDC2 was most prevalent in AV node, AV node pacemaker, and AV bundle cells. Using population-level genetic data of more than 1 million individuals, we show that none of the familial variants were associated with clinical outcomes in heterozygous state, suggesting that heterozygous family members are unlikely to develop clinical manifestations and therefore might not necessitate clinical follow-up. Our findings provide evidence for bi-allelic variants in POPDC2 causing a Mendelian autosomal recessive cardiac syndrome.
Collapse
Affiliation(s)
- Michele Nicastro
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; European Reference Network for Rare, Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Alexa M C Vermeer
- European Reference Network for Rare, Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart; Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pieter G Postema
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; European Reference Network for Rare, Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Forrest Z Bowling
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Hildur M Aegisdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton Hospital, London, UK; British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Alex V Postma
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth M Lodder
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; European Reference Network for Rare, Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart; Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rob Zwart
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Leander Beekman
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; European Reference Network for Rare, Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Lingshuang Wu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Sean J Jurgens
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; European Reference Network for Rare, Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul A van der Zwaag
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, the Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Yasmine Aguib
- Magdi Yacoub Foundation, Cairo, Egypt; NHLI, Imperial College, London, UK
| | | | | | - Lorenzo Monserrat
- Medical Department, Dilemma Solutions SL. Cardiovascular Research Group A Coruña University, A Coruña, Spain
| | | | - Kazumasa Kanemaru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ingeborg E van Zeggeren
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora M A Aronica
- Department of Neuropathology, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Michela Ripolone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Simona Zanotti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | | | | | - Hilma Hólm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | | | | | | | | | | | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Jonas Ghouse
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark; Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Søren A Rand
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Bitten Aagaard
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Mie Topholm Bruun
- Clinical Immunology Research Unit, Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Mette Christiansen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik K Jensen
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Christopher T Cummings
- Department of Pediatrics, Division of Genetics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kristen Fishler
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Klaus Brusgaard
- Department of Clinical Genetics, Lillebaelt Hospital, Institute of Regional Health Research, Odense, Denmark
| | - Trine Maxel Juul
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lotte Saaby
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Bo Gregers Winkel
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Mogensen
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Francesco Fortunato
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - J Peter van Tintelen
- European Reference Network for Rare, Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart; Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK; British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Imke Christiaans
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, the Netherlands
| | - Arthur A M Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; European Reference Network for Rare, Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sally-Ann Clur
- Department of Pediatric Cardiology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Arie O Verkerk
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Connie R Bezzina
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; European Reference Network for Rare, Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Najim Lahrouchi
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; European Reference Network for Rare, Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.
| |
Collapse
|
2
|
Zheng C, Zheng J, Wang X, Zhang Y, Ma X, He L. Two-pore-domain potassium channel Sandman regulates intestinal stem cell homeostasis and tumorigenesis in Drosophila melanogaster. J Genet Genomics 2025:S1673-8527(25)00147-X. [PMID: 40381822 DOI: 10.1016/j.jgg.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Potassium channels regulate diverse biological processes, ranging from cell proliferation to immune responses. However, the functions of potassium homeostasis and its regulatory mechanisms in adult stem cells and tumors remain poorly characterized. Here, we identify Sandman, a two-pore-domain potassium channel in Drosophila, as an essential regulator for the proliferation of intestinal stem cells and malignant tumors, while dispensable for the normal development processes. Mechanistically, loss of sandman elevates intracellular K+ concentration, leading to growth inhibition. This phenotype is rescued by pharmacological reduction of intracellular K+ levels using the K+ ionophore. Conversely, overexpression of sandman triggers stem cell death in most regions of the midgut, inhibits tumor growth, and induces a Notch loss-of-function phenotype in the posterior midgut. These effects are mediated predominantly via the induction of endoplasmic reticulum (ER) stress, as demonstrated by the complete rescue of phenotypes through the co-expression of Ire1 or Xbp1s. Additionally, human homologs of Sandman demonstrated similar ER stress-inducing capabilities, suggesting an evolutionarily conserved relationship between this channel and ER stress. Together, our findings identify Sandman as a shared regulatory node that governs Drosophila adult stem cell dynamics and tumorigenesis through bioelectric homeostasis, and reveal a link between the two-pore potassium channel and ER stress signaling.
Collapse
Affiliation(s)
- Chen Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiadong Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xin Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yue Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xianjue Ma
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Li He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
3
|
Bahrami P, Aromolaran KA, Aromolaran AS. Mechanistic Relevance of Ventricular Arrhythmias in Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2024; 25:13423. [PMID: 39769189 PMCID: PMC11677834 DOI: 10.3390/ijms252413423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasing at an alarming rate worldwide, with limited effective therapeutic interventions in patients. Sudden cardiac death (SCD) and ventricular arrhythmias present substantial risks for the prognosis of these patients. Obesity is a risk factor for HFpEF and life-threatening arrhythmias. Obesity and its associated metabolic dysregulation, leading to metabolic syndrome, are an epidemic that poses a significant public health problem. More than one-third of the world population is overweight or obese, leading to an enhanced risk of incidence and mortality due to cardiovascular disease (CVD). Obesity predisposes patients to atrial fibrillation and ventricular and supraventricular arrhythmias-conditions that are caused by dysfunction in the electrical activity of the heart. To date, current therapeutic options for the cardiomyopathy of obesity are limited, suggesting that there is considerable room for the development of therapeutic interventions with novel mechanisms of action that will help normalize sinus rhythms in obese patients. Emerging candidates for modulation by obesity are cardiac ion channels and Ca-handling proteins. However, the underlying molecular mechanisms of the impact of obesity on these channels and Ca-handling proteins remain incompletely understood. Obesity is marked by the accumulation of adipose tissue, which is associated with a variety of adverse adaptations, including dyslipidemia (or abnormal systemic levels of free fatty acids), increased secretion of proinflammatory cytokines, fibrosis, hyperglycemia, and insulin resistance, which cause electrical remodeling and, thus, predispose patients to arrhythmias. Furthermore, adipose tissue is also associated with the accumulation of subcutaneous and visceral fat, which is marked by distinct signaling mechanisms. Thus, there may also be functional differences in the effects of the regional distribution of fat deposits on ion channel/Ca-handling protein expression. Evaluating alterations in their functional expression in obesity will lead to progress in the knowledge of the mechanisms responsible for obesity-related arrhythmias. These advances are likely to reveal new targets for pharmacological modulation. Understanding how obesity and related mechanisms lead to cardiac electrical remodeling is likely to have a significant medical and economic impact. Nevertheless, substantial knowledge gaps remain regarding HFpEF treatment, requiring further investigations to identify potential therapeutic targets. The objective of this study is to review cardiac ion channel/Ca-handling protein remodeling in the predisposition to metabolic HFpEF and arrhythmias. This review further highlights interleukin-6 (IL-6) as a potential target, cardiac bridging integrator 1 (cBIN1) as a promising gene therapy agent, and leukotriene B4 (LTB4) as an underappreciated pathway in future HFpEF management.
Collapse
Affiliation(s)
- Pegah Bahrami
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
| | - Kelly A. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
| | - Ademuyiwa S. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
- Department of Surgery, Division of Cardiothoracic Surgery, Nutrition & Integrative Physiology, Biochemistry & Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Kim G, Van NTH, Nam JH, Lee W. Unraveling the Molecular Reason of Opposing Effects of α-Mangostin and Norfluoxetine on TREK-2 at the Same Binding Site. ChemMedChem 2024; 19:e202400409. [PMID: 39145995 PMCID: PMC11617644 DOI: 10.1002/cmdc.202400409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
TWIK-related K+ channel (TREK)-2, expressed in sensory neurons, is involved in setting membrane potential, and its modulations contributes to the generation of nociceptive signals. Although acute and chronic pain is a common symptom experienced by patients with various conditions, most existing analgesics exhibit low efficacy and are associated with adverse effects. For this reason, finding the novel modulator of TREK-2 is of significance for the development of new analgesics. Recent studies have shown that α-Mangostin (α-MG) activates TREK-2, facilitating analgesic effects, yet the underlying molecular mechanisms remain elusive. Intriguingly, even though norfluoxetine (NFx) is known to inhibit TREK-2, α-MG is also observed to share a same binding site with NFx, and this implies that TREK-2 might be modulated in a highly complicated manner. Therefore, we examine the mechanism of how TREK-2 is activated by α-MG using computational methods and patch clamp experiments in the present study. Based on these results, we offer an explanation of how α-MG and NFx exhibit opposing effects at the same binding site of TREK-2. These findings will broaden our understanding of TREK-2 modulation, providing clues for designing novel analgesic drugs.
Collapse
Affiliation(s)
- Gangrae Kim
- Department of BiochemistryKangwon National UniversityCollege of Natural SciencesChuncheon24341Republic of Korea
| | - Nhung Thi Hong Van
- Department of PhysiologyDongguk UniversityCollege of MedicineGyeongju38066Republic of Korea
| | - Joo Hyun Nam
- Department of PhysiologyDongguk UniversityCollege of MedicineGyeongju38066Republic of Korea
| | - Wook Lee
- Department of BiochemistryKangwon National UniversityCollege of Natural SciencesChuncheon24341Republic of Korea
| |
Collapse
|
5
|
Jean-Charles PY, Roy B, Yu SMW, Pironti G, Nagi K, Mao L, Kaur S, Abraham DM, Maudsley S, Rockman HA, Shenoy SK. USP20 deletion promotes eccentric cardiac remodeling in response to pressure overload and increases mortality. Am J Physiol Heart Circ Physiol 2024; 327:H1257-H1271. [PMID: 39365672 PMCID: PMC11559650 DOI: 10.1152/ajpheart.00329.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Left ventricular hypertrophy (LVH) caused by chronic pressure overload with subsequent pathological remodeling is a major cardiovascular risk factor for heart failure and mortality. The role of deubiquitinases in LVH has not been well characterized. To define whether the deubiquitinase ubiquitin-specific peptidase 20 (USP20) regulates LVH, we subjected USP20 knockout (KO) and cognate wild-type (WT) mice to chronic pressure overload by transverse aortic constriction (TAC) and measured changes in cardiac function by serial echocardiography followed by histological and biochemical evaluations. USP20-KO mice showed severe deterioration of systolic function within 4 wk of TAC compared with WT cohorts. Both USP20-KO TAC and WT-TAC cohorts presented cardiac hypertrophy following pressure overload. However, USP20-KO-TAC mice showed an increase in cardiomyocyte length and developed maladaptive eccentric hypertrophy, a phenotype generally observed with volume overload states and decompensated heart failure. In contrast, WT-TAC mice displayed an increase in cardiomyocyte width, producing concentric remodeling that is characteristic of pressure overload. In addition, cardiomyocyte apoptosis, interstitial fibrosis, and mouse mortality were augmented in USP20-KO-TAC compared with WT-TAC mice. Quantitative mass spectrometry of LV tissue revealed that the expression of sarcomeric myosin heavy chain 7 (MYH7), a fetal gene normally upregulated during cardiac remodeling, was significantly reduced in USP20-KO after TAC. Mechanistically, we identified increased degradative lysine-48 polyubiquitination of MYH7 in USP20-KO hearts, indicating that USP20-mediated deubiquitination likely prevents protein degradation of MYH7 during pressure overload. Our findings suggest that USP20-dependent signaling pathways regulate the layering pattern of sarcomeres to suppress maladaptive remodeling during chronic pressure overload and prevent cardiac failure.NEW & NOTEWORTHY We identify ubiquitin-specific peptidase 20 (USP20) as an important enzyme that is required for cardiac homeostasis and function, particularly during myocardial pressure overload. USP20 regulates protein stability of cardiac MYH7, an essential molecular motor protein expressed in sarcomeres; loss-of-function mutations of MYH7 are associated with human hypertrophic cardiomyopathy, cardiac failure, and sudden death. Enhancing USP20 activity could be a potential therapeutic approach to prevent the development of maladaptive state of eccentric hypertrophy and heart failure.
Collapse
MESH Headings
- Animals
- Ventricular Remodeling
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mice, Knockout
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin Thiolesterase/genetics
- Apoptosis
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Mice
- Mice, Inbred C57BL
- Male
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/genetics
- Heart Failure/pathology
- Fibrosis
- Ventricular Function, Left
- Disease Models, Animal
- Ubiquitination
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
Collapse
Affiliation(s)
- Pierre-Yves Jean-Charles
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Samuel Mon-Wei Yu
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Gianluigi Pironti
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Karim Nagi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Suneet Kaur
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Dennis M Abraham
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Stuart Maudsley
- Receptor Biology Laboratory, Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
| | - Howard A Rockman
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
6
|
Zhang Y, Li J, Pan J, Deng S. Research progress of two-pore potassium channel in myocardial ischemia-reperfusion injury. Front Physiol 2024; 15:1473501. [PMID: 39534859 PMCID: PMC11554511 DOI: 10.3389/fphys.2024.1473501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a secondary injury caused by restoring blood flow after acute myocardial infarction, which may lead to serious arrhythmia and heart damage. In recent years, the role of potassium channels in MIRI has attracted much attention, especially the members of the two-pore domain potassium (K2P) channel family. K2P channel has unique structure and function, and the formation of its heterodimer increases its functional diversity. This paper reviews the structural characteristics, types, expression and physiological functions of K2P channel in the heart. In particular, we pay attention to whether members of the subfamily such as TWIK, TREK, TASK, TALK, THIK and TRESK participate in MIRI and their related mechanisms. Future research will help to reveal the molecular mechanism of K2P channel in MIRI and provide new strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Shengli Deng
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
7
|
Nicastro M, Vermeer AMC, Postema PG, Tadros R, Bowling FZ, Aegisdottir HM, Tragante V, Mach L, Postma AV, Lodder EM, van Duijvenboden K, Zwart R, Beekman L, Wu L, van der Zwaag PA, Alders M, Allouba M, Aguib Y, Santomel JL, de Una D, Monserrat L, Miranda AMA, Kanemaru K, Cranley J, van Zeggeren IE, Aronica EMA, Ripolone M, Zanotti S, Sveinbjornsson G, Ivarsdottir EV, Hólm H, Guðbjartsson DF, Skúladóttir ÁT, Stefánsson K, Nadauld L, Knowlton KU, Ostrowski SR, Sørensen E, Vesterager Pedersen OB, Ghouse J, Rand S, Bundgaard H, Ullum H, Erikstrup C, Aagaard B, Bruun MT, Christiansen M, Jensen HK, Carere DA, Cummings CT, Fishler K, Tøring PM, Brusgaard K, Juul TM, Saaby L, Winkel BG, Mogensen J, Fortunato F, Comi GP, Ronchi D, van Tintelen JP, Noseda M, Airola MV, Christiaans I, Wilde AAM, Wilders R, Clur SA, Verkerk AO, Bezzina CR, Lahrouchi N. Biallelic variants in POPDC2 cause a novel autosomal recessive syndrome presenting with cardiac conduction defects and variable hypertrophic cardiomyopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.04.24309755. [PMID: 39006410 PMCID: PMC11245065 DOI: 10.1101/2024.07.04.24309755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
POPDC2 encodes for the Popeye domain-containing protein 2 which has an important role in cardiac pacemaking and conduction, due in part to its cAMP-dependent binding and regulation of TREK-1 potassium channels. Loss of Popdc2 in mice results in sinus pauses and bradycardia and morpholino knockdown of popdc2 in zebrafish results in atrioventricular (AV) block. We identified bi-allelic variants in POPDC2 in 4 families that presented with a phenotypic spectrum consisting of sinus node dysfunction, AV conduction defects and hypertrophic cardiomyopathy. Using homology modelling we show that the identified POPDC2 variants are predicted to diminish the ability of POPDC2 to bind cAMP. In in vitro electrophysiological studies we demonstrated that, while co-expression of wild-type POPDC2 with TREK-1 increased TREK-1 current density, POPDC2 variants found in the patients failed to increase TREK-1 current density. While patient muscle biopsy did not show clear myopathic disease, it showed significant reduction of the expression of both POPDC1 and POPDC2, suggesting that stability and/or membrane trafficking of the POPDC1-POPDC2 complex is impaired by pathogenic variants in any of the two proteins. Single-cell RNA sequencing from human hearts demonstrated that co-expression of POPDC1 and 2 was most prevalent in AV node, AV node pacemaker and AV bundle cells. Sinoatrial node cells expressed POPDC2 abundantly, but expression of POPDC1 was sparse. Together, these results concur with predisposition to AV node disease in humans with loss-of-function variants in POPDC1 and POPDC2 and presence of sinus node disease in POPDC2, but not in POPDC1 related disease in human. Using population-level genetic data of more than 1 million individuals we showed that none of the familial variants were associated with clinical outcomes in heterozygous state, suggesting that heterozygous family members are unlikely to develop clinical manifestations and therefore might not necessitate clinical follow-up. Our findings provide evidence for POPDC2 as the cause of a novel Mendelian autosomal recessive cardiac syndrome, consistent with previous work showing that mice and zebrafish deficient in functional POPDC2 display sinus and AV node dysfunction. GRAPHICAL ABSTRACT
Collapse
|
8
|
Song T, Hui W, Huang M, Guo Y, Yu M, Yang X, Liu Y, Chen X. Dynamic Changes in Ion Channels during Myocardial Infarction and Therapeutic Challenges. Int J Mol Sci 2024; 25:6467. [PMID: 38928173 PMCID: PMC11203447 DOI: 10.3390/ijms25126467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
In different areas of the heart, action potential waveforms differ due to differences in the expressions of sodium, calcium, and potassium channels. One of the characteristics of myocardial infarction (MI) is an imbalance in oxygen supply and demand, leading to ion imbalance. After MI, the regulation and expression levels of K+, Ca2+, and Na+ ion channels in cardiomyocytes are altered, which affects the regularity of cardiac rhythm and leads to myocardial injury. Myocardial fibroblasts are the main effector cells in the process of MI repair. The ion channels of myocardial fibroblasts play an important role in the process of MI. At the same time, a large number of ion channels are expressed in immune cells, which play an important role by regulating the in- and outflow of ions to complete intracellular signal transduction. Ion channels are widely distributed in a variety of cells and are attractive targets for drug development. This article reviews the changes in different ion channels after MI and the therapeutic drugs for these channels. We analyze the complex molecular mechanisms behind myocardial ion channel regulation and the challenges in ion channel drug therapy.
Collapse
Affiliation(s)
- Tongtong Song
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Wenting Hui
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Min Huang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Yan Guo
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Meiyi Yu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Xiaoyu Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Yanqing Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| |
Collapse
|
9
|
Xie AX, Iguchi N, Malykhina AP. Long-term follow-up of TREK-1 KO mice reveals the development of bladder hypertrophy and impaired bladder smooth muscle contractility with age. Am J Physiol Renal Physiol 2024; 326:F957-F970. [PMID: 38601986 PMCID: PMC11386977 DOI: 10.1152/ajprenal.00382.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Stretch-activated two-pore domain K+ (K2P) channels play important roles in many visceral organs, including the urinary bladder. The TWIK-related K+ channel TREK-1 is the predominantly expressed K2P channel in the urinary bladder of humans and rodents. Downregulation of TREK-1 channels was observed in the urinary bladder of patients with detrusor overactivity, suggesting their involvement in the pathogenesis of voiding dysfunction. This study aimed to characterize the long-term effects of TREK-1 on bladder function with global and smooth muscle-specific TREK-1 knockout (KO) mice. Bladder morphology, bladder smooth muscle (BSM) contractility, and voiding patterns were evaluated up to 12 mo of age. Both sexes were included in this study to probe the potential sex differences. Smooth muscle-specific TREK-1 KO mice were used to distinguish the effects of TREK-1 downregulation in BSM from the neural pathways involved in the control of bladder contraction and relaxation. TREK-1 KO mice developed enlarged urinary bladders (by 60.0% for males and by 45.1% for females at 6 mo; P < 0.001 compared with the age-matched control group) and had a significantly increased bladder capacity (by 137.7% at 12 mo; P < 0.0001) and compliance (by 73.4% at 12 mo; P < 0.0001). Bladder strips isolated from TREK-1 KO mice exhibited decreased contractility (peak force after KCl at 6 mo was 1.6 ± 0.7 N/g compared with 3.4 ± 2.0 N/g in the control group; P = 0.0005). The lack of TREK-1 channels exclusively in BSM did not replicate the bladder phenotype observed in TREK-1 KO mice, suggesting a strong neurogenic origin of TREK-1-related bladder dysfunction.NEW & NOTEWORTHY This study compared voiding function and bladder phenotypes in global and smooth muscle-specific TREK-1 KO mice. We found significant age-related changes in bladder contractility, suggesting that the lack of TREK-1 channel activity might contribute to age-related changes in bladder smooth muscle physiology.
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Division of Urology, Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUnited States
| | - Nao Iguchi
- Division of Urology, Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUnited States
| | - Anna P Malykhina
- Division of Urology, Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUnited States
| |
Collapse
|
10
|
Wang J, Liu S, Sun L, Kong Z, Chai J, Wen J, Tian X, Chen N, Xu C. Association of attenuated leptin signaling pathways with impaired cardiac function under prolonged high-altitude hypoxia. Sci Rep 2024; 14:10206. [PMID: 38702334 PMCID: PMC11068766 DOI: 10.1038/s41598-024-59559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.
Collapse
Affiliation(s)
- Jianan Wang
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Shiying Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Lihong Sun
- Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Zhanping Kong
- Qinghai Provincial People's Hospital, Xining, 810000, Qinghai, China
| | - Jiamin Chai
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jigang Wen
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xuan Tian
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Nan Chen
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Chengli Xu
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
11
|
Shima N, Yamamura A, Fujiwara M, Amano T, Matsumoto K, Sekine T, Okano H, Kondo R, Suzuki Y, Yamamura H. Up-regulated expression of two-pore domain K + channels, KCNK1 and KCNK2, is involved in the proliferation and migration of pulmonary arterial smooth muscle cells in pulmonary arterial hypertension. Front Cardiovasc Med 2024; 11:1343804. [PMID: 38410243 PMCID: PMC10894933 DOI: 10.3389/fcvm.2024.1343804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a severe and rare disease in the cardiopulmonary system. Its pathogenesis involves vascular remodeling of the pulmonary artery, which results in progressive increases in pulmonary arterial pressure. Chronically increased pulmonary arterial pressure causes right ventricular hypertrophy and subsequent right heart failure. Pulmonary vascular remodeling is attributed to the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are induced by enhanced Ca2+ signaling following the up-/down-regulation of ion channel expression. Objectives In the present study, the functional expression of two-pore domain potassium KCNK channels was investigated in PASMCs from idiopathic PAH (IPAH) patients and experimental pulmonary hypertensive (PH) animals. Results In IPAH-PASMCs, the expression of KCNK1/TWIK1 and KCNK2/TREK1 channels was up-regulated, whereas that of KCNK3/TASK1 and KCNK6/TWIK2 channels was down-regulated. The similar up-regulated expression of KCNK1 and KCNK2 channels was observed in the pulmonary arterial smooth muscles of monocrotaline-induced PH rats, Sugen 5416/hypoxia-induced PH rats, and hypoxia-induced PH mice. The facilitated proliferation of IPAH-PASMCs was suppressed by the KCNK channel blockers, quinine and tetrapentylammonium. The migration of IPAH-PASMCs was also suppressed by these channel blockers. Furthermore, increases in the proliferation and migration were inhibited by the siRNA knockdown of KCNK1 or KCNK2 channels. The siRNA knockdown also caused membrane depolarization and subsequent decrease in cytosolic [Ca2+]. The phosphorylated level of c-Jun N-terminal kinase (JNK) was elevated in IPAH-PASMCs compared to normal-PASMCs. The increased phosphorylation was significantly reduced by the siRNA knockdown of KCNK1 or KCNK2 channels. Conclusion Collectively, these findings indicate that the up-regulated expression of KCNK1 and KCNK2 channels facilitates the proliferation and migration of PASMCs via enhanced Ca2+ signaling and JNK signaling pathway, which is associated with vascular remodeling in PAH.
Collapse
Affiliation(s)
- Natsumi Shima
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Moe Fujiwara
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Taiki Amano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuyuki Matsumoto
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Taiga Sekine
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Haruka Okano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
12
|
Hosseinzadeh A, Pourhanifeh MH, Amiri S, Sheibani M, Irilouzadian R, Reiter RJ, Mehrzadi S. Therapeutic potential of melatonin in targeting molecular pathways of organ fibrosis. Pharmacol Rep 2024; 76:25-50. [PMID: 37995089 DOI: 10.1007/s43440-023-00554-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Fibrosis, the excessive deposition of fibrous connective tissue in an organ in response to injury, is a pathological condition affecting many individuals worldwide. Fibrosis causes the failure of tissue function and is largely irreversible as the disease progresses. Pharmacologic treatment options for organ fibrosis are limited, but studies suggest that antioxidants, particularly melatonin, can aid in preventing and controlling fibrotic damage to the organs. Melatonin, an indole nocturnally released from the pineal gland, is commonly used to regulate circadian and seasonal biological rhythms and is indicated for treating sleep disorders. While it is often effective in treating sleep disorders, melatonin's anti-inflammatory and antioxidant properties also make it a promising molecule for treating other disorders such as organ fibrosis. Melatonin ameliorates the necrotic and apoptotic changes that lead to fibrosis in various organs including the heart, liver, lung, and kidney. Moreover, melatonin reduces the infiltration of inflammatory cells during fibrosis development. This article outlines the protective effects of melatonin against fibrosis, including its safety and potential therapeutic effects. The goal of this article is to provide a summary of data accumulated to date and to encourage further experimentation with melatonin and increase its use as an anti-fibrotic agent in clinical settings.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rana Irilouzadian
- Clinical Research Development Unit of Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Mitrokhin V, Bilichenko A, Kazanski V, Schobik R, Shileiko S, Revkova V, Kalsin V, Kamkina O, Kamkin A, Mladenov M. Transcriptomic profile of the mechanosensitive ion channelome in human cardiac fibroblasts. Exp Biol Med (Maywood) 2023; 248:2341-2350. [PMID: 38158807 PMCID: PMC10903254 DOI: 10.1177/15353702231218488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
Human cardiac fibroblasts (HCFs) have mRNA transcripts that encode different mechanosensitive ion channels and channel regulatory proteins whose functions are not known yet. The primary goal of this work was to define the mechanosensitive ion channelome of HCFs. The most common type of cationic channel is the transient receptor potential (TRP) family, which is followed by the TWIK-related K+ channel (TREK), transmembrane protein 63 (TMEM63), and PIEZO channel (PIEZO) families. In the sodium-dependent NON-voltage-gated channel (SCNN) subfamily, only SCNN1D was shown to be highly expressed. Particular members of the acid-sensing ion channel (ASIC) (ASIC1 and ASIC3) subfamilies were also significantly expressed. The transcripts per kilobase million (TPMs) for Piezo 2 were almost 100 times less abundant than those for Piezo 1. The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-2 channel, TWIK-related acid-sensitive K+ channel (TASK)-5, TASK-1, and the TWIK-related K1 (TREK-1) channel were the four most prevalent types in the K2P subfamily. The highest expression in the TRPP subfamily was found for PKD2 and PKD1, while in the TRPM subfamily, it was found for TRPM4, TRPM7, and TRPM3. TRPV2, TRPV4, TRPV3, and TRPV6 (all members of the TRPV subfamily) were also substantially expressed. A strong expression of the TRPC1, TRPC4, TRPC6, and TRPC2 channels and all members of the TRPML subfamily (MCOLN1, MCOLN2, and MCOLN3) was also shown. In terms of the transmembrane protein 16 (TMEM16) family, the HCFs demonstrated significant expression of the TMEM16H, TMEM16F, TMEM16J, TMEM16A, and TMEM16G channels. TMC3 is the most expressed channel in HCFs of all known members of the transmembrane channel-like protein (TMC) family. This analysis of the mechanosensitive ionic channel transcriptome in HCFs: (1) agrees with previously documented findings that all currently identified mechanosensitive channels play a significant and well recognized physiological function in elucidating the mechanosensitive characteristics of HCFs; (2) supports earlier preliminary reports that point to the most common expression of the TRP mechanosensitive family in HCFs; and (3) points to other new mechanosensitive channels (TRPC1, TRPC2, TWIK-2, TMEM16A, ASIC1, and ASIC3).
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andrei Bilichenko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor Kazanski
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Roman Schobik
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Stanislav Shileiko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Veronika Revkova
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir Kalsin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Olga Kamkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mitko Mladenov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
14
|
Pironti G. State-of-the-art methodologies used in preclinical studies to assess left ventricular diastolic and systolic function in mice, pitfalls and troubleshooting. Front Cardiovasc Med 2023; 10:1228789. [PMID: 37608817 PMCID: PMC10441126 DOI: 10.3389/fcvm.2023.1228789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Cardiovascular diseases (CVD) are still the leading cause of death worldwide. The improved survival of patients with comorbidities such as type 2 diabetes, hypertension, obesity together with the extension of life expectancy contributes to raise the prevalence of CVD in the increasingly aged society. Therefore, a translational research platform that enables precise evaluation of cardiovascular function in healthy and disease condition and assess the efficacy of novel pharmacological treatments, could implement basic science and contribute to reduce CVD burden. Heart failure is a deadly syndrome characterized by the inability of the heart to meet the oxygen demands of the body (unless there is a compensatory increased of filling pressure) and can manifest either with reduced ejection fraction (HFrEF) or preserved ejection fraction (HFpEF). The development and progression of HFrEF is mostly attributable to impaired contractile performance (systole), while in HFpEF the main problem resides in decreased ability of left ventricle to relax and allow the blood filling (diastole). Murine preclinical models have been broadly used in research to understand pathophysiologic mechanisms of heart failure and test the efficacy of novel therapies. Several methods have been employed to characterise cardiac systolic and diastolic function including Pressure Volume (PV) loop hemodynamic analysis, echocardiography and Magnetic Resonance Imaging (MRI). The choice of one methodology or another depends on many aspects including budget available, skills of the operator and design of the study. The aim of this review is to discuss the importance of several methodologies that are commonly used to characterise the cardiovascular phenotype of preclinical models of heart failure highlighting advantages and limitation of each procedure. Although it requires highly skilled operators for execution, PV loop analysis represents the "gold standard" methodology that enables the assessment of left ventricular performance also independently of vascular loading conditions and heart rate, which conferee a really high physiologic importance to this procedure.
Collapse
Affiliation(s)
- Gianluigi Pironti
- Cardiology Research Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Herrera-Pérez S, Lamas JA. TREK channels in Mechanotransduction: a Focus on the Cardiovascular System. Front Cardiovasc Med 2023; 10:1180242. [PMID: 37288256 PMCID: PMC10242076 DOI: 10.3389/fcvm.2023.1180242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
Mechano-electric feedback is one of the most important subsystems operating in the cardiovascular system, but the underlying molecular mechanism remains rather unknown. Several proteins have been proposed to explain the molecular mechanism of mechano-transduction. Transient receptor potential (TRP) and Piezo channels appear to be the most important candidates to constitute the molecular mechanism behind of the inward current in response to a mechanical stimulus. However, the inhibitory/regulatory processes involving potassium channels that operate on the cardiac system are less well known. TWIK-Related potassium (TREK) channels have emerged as strong candidates due to their capacity for the regulation of the flow of potassium in response to mechanical stimuli. Current data strongly suggest that TREK channels play a role as mechano-transducers in different components of the cardiovascular system, not only at central (heart) but also at peripheral (vascular) level. In this context, this review summarizes and highlights the main existing evidence connecting this important subfamily of potassium channels with the cardiac mechano-transduction process, discussing molecular and biophysical aspects of such a connection.
Collapse
Affiliation(s)
- Salvador Herrera-Pérez
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - José Antonio Lamas
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| |
Collapse
|
16
|
Zhang Y, Fu J, Han Y, Feng D, Yue S, Zhou Y, Luo Z. Two-Pore-Domain Potassium Channel TREK-1 Mediates Pulmonary Fibrosis through Macrophage M2 Polarization and by Direct Promotion of Fibroblast Differentiation. Biomedicines 2023; 11:biomedicines11051279. [PMID: 37238950 DOI: 10.3390/biomedicines11051279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by myofibroblast proliferation and abnormal accumulation of extracellular matrix in the lungs. After lung injury, M2 macrophages mediate the pathogenesis of pulmonary fibrosis by secreting fibrotic cytokines that promote myofibroblast activation. The TWIK-related potassium channel (TREK-1, also known as KCNK2) is a K2P channel that is highly expressed in cardiac, lung, and other tissues; it worsens various tumors, such as ovarian cancer and prostate cancer, and mediates cardiac fibrosis. However, the role of TREK-1 in lung fibrosis remains unclear. This study aimed to examine the effects of TREK-1 on bleomycin (BLM)-induced lung fibrosis. The results show that TREK-1 knockdown, mediated by the adenovirus or pharmacological inhibition of TREK-1 with fluoxetine, resulted in diminished BLM-induced lung fibrosis. TREK-1 overexpression in macrophages remarkably increased the M2 phenotype, resulting in fibroblast activation. Furthermore, TREK-1 knockdown and fluoxetine administration directly reduced the differentiation of fibroblasts to myofibroblasts by inhibiting the focal adhesion kinase (FAK)/p38 mitogen-activated protein kinases (p38)/Yes-associated protein (YAP) signaling pathway. In conclusion, TREK-1 plays a central role in the pathogenesis of BLM-induced lung fibrosis, which serves as a theoretical basis for the inhibition of TREK-1 as a potential therapy protocol for lung fibrosis.
Collapse
Affiliation(s)
- Yunna Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jiafeng Fu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yang Han
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Shaojie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, China
| |
Collapse
|
17
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
18
|
Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol Ther 2023; 244:108389. [PMID: 36940790 DOI: 10.1016/j.pharmthera.2023.108389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Right ventricular fibrosis is a stress response, predominantly mediated by cardiac fibroblasts. This cell population is sensitive to increased levels of pro-inflammatory cytokines, pro-fibrotic growth factors and mechanical stimulation. Activation of fibroblasts results in the induction of various molecular signaling pathways, most notably the mitogen-activated protein kinase cassettes, leading to increased synthesis and remodeling of the extracellular matrix. While fibrosis confers structural protection in response to damage induced by ischemia or (pressure and volume) overload, it simultaneously contributes to increased myocardial stiffness and right ventricular dysfunction. Here, we review state-of-the-art knowledge of the development of right ventricular fibrosis in response to pressure overload and provide an overview of all published preclinical and clinical studies in which right ventricular fibrosis was targeted to improve cardiac function.
Collapse
Affiliation(s)
- F T Bekedam
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - M J Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC Leiden, the Netherlands
| | - H J Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - F S de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| | - A Llucià-Valldeperas
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Humeres C, Venugopal H, Frangogiannis NG. The Role of Mechanosensitive Signaling Cascades in Repair and Fibrotic Remodeling of the Infarcted Heart. CARDIAC AND VASCULAR BIOLOGY 2023:61-100. [DOI: 10.1007/978-3-031-23965-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Xing C, Bao L, Li W, Fan H. Progress on role of ion channels of cardiac fibroblasts in fibrosis. Front Physiol 2023; 14:1138306. [PMID: 36969589 PMCID: PMC10033868 DOI: 10.3389/fphys.2023.1138306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Collapse
|
21
|
Bechard E, Bride J, Le Guennec JY, Brette F, Demion M. TREK-1 in the heart: Potential physiological and pathophysiological roles. Front Physiol 2022; 13:1095102. [PMID: 36620226 PMCID: PMC9815770 DOI: 10.3389/fphys.2022.1095102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The TREK-1 channel belongs to the TREK subfamily of two-pore domains channels that are activated by stretch and polyunsaturated fatty acids and inactivated by Protein Kinase A phosphorylation. The activation of this potassium channel must induce a hyperpolarization of the resting membrane potential and a shortening of the action potential duration in neurons and cardiac cells, two phenomena being beneficial for these tissues in pathological situations like ischemia-reperfusion. Surprisingly, the physiological role of TREK-1 in cardiac function has never been thoroughly investigated, very likely because of the lack of a specific inhibitor. However, possible roles have been unraveled in pathological situations such as atrial fibrillation worsened by heart failure, right ventricular outflow tract tachycardia or pulmonary arterial hypertension. The inhomogeneous distribution of TREK-1 channel within the heart reinforces the idea that this stretch-activated potassium channel might play a role in cardiac areas where the mechanical constraints are important and need a particular protection afforded by TREK-1. Consequently, the main purpose of this mini review is to discuss the possible role played by TREK -1 in physiological and pathophysiological conditions and its potential role in mechano-electrical feedback. Improved understanding of the role of TREK-1 in the heart may help the development of promising treatments for challenging cardiac diseases.
Collapse
|
22
|
Souza DS, Chignalia AZ, Carvalho-de-Souza JL. Modulation of cardiac voltage-activated K + currents by glypican 1 heparan sulfate proteoglycan. Life Sci 2022; 308:120916. [PMID: 36049528 PMCID: PMC11105158 DOI: 10.1016/j.lfs.2022.120916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Glypican 1 (Gpc1) is a heparan sulfate proteoglycan attached to the cell membrane via a glycosylphosphatidylinositol anchor, where it holds glycosaminoglycans nearby. We have recently shown that Gpc1 knockout (Gpc1-/-) mice feature decreased systemic blood pressure. To date, none has been reported regarding the role of Gpc1 on the electrical properties of the heart and specifically, in regard to a functional interaction between Gpc1 and voltage-gated K+ channels. METHODS We used echocardiography and in vivo (electrocardiographic recordings) and in vitro (patch clamping) electrophysiology to study mechanical and electric properties of mice hearts. We used RT-PCR to probe K+ channels' gene transcription in heart tissue. RESULTS Gpc1-/- hearts featured increased cardiac stroke volume and preserved ejection fraction. Gpc1-/- electrocardiograms showed longer QT intervals, abnormalities in the ST segment, and delayed T waves, corroborated by longer action potentials in isolated ventricular cardiomyocytes. In voltage-clamp, these cells showed decreased Ito and IK voltage-activated K+ current densities. Moreover, IK showed activation at less negative voltages, but a higher level of inactivation at a given membrane potential. Kcnh2 and Kcnq1 voltage-gated K+ channels subunits' transcripts were remarkably more abundant in heart tissues from Gpc1-/- mice, suggesting that Gpc1 may interfere in the steps between transcription and translation in these cases. CONCLUSION Our data reveals an unprecedented connection between Gpc1 and voltage-gated K+ channels expressed in the heart and this knowledge contributes to the understanding of the role of this HSPG in cardiac function which may play a role in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Diego Santos Souza
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Andreia Zago Chignalia
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; Department of Physiology, College of Medicine University of Arizona, Tucson, AZ 85724, USA; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85724, USA
| | - Joao Luis Carvalho-de-Souza
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; Department of Physiology, College of Medicine University of Arizona, Tucson, AZ 85724, USA; Department of Ophthalmology and Visual Sciences, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; BIO5 Institute, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
23
|
Shen R, Zuo D, Chen K, Yin Y, Tang K, Hou S, Han B, Xu Y, Liu Z, Chen H. K2P1 leak cation channels contribute to ventricular ectopic beats and sudden death under hypokalemia. FASEB J 2022; 36:e22455. [PMID: 35899468 DOI: 10.1096/fj.202200707r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022]
Abstract
Hypokalemia causes ectopic heartbeats, but the mechanisms underlying such cardiac arrhythmias are not understood. In reduced serum K+ concentrations that occur under hypokalemia, K2P1 two-pore domain K+ channels change ion selectivity and switch to conduct inward leak cation currents, which cause aberrant depolarization of resting potential and induce spontaneous action potential of human cardiomyocytes. K2P1 is expressed in the human heart but not in mouse hearts. We test the hypothesis that K2P1 leak cation channels contribute to ectopic heartbeats under hypokalemia, by analysis of transgenic mice, which conditionally express induced K2P1 specifically in hearts, mimicking K2P1 channels in the human heart. Conditional expression of induced K2P1 specifically in the heart of hypokalemic mice results in multiple types of ventricular ectopic beats including single and multiple ventricular premature beats as well as ventricular tachycardia and causes sudden death. In isolated mouse hearts that express induced K2P1, sustained ventricular fibrillation occurs rapidly after perfusion with low K+ concentration solutions that mimic hypokalemic conditions. These observed phenotypes occur rarely in control mice or in the hearts that lack K2P1 expression. K2P1-expressing mouse cardiomyocytes of transgenic mice much more frequently fire abnormal single and/or rhythmic spontaneous action potential in hypokalemic conditions, compared to wild type mouse cardiomyocytes without K2P1 expression. These findings confirm that K2P1 leak cation channels induce ventricular ectopic beats and sudden death of transgenic mice with hypokalemia and imply that K2P1 leak cation channels may play a critical role in human ectopic heartbeats under hypokalemia.
Collapse
Affiliation(s)
- Rongrong Shen
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Dongchuan Zuo
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, Luzhou, China.,Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Kuihao Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA.,Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Yiheng Yin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Shangwei Hou
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Han
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China.,Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Haijun Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
24
|
Braidotti N, Chen SN, Long CS, Cojoc D, Sbaizero O. Piezo1 Channel as a Potential Target for Hindering Cardiac Fibrotic Remodeling. Int J Mol Sci 2022; 23:8065. [PMID: 35897650 PMCID: PMC9330509 DOI: 10.3390/ijms23158065] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Fibrotic tissues share many common features with neoplasms where there is an increased stiffness of the extracellular matrix (ECM). In this review, we present recent discoveries related to the role of the mechanosensitive ion channel Piezo1 in several diseases, especially in regulating tumor progression, and how this can be compared with cardiac mechanobiology. Based on recent findings, Piezo1 could be upregulated in cardiac fibroblasts as a consequence of the mechanical stress and pro-inflammatory stimuli that occurs after myocardial injury, and its increased activity could be responsible for a positive feedback loop that leads to fibrosis progression. The increased Piezo1-mediated calcium flow may play an important role in cytoskeleton reorganization since it induces actin stress fibers formation, a well-known characteristic of fibroblast transdifferentiation into the activated myofibroblast. Moreover, Piezo1 activity stimulates ECM and cytokines production, which in turn promotes the phenoconversion of adjacent fibroblasts into new myofibroblasts, enhancing the invasive character. Thus, by assuming the Piezo1 involvement in the activation of intrinsic fibroblasts, recruitment of new myofibroblasts, and uncontrolled excessive ECM production, a new approach to blocking the fibrotic progression can be predicted. Therefore, targeted therapies against Piezo1 could also be beneficial for cardiac fibrosis.
Collapse
Affiliation(s)
- Nicoletta Braidotti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy;
- Institute of Materials, National Research Council of Italy (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy;
| | - Suet Nee Chen
- CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave., Aurora, CO 80045, USA;
| | - Carlin S. Long
- Center for the Prevention of Heart and Vascular Disease, University of California, 555 Mission Bay Blvd South, Rm 352K, San Francisco, CA 94143, USA;
| | - Dan Cojoc
- Institute of Materials, National Research Council of Italy (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127 Trieste, Italy
| |
Collapse
|
25
|
Bishawi M, Lee FH, Abraham DM, Glass C, Blocker SJ, Cox DJ, Brown ZD, Rockman HA, Mao L, Slaba TC, Dewhirst MW, Truskey GA, Bowles DE. Late onset cardiovascular dysfunction in adult mice resulting from galactic cosmic ray exposure. iScience 2022; 25:104086. [PMID: 35378858 PMCID: PMC8976132 DOI: 10.1016/j.isci.2022.104086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 12/27/2022] Open
Abstract
The complex and inaccessible space radiation environment poses an unresolved risk to astronaut cardiovascular health during long-term space exploration missions. To model this risk, healthy male c57BL/6 mice aged six months (corresponding to an astronaut of 34 years) were exposed to simplified galactic cosmic ray (GCR5-ion; 5-ion sim) irradiation at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratories (BNL). Multi-modal cardiovascular functional assessments performed longitudinally and terminally revealed significant impairment in cardiac function in mice exposed to GCR5-ion compared to unirradiated controls, gamma irradiation, or single mono-energetic ions (56Fe or 16O). GCR5-ion-treated mice exhibited increased arterial elastance likely mediated by disruption of elastin fibers. This study suggests that a single exposure to GCR5-ion is associated with deterioration in cardiac structure and function that becomes apparent long after exposure, likely associated with increased morbidity and mortality. These findings represent important health considerations when preparing for successful space exploration.
Collapse
Affiliation(s)
- Muath Bishawi
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Durham, NC 27708, USA
| | - Franklin H. Lee
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
| | - Dennis M. Abraham
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Carolyn Glass
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Daniel J. Cox
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
| | - Zachary D. Brown
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Lan Mao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tony C. Slaba
- NASA Langley Research Center, Hampton, VA 23681, USA
| | - Mark W. Dewhirst
- Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - George A. Truskey
- Department of Biomedical Engineering, Pratt School of Engineering, Durham, NC 27708, USA
| | - Dawn E. Bowles
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
26
|
Pope L, Minor DL. The Polysite Pharmacology of TREK K 2P Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:51-65. [PMID: 35138610 DOI: 10.1007/978-981-16-4254-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
K2P (KCNK) potassium channels form "background" or "leak" currents that have critical roles in cell excitability control in the brain, cardiovascular system, and somatosensory neurons. Similar to many ion channel families, studies of K2Ps have been limited by poor pharmacology. Of six K2P subfamilies, the thermo- and mechanosensitive TREK subfamily comprising K2P2.1 (TREK-1), K2P4.1 (TRAAK), and K2P10.1 (TREK-2) are the first to have structures determined for each subfamily member. These structural studies have revealed key architectural features that underlie K2P function and have uncovered sites residing at every level of the channel structure with respect to the membrane where small molecules or lipids can control channel function. This polysite pharmacology within a relatively small (~70 kDa) ion channel comprises four structurally defined modulator binding sites that occur above (Keystone inhibitor site), at the level of (K2P modulator pocket), and below (Fenestration and Modulatory lipid sites) the C-type selectivity filter gate that is at the heart of K2P function. Uncovering this rich structural landscape provides the framework for understanding and developing subtype-selective modulators to probe K2P function that may provide leads for drugs for anesthesia, pain, arrhythmia, ischemia, and migraine.
Collapse
Affiliation(s)
- Lianne Pope
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, US
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, US. .,Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA. .,California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA. .,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA. .,Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
27
|
Inhibition of Src improves cardiac fibrosis in AngII-induced hypertrophy by regulating the expression of galectin-3. Microvasc Res 2022; 142:104347. [DOI: 10.1016/j.mvr.2022.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
|
28
|
Zhao K, Weng L, Xu T, Yang C, Zhang J, Ni G, Guo X, Tu J, Zhang D, Sun W, Kong X. Low-intensity pulsed ultrasound prevents prolonged hypoxia-induced cardiac fibrosis through HIF-1α/DNMT3a pathway via a TRAAK-dependent manner. Clin Exp Pharmacol Physiol 2021; 48:1500-1514. [PMID: 34343366 DOI: 10.1111/1440-1681.13562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
Hypoxia-induced cardiac fibrosis is an important pathological process in cardiovascular disorders. This study aimed to determine whether low-intensity pulsed ultrasound (LIPUS), a novel and safe apparatus, could alleviate hypoxia-induced cardiac fibrosis, and to elucidate the underlying mechanisms. Hypoxia (1% O2 ) and transverse aortic constriction (TAC) were performed on neonatal rat cardiac fibroblasts and mice to induce cardiac fibrosis, respectively. LIPUS irradiation was applied for 20 minutes every 6 hours for a total of 2 times in vitro, and every 2 days from 1 week before surgery to 4 weeks after surgery in vivo. We found that LIPUS dose-dependently attenuated hypoxia-induced cardiac fibroblast phenotypic conversion in vitro, and ameliorated TAC-induced cardiac fibrosis in vivo. Hypoxia significantly upregulated the nuclear protein expression of hypoxia-inducible factor-1α (HIF-1α) and DNA methyltransferase 3a (DNMT3a). LIPUS pre-treatment reversed the elevated expression of HIF-1α, and DNMT3a. Further experiments revealed that HIF-1α stabilizer dimethyloxalylglycine (DMOG) hindered the anti-fibrotic effect of LIPUS, and hampered LIPUS-mediated downregulation of DNMT3a. DNMT3a small interfering RNA (siRNA) prevented hypoxia-induced cardiac fibrosis. Results also showed that the mechanosensitive protein-TWIK-related arachidonic acid-activated K+ channel (TRAAK) messenger RNA (mRNA) expression was downregulated in hypoxia-induced cardiac fibroblasts, and TAC-induced hearts. TRAAK siRNA impeded LIPUS-mediated anti-fibrotic effect and downregulation of HIF-1α and DNMT3a. Above results indicated that LIPUS could prevent prolonged hypoxia-induced cardiac fibrosis through TRAAK-mediated HIF-1α/DNMT3a signalling pathway.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liqing Weng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuanxi Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Two-Pore-Domain Potassium (K 2P-) Channels: Cardiac Expression Patterns and Disease-Specific Remodelling Processes. Cells 2021; 10:cells10112914. [PMID: 34831137 PMCID: PMC8616229 DOI: 10.3390/cells10112914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Two-pore-domain potassium (K2P-) channels conduct outward K+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K2P channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K2P-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K2P3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K2P3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanoactive K2P2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K2P channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K2P channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K2P channels.
Collapse
|
30
|
Fancher IS. Cardiovascular mechanosensitive ion channels-Translating physical forces into physiological responses. CURRENT TOPICS IN MEMBRANES 2021; 87:47-95. [PMID: 34696889 DOI: 10.1016/bs.ctm.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells and tissues are constantly exposed to mechanical stress. In order to respond to alterations in mechanical stimuli, specific cellular machinery must be in place to rapidly convert physical force into chemical signaling to achieve the desired physiological responses. Mechanosensitive ion channels respond to such physical stimuli in the order of microseconds and are therefore essential components to mechanotransduction. Our understanding of how these ion channels contribute to cellular and physiological responses to mechanical force has vastly expanded in the last few decades due to engineering ingenuities accompanying patch clamp electrophysiology, as well as sophisticated molecular and genetic approaches. Such investigations have unveiled major implications for mechanosensitive ion channels in cardiovascular health and disease. Therefore, in this chapter I focus on our present understanding of how biophysical activation of various mechanosensitive ion channels promotes distinct cell signaling events with tissue-specific physiological responses in the cardiovascular system. Specifically, I discuss the roles of mechanosensitive ion channels in mediating (i) endothelial and smooth muscle cell control of vascular tone, (ii) mechano-electric feedback and cell signaling pathways in cardiomyocytes and cardiac fibroblasts, and (iii) the baroreflex.
Collapse
Affiliation(s)
- Ibra S Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
31
|
Umbarkar P, Ejantkar S, Tousif S, Lal H. Mechanisms of Fibroblast Activation and Myocardial Fibrosis: Lessons Learned from FB-Specific Conditional Mouse Models. Cells 2021; 10:cells10092412. [PMID: 34572061 PMCID: PMC8471002 DOI: 10.3390/cells10092412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality across the world. Cardiac fibrosis is associated with HF progression. Fibrosis is characterized by the excessive accumulation of extracellular matrix components. This is a physiological response to tissue injury. However, uncontrolled fibrosis leads to adverse cardiac remodeling and contributes significantly to cardiac dysfunction. Fibroblasts (FBs) are the primary drivers of myocardial fibrosis. However, until recently, FBs were thought to play a secondary role in cardiac pathophysiology. This review article will present the evolving story of fibroblast biology and fibrosis in cardiac diseases, emphasizing their recent shift from a supporting to a leading role in our understanding of the pathogenesis of cardiac diseases. Indeed, this story only became possible because of the emergence of FB-specific mouse models. This study includes an update on the advancements in the generation of FB-specific mouse models. Regarding the underlying mechanisms of myocardial fibrosis, we will focus on the pathways that have been validated using FB-specific, in vivo mouse models. These pathways include the TGF-β/SMAD3, p38 MAPK, Wnt/β-Catenin, G-protein-coupled receptor kinase (GRK), and Hippo signaling. A better understanding of the mechanisms underlying fibroblast activation and fibrosis may provide a novel therapeutic target for the management of adverse fibrotic remodeling in the diseased heart.
Collapse
Affiliation(s)
- Prachi Umbarkar
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: (P.U.); (H.L.); Tel.: +1-205-996-4248 (P.U.); +1-205-996-4219 (H.L.); Fax: +1-205-975-5104 (H.L.)
| | - Suma Ejantkar
- School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Sultan Tousif
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Hind Lal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: (P.U.); (H.L.); Tel.: +1-205-996-4248 (P.U.); +1-205-996-4219 (H.L.); Fax: +1-205-975-5104 (H.L.)
| |
Collapse
|
32
|
Roy Choudhury A, Großhans J, Kong D. Ion Channels in Epithelial Dynamics and Morphogenesis. Cells 2021; 10:cells10092280. [PMID: 34571929 PMCID: PMC8465836 DOI: 10.3390/cells10092280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 01/21/2023] Open
Abstract
Mechanosensitive ion channels mediate the neuronal sensation of mechanical signals such as sound, touch, and pain. Recent studies point to a function of these channel proteins in cell types and tissues in addition to the nervous system, such as epithelia, where they have been little studied, and their role has remained elusive. Dynamic epithelia are intrinsically exposed to mechanical forces. A response to pull and push is assumed to constitute an essential part of morphogenetic movements of epithelial tissues, for example. Mechano-gated channels may participate in sensing and responding to such forces. In this review, focusing on Drosophila, we highlight recent results that will guide further investigations concerned with the mechanistic role of these ion channels in epithelial cells.
Collapse
|
33
|
Lengyel M, Enyedi P, Czirják G. Negative Influence by the Force: Mechanically Induced Hyperpolarization via K 2P Background Potassium Channels. Int J Mol Sci 2021; 22:ijms22169062. [PMID: 34445768 PMCID: PMC8396510 DOI: 10.3390/ijms22169062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
The two-pore domain K2P subunits form background (leak) potassium channels, which are characterized by constitutive, although not necessarily constant activity, at all membrane potential values. Among the fifteen pore-forming K2P subunits encoded by the KCNK genes, the three members of the TREK subfamily, TREK-1, TREK-2, and TRAAK are mechanosensitive ion channels. Mechanically induced opening of these channels generally results in outward K+ current under physiological conditions, with consequent hyperpolarization and inhibition of membrane potential-dependent cellular functions. In the past decade, great advances have been made in the investigation of the molecular determinants of mechanosensation, and members of the TREK subfamily have emerged among the best-understood examples of mammalian ion channels directly influenced by the tension of the phospholipid bilayer. In parallel, the crucial contribution of mechano-gated TREK channels to the regulation of membrane potential in several cell types has been reported. In this review, we summarize the general principles underlying the mechanical activation of K2P channels, and focus on the physiological roles of mechanically induced hyperpolarization.
Collapse
|
34
|
Singh S, Agarwal P, Ravichandiran V. Two-Pore Domain Potassium Channel in Neurological Disorders. J Membr Biol 2021; 254:367-380. [PMID: 34169340 DOI: 10.1007/s00232-021-00189-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023]
Abstract
K2P channel is the leaky potassium channel that is critical to keep up the negative resting membrane potential for legitimate electrical conductivity of the excitable tissues. Recently, many substances and medication elements are discovered that could either straightforwardly or in a roundabout way influence the 15 distinctive K+ ion channels including TWIK, TREK, TASK, TALK, THIK, and TRESK. Opening and shutting of these channels or any adjustment in their conduct is thought to alter the pathophysiological condition of CNS. There is no document available till now to explain in detail about the molecular mechanism of agents acting on K2P channel. Accordingly, in this review we cover the current research and mechanism of action of these channels, we have also tried to mention the detailed effect of drugs and how the channel behavior changes by focusing on recent advances regarding activation and modulation of ion channels.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India.
| | - Punita Agarwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| |
Collapse
|
35
|
Herrera-Pérez S, Campos-Ríos A, Rueda-Ruzafa L, Lamas JA. Contribution of K2P Potassium Channels to Cardiac Physiology and Pathophysiology. Int J Mol Sci 2021; 22:ijms22126635. [PMID: 34205717 PMCID: PMC8234311 DOI: 10.3390/ijms22126635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022] Open
Abstract
Years before the first two-pore domain potassium channel (K2P) was cloned, certain ion channels had already been demonstrated to be present in the heart with characteristics and properties usually attributed to the TREK channels (a subfamily of K2P channels). K2P channels were later detected in cardiac tissue by RT-PCR, although the distribution of the different K2P subfamilies in the heart seems to depend on the species analyzed. In order to collect relevant information in this regard, we focus here on the TWIK, TASK and TREK cardiac channels, their putative roles in cardiac physiology and their implication in coronary pathologies. Most of the RNA expression data and electrophysiological recordings available to date support the presence of these different K2P subfamilies in distinct cardiac cells. Likewise, we show how these channels may be involved in certain pathologies, such as atrial fibrillation, long QT syndrome and Brugada syndrome.
Collapse
|
36
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
37
|
Natale AM, Deal PE, Minor DL. Structural Insights into the Mechanisms and Pharmacology of K 2P Potassium Channels. J Mol Biol 2021; 433:166995. [PMID: 33887333 PMCID: PMC8436263 DOI: 10.1016/j.jmb.2021.166995] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023]
Abstract
Leak currents, defined as voltage and time independent flows of ions across cell membranes, are central to cellular electrical excitability control. The K2P (KCNK) potassium channel class comprises an ion channel family that produces potassium leak currents that oppose excitation and stabilize the resting membrane potential in cells in the brain, cardiovascular system, immune system, and sensory organs. Due to their widespread tissue distribution, K2Ps contribute to many physiological and pathophysiological processes including anesthesia, pain, arrythmias, ischemia, hypertension, migraine, intraocular pressure regulation, and lung injury responses. Structural studies of six homomeric K2Ps have established the basic architecture of this channel family, revealed key moving parts involved in K2P function, uncovered the importance of asymmetric pinching and dilation motions in the K2P selectivity filter (SF) C-type gate, and defined two K2P structural classes based on the absence or presence of an intracellular gate. Further, a series of structures characterizing K2P:modulator interactions have revealed a striking polysite pharmacology housed within a relatively modestly sized (~70 kDa) channel. Binding sites for small molecules or lipids that control channel function are found at every layer of the channel structure, starting from its extracellular side through the portion that interacts with the membrane bilayer inner leaflet. This framework provides the basis for understanding how gating cues sensed by different channel parts control function and how small molecules and lipids modulate K2P activity. Such knowledge should catalyze development of new K2P modulators to probe function and treat a wide range of disorders.
Collapse
Affiliation(s)
- Andrew M Natale
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Parker E Deal
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience University of California, San Francisco, CA 94158, USA; Molecular Biophysics and Integrated Bio-imaging Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Huang L, Xu G, Jiang R, Luo Y, Zuo Y, Liu J. Development of Non-opioid Analgesics Targeting Two-pore Domain Potassium Channels. Curr Neuropharmacol 2021; 20:16-26. [PMID: 33827408 PMCID: PMC9199554 DOI: 10.2174/1570159x19666210407152528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Two-pore domain potassium (K2P) channels are a diverse family of potassium channels. K2P channels generate background leak potassium currents to regulate cellular excitability and are thereby involved in a wide range of neurological disorders. K2P channels are modulated by a variety of physicochemical factors such as mechanical stretch, temperature, and pH. In the the peripheral nervous system (PNS), K2P channels are widely expressed in nociceptive neurons and play a critical roles in pain perception. In this review, we summarize the recent advances in the pharmacological properties of K2P channels, with a focus on the exogenous small-molecule activators targeting K2P channels. We emphasize the subtype-selectivity, cellular and in vivo pharmacological properties of all the reported small-molecule activators. The key underlying analgesic mechanisms mediated by K2P are also summarized based on the data in the literature from studies using small-molecule activators and genetic knock-out animals. We discuss advantages and limitations of the translational perspectives of K2P in pain medicine and provide outstanding questions for future studies in the end.
Collapse
Affiliation(s)
- Lu Huang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Guangyin Xu
- Department of Physiology and Neurobiology, Institute of Neuroscience, Medical College of Soochow University, Suzhou, 215123, Jiangsu. China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yuncheng Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yunxia Zuo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| |
Collapse
|
39
|
Lee H, Lolicato M, Arrigoni C, Minor DL. Production of K 2P2.1 (TREK-1) for structural studies. Methods Enzymol 2021; 653:151-188. [PMID: 34099170 DOI: 10.1016/bs.mie.2021.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
K2P (KCNK) potassium channels form 'background' or 'leak' currents that are important for controlling cell excitability in the brain, cardiovascular system, and somatosensory neurons. K2P2.1 (TREK-1) is one of the founding members of this family and one of the first well-characterized polymodal ion channels capable of responding to a variety of physical and chemical gating cues. Of the six K2P subfamilies, the thermo-and mechano-sensitive TREK subfamily comprising K2P2.1 (TREK-1), K2P4.1 (TRAAK), and K2P10.1 (TREK-2) is the first to have structures determined for each subfamily member. These structural studies have revealed key architectural features that provide a framework for understanding how gating cues sensed by different channel elements converge on the K2P selectivity filter C-type gate. TREK family structural studies have also revealed numerous sites where small molecules or lipids bind and affect channel function. This rich structural landscape provides the framework for probing K2P function and for the development of new K2P-directed agents. Such molecules may be useful for affecting processes where TREK channels are important such as anesthesia, pain, arrythmia, ischemia, migraine, intraocular pressure, and lung injury. Production of high quality protein samples is key to addressing new questions about K2P function and pharmacology. Here, we present methods for producing pure K2P2.1 (TREK-1) suitable for advancing towards these goals through structural and biochemical studies.
Collapse
Affiliation(s)
- Haerim Lee
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Cristina Arrigoni
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, United States; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, United States; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, United States; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
40
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
41
|
Sparks MA, Rianto F, Diaz E, Revoori R, Hoang T, Bouknight L, Stegbauer J, Vivekanandan-Giri A, Ruiz P, Pennathur S, Abraham DM, Gurley SB, Crowley SD, Coffman TM. Direct Actions of AT 1 (Type 1 Angiotensin) Receptors in Cardiomyocytes Do Not Contribute to Cardiac Hypertrophy. Hypertension 2021; 77:393-404. [PMID: 33390039 PMCID: PMC7803456 DOI: 10.1161/hypertensionaha.119.14079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Activation of AT1 (type 1 Ang) receptors stimulates cardiomyocyte hypertrophy in vitro. Accordingly, it has been suggested that regression of cardiac hypertrophy associated with renin-Ang system blockade is due to inhibition of cellular actions of Ang II in the heart, above and beyond their effects to reduce pressure overload. We generated 2 distinct mouse lines with cell-specific deletion of AT1A receptors, from cardiomyocytes. In the first line (C-SMKO), elimination of AT1A receptors was achieved using a heterologous Cre recombinase transgene under control of the Sm22 promoter, which expresses in cells of smooth muscle lineage including cardiomyocytes and vascular smooth muscle cells of conduit but not resistance vessels. The second line (R-SMKO) utilized a Cre transgene knocked-in to the Sm22 locus, which drives expression in cardiac myocytes and vascular smooth muscle cells in both conduit and resistance arteries. Thus, although both groups lack AT1 receptors in the cardiomyocytes, they are distinguished by presence (C-SMKO) or absence (R-SMKO) of peripheral vascular responses to Ang II. Similar to wild-types, chronic Ang II infusion caused hypertension and cardiac hypertrophy in C-SMKO mice, whereas both hypertension and cardiac hypertrophy were reduced in R-SMKOs. Thus, despite the absence of AT1A receptors in cardiomyocytes, C-SMKOs develop robust cardiac hypertrophy. By contrast, R-SMKOs developed identical levels of hypertrophy in response to pressure overload–induced by transverse aortic banding. Our findings suggest that direct activation of AT1 receptors in cardiac myocytes has minimal influence on cardiac hypertrophy induced by renin-Ang system activation or pressure overload.
Collapse
Affiliation(s)
- Matthew A Sparks
- From the Division of Nephrology, Department of Medicine (M.A.S., F.R., E.D., R.R., T.H., L.B., J.S., S.D.C., T.M.C.), Duke University School of Medicine, Durham, NC.,Renal Section, Durham VA Health System, NC (M.A.S, S.D.C., T.M.C.)
| | - Fitra Rianto
- From the Division of Nephrology, Department of Medicine (M.A.S., F.R., E.D., R.R., T.H., L.B., J.S., S.D.C., T.M.C.), Duke University School of Medicine, Durham, NC
| | - Edward Diaz
- From the Division of Nephrology, Department of Medicine (M.A.S., F.R., E.D., R.R., T.H., L.B., J.S., S.D.C., T.M.C.), Duke University School of Medicine, Durham, NC
| | - Ritika Revoori
- From the Division of Nephrology, Department of Medicine (M.A.S., F.R., E.D., R.R., T.H., L.B., J.S., S.D.C., T.M.C.), Duke University School of Medicine, Durham, NC
| | - Thien Hoang
- From the Division of Nephrology, Department of Medicine (M.A.S., F.R., E.D., R.R., T.H., L.B., J.S., S.D.C., T.M.C.), Duke University School of Medicine, Durham, NC
| | - Lucas Bouknight
- From the Division of Nephrology, Department of Medicine (M.A.S., F.R., E.D., R.R., T.H., L.B., J.S., S.D.C., T.M.C.), Duke University School of Medicine, Durham, NC
| | - Johannes Stegbauer
- From the Division of Nephrology, Department of Medicine (M.A.S., F.R., E.D., R.R., T.H., L.B., J.S., S.D.C., T.M.C.), Duke University School of Medicine, Durham, NC.,Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Germany (J.S.)
| | - Anuradha Vivekanandan-Giri
- Division of Nephrology, Department of Medicine, Michigan University Medical Center, Ann Arbor (A.V.-G., S.P.)
| | - Phillip Ruiz
- Department of Surgery and Pathology, University of Miami, FL (P.R.)
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Medicine, Michigan University Medical Center, Ann Arbor (A.V.-G., S.P.)
| | - Dennis M Abraham
- Division of Cardiology, Department of Medicine (D.M.A.), Duke University School of Medicine, Durham, NC
| | - Susan B Gurley
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Sciences University, Portland (S.B.G.)
| | - Steven D Crowley
- From the Division of Nephrology, Department of Medicine (M.A.S., F.R., E.D., R.R., T.H., L.B., J.S., S.D.C., T.M.C.), Duke University School of Medicine, Durham, NC.,Renal Section, Durham VA Health System, NC (M.A.S, S.D.C., T.M.C.)
| | - Thomas M Coffman
- From the Division of Nephrology, Department of Medicine (M.A.S., F.R., E.D., R.R., T.H., L.B., J.S., S.D.C., T.M.C.), Duke University School of Medicine, Durham, NC.,Renal Section, Durham VA Health System, NC (M.A.S, S.D.C., T.M.C.).,Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Medical School, Singapore (T.M.C.)
| |
Collapse
|
42
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
43
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
44
|
Tao H, Shi P, Zhao XD, Xuan HY, Ding XS. MeCP2 inactivation of LncRNA GAS5 triggers cardiac fibroblasts activation in cardiac fibrosis. Cell Signal 2020; 74:109705. [DOI: 10.1016/j.cellsig.2020.109705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
|
45
|
Mariani P, Zhurakivska K, Santoro R, Laino G, Russo D, Laino L. Hereditary gingival fibromatosis associated with the missense mutation of the KCNK4 gene. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 131:e175-e182. [PMID: 32981868 DOI: 10.1016/j.oooo.2020.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
Abstract
Hereditary gingival fibromatosis (HGF) is a rare oral condition that may appear as an isolated entity or as part of a genetic disease or syndrome. Molecular and biochemical mechanisms that trigger this pathologic process are not completely understood. In this article, we present a rare case of hereditary gingival fibromatosis in conjunction with a syndromic phenotype, associated with a rare missense mutation of the KCNK4 gene. This mutation induces a change in the structure of the TRAAK channel belonging to the 2-pore potassium channels. The gain of function promoted by the mutation could represent the pathogenetic basis of gingival fibromatosis.
Collapse
Affiliation(s)
- Pierluigi Mariani
- Student in Oral Surgery Specialization, Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Khrystyna Zhurakivska
- PhD student, Department of Clinical and Experimental Medicine, University of Foggia, Foggia
| | - Rossella Santoro
- Researcher in Odontostomatological Disciplines, Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples
| | - Gregorio Laino
- Full Professor of Oral and Maxillofacial Surgery, Dean, Division of Oral Surgery, Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples
| | - Diana Russo
- Student, Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples
| | - Luigi Laino
- Associate Professor of Oral Surgery, Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples
| |
Collapse
|
46
|
Davidson MT, Grimsrud PA, Lai L, Draper JA, Fisher-Wellman KH, Narowski TM, Abraham DM, Koves TR, Kelly DP, Muoio DM. Extreme Acetylation of the Cardiac Mitochondrial Proteome Does Not Promote Heart Failure. Circ Res 2020; 127:1094-1108. [PMID: 32660330 PMCID: PMC9161399 DOI: 10.1161/circresaha.120.317293] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Circumstantial evidence links the development of heart failure to posttranslational modifications of mitochondrial proteins, including lysine acetylation (Kac). Nonetheless, direct evidence that Kac compromises mitochondrial performance remains sparse. OBJECTIVE This study sought to explore the premise that mitochondrial Kac contributes to heart failure by disrupting oxidative metabolism. METHODS AND RESULTS A DKO (dual knockout) mouse line with deficiencies in CrAT (carnitine acetyltransferase) and Sirt3 (sirtuin 3)-enzymes that oppose Kac by buffering the acetyl group pool and catalyzing lysine deacetylation, respectively-was developed to model extreme mitochondrial Kac in cardiac muscle, as confirmed by quantitative acetyl-proteomics. The resulting impact on mitochondrial bioenergetics was evaluated using a respiratory diagnostics platform that permits comprehensive assessment of mitochondrial function and energy transduction. Susceptibility of DKO mice to heart failure was investigated using transaortic constriction as a model of cardiac pressure overload. The mitochondrial acetyl-lysine landscape of DKO hearts was elevated well beyond that observed in response to pressure overload or Sirt3 deficiency alone. Relative changes in the abundance of specific acetylated lysine peptides measured in DKO versus Sirt3 KO hearts were strongly correlated. A proteomics comparison across multiple settings of hyperacetylation revealed ≈86% overlap between the populations of Kac peptides affected by the DKO manipulation as compared with experimental heart failure. Despite the severity of cardiac Kac in DKO mice relative to other conditions, deep phenotyping of mitochondrial function revealed a surprisingly normal bioenergetics profile. Thus, of the >120 mitochondrial energy fluxes evaluated, including substrate-specific dehydrogenase activities, respiratory responses, redox charge, mitochondrial membrane potential, and electron leak, we found minimal evidence of oxidative insufficiencies. Similarly, DKO hearts were not more vulnerable to dysfunction caused by transaortic constriction-induced pressure overload. CONCLUSIONS The findings challenge the premise that hyperacetylation per se threatens metabolic resilience in the myocardium by causing broad-ranging disruption to mitochondrial oxidative machinery.
Collapse
Affiliation(s)
- Michael T. Davidson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
- Department of Pharmacology and Cancer Biology
| | - Paul A. Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Ling Lai
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, 19104, USA
| | - James A. Draper
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Kelsey H. Fisher-Wellman
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Tara M. Narowski
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Dennis M. Abraham
- Department of Medicine, Division of Cardiology and Duke Cardiovascular Physiology Core
| | - Timothy R. Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Daniel P. Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, 19104, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
- Department of Pharmacology and Cancer Biology
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
47
|
Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020; 9:cells9091956. [PMID: 32854241 PMCID: PMC7565333 DOI: 10.3390/cells9091956] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility-a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.
Collapse
|
48
|
Wiedmann F, Rinné S, Donner B, Decher N, Katus HA, Schmidt C. Mechanosensitive TREK-1 two-pore-domain potassium (K 2P) channels in the cardiovascular system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:126-135. [PMID: 32553901 DOI: 10.1016/j.pbiomolbio.2020.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/01/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
TWIK-related K+ channel (TREK-1) two-pore-domain potassium (K2P) channels mediate background potassium currents and regulate cellular excitability in many different types of cells. Their functional activity is controlled by a broad variety of different physiological stimuli, such as temperature, extracellular or intracellular pH, lipids and mechanical stress. By linking cellular excitability to mechanical stress, TREK-1 currents might be important to mediate parts of the mechanoelectrical feedback described in the heart. Furthermore, TREK-1 currents might contribute to the dysregulation of excitability in the heart in pathophysiological situations, such as those caused by abnormal stretch or ischaemia-associated cell swelling, thereby contributing to arrhythmogenesis. In this review, we focus on the functional role of TREK-1 in the heart and its putative contribution to cardiac mechanoelectrical coupling. Its cardiac expression among different species is discussed, alongside with functional evidence for TREK-1 currents in cardiomyocytes. In addition, evidence for the involvement of TREK-1 currents in different cardiac arrhythmias, such as atrial fibrillation or ventricular tachycardia, is summarized. Furthermore, the role of TREK-1 and its interaction partners in the regulation of the cardiac heart rate is reviewed. Finally, we focus on the significance of TREK-1 in the development of cardiac hypertrophy, cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - Philipps-University Marburg, Marburg, Germany
| | - Birgit Donner
- Pediatric Cardiology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - Philipps-University Marburg, Marburg, Germany
| | - Hugo A Katus
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
49
|
Pope L, Lolicato M, Minor DL. Polynuclear Ruthenium Amines Inhibit K 2P Channels via a "Finger in the Dam" Mechanism. Cell Chem Biol 2020; 27:511-524.e4. [PMID: 32059793 PMCID: PMC7245552 DOI: 10.1016/j.chembiol.2020.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
The trinuclear ruthenium amine ruthenium red (RuR) inhibits diverse ion channels, including K2P potassium channels, TRPs, the calcium uniporter, CALHMs, ryanodine receptors, and Piezos. Despite this extraordinary array, there is limited information for how RuR engages targets. Here, using X-ray crystallographic and electrophysiological studies of an RuR-sensitive K2P, K2P2.1 (TREK-1) I110D, we show that RuR acts by binding an acidic residue pair comprising the "Keystone inhibitor site" under the K2P CAP domain archway above the channel pore. We further establish that Ru360, a dinuclear ruthenium amine not known to affect K2Ps, inhibits RuR-sensitive K2Ps using the same mechanism. Structural knowledge enabled a generalizable design strategy for creating K2P RuR "super-responders" having nanomolar sensitivity. Together, the data define a "finger in the dam" inhibition mechanism acting at a novel K2P inhibitor binding site. These findings highlight the polysite nature of K2P pharmacology and provide a new framework for K2P inhibitor development.
Collapse
Affiliation(s)
- Lianne Pope
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 93858-2330, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 93858-2330, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 93858-2330, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
50
|
Darkow E, Rog-Zielinska EA, Madl J, Brandel A, Siukstaite L, Omidvar R, Kohl P, Ravens U, Römer W, Peyronnet R. The Lectin LecA Sensitizes the Human Stretch-Activated Channel TREK-1 but Not Piezo1 and Binds Selectively to Cardiac Non-myocytes. Front Physiol 2020; 11:457. [PMID: 32499717 PMCID: PMC7243936 DOI: 10.3389/fphys.2020.00457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
The healthy heart adapts continuously to a complex set of dynamically changing mechanical conditions. The mechanical environment is altered by, and contributes to, multiple cardiac diseases. Mechanical stimuli are detected and transduced by cellular mechano-sensors, including stretch-activated ion channels (SAC). The precise role of SAC in the heart is unclear, in part because there are few SAC-specific pharmacological modulators. That said, most SAC can be activated by inducers of membrane curvature. The lectin LecA is a virulence factor of Pseudomonas aeruginosa and essential for P. aeruginosa-induced membrane curvature, resulting in formation of endocytic structures and bacterial cell invasion. We investigate whether LecA modulates SAC activity. TREK-1 and Piezo1 have been selected, as they are widely expressed in the body, including cardiac tissue, and they are “canonical representatives” for the potassium selective and the cation non-selective SAC families, respectively. Live cell confocal microscopy and electron tomographic imaging were used to follow binding dynamics of LecA, and to track changes in cell morphology and membrane topology in human embryonic kidney (HEK) cells and in giant unilamellar vesicles (GUV). HEK cells were further transfected with human TREK-1 or Piezo1 constructs, and ion channel activity was recorded using the patch-clamp technique. Finally, freshly isolated cardiac cells were used for studies into cell type dependency of LecA binding. LecA (500 nM) binds within seconds to the surface of HEK cells, with highest concentration at cell-cell contact sites. Local membrane invaginations are detected in the presence of LecA, both in the plasma membrane of cells (by 17 min of LecA exposure) as well as in GUV. In HEK cells, LecA sensitizes TREK-1, but not Piezo1, to voltage and mechanical stimulation. In freshly isolated cardiac cells, LecA binds to non-myocytes, but not to ventricular or atrial cardiomyocytes. This cell type specific lack of binding is observed across cardiomyocytes from mouse, rabbit, pig, and human. Our results suggest that LecA may serve as a pharmacological tool to study SAC in a cell type-preferential manner. This could aid tissue-based research into the roles of SAC in cardiac non-myocytes.
Collapse
Affiliation(s)
- Elisa Darkow
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annette Brandel
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ramin Omidvar
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Winfried Römer
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|