1
|
Baboli R, Wu K, Halperin JM, Li X. White Matter Microstructural Abnormalities in Children with Familial vs. Non-Familial Attention-Deficit/Hyperactivity Disorder (ADHD). Biomedicines 2025; 13:676. [PMID: 40149652 PMCID: PMC11940736 DOI: 10.3390/biomedicines13030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent, heterogeneous neurodevelopmental disorder. Methods: This study presents, for the first time, a comprehensive investigation of white matter microstructural differences between familial ADHD (ADHD-F) and non-familial ADHD (ADHD-NF) using advanced diffusion tensor imaging analyses in a large community-based sample. Results: Children with ADHD-F exhibited significantly greater volume in the right anterior thalamic radiations and the left inferior fronto-occipital fasciculus compared to controls, and greater volume in the left inferior longitudinal fasciculus relative to ADHD-NF. The ADHD-NF group showed reduced fractional anisotropy in the left inferior longitudinal fasciculus compared to the controls. In both the ADHD-F and ADHD-NF groups, a greater volume of anterior thalamic radiation significantly contributed to reduced ADHD symptoms. Conclusions: Our findings suggest that white matter microstructural alterations along the frontal-thalamic pathways may play a critical role in hereditary factors among children with ADHD-F and significantly contribute to elevated inattentive and hyperactive/impulsive behaviors in the affected children.
Collapse
Affiliation(s)
- Rahman Baboli
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511436, China
| | - Jeffrey M. Halperin
- Department of Psychology, Queens College, City University of New York, New York, NY 11367, USA
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
2
|
Bogdańska-Chomczyk E, Wojtacha P, Tsai ML, Huang ACW, Kozłowska A. Alterations in Striatal Architecture and Biochemical Markers' Levels During Postnatal Development in the Rat Model of an Attention Deficit/Hyperactivity Disorder (ADHD). Int J Mol Sci 2024; 25:13652. [PMID: 39769412 PMCID: PMC11680085 DOI: 10.3390/ijms252413652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is defined as a neurodevelopmental condition. The precise underlying mechanisms remain incompletely elucidated. A body of research suggests disruptions in both the cellular architecture and neuronal function within the brain regions of individuals with ADHD, coupled with disturbances in the biochemical parameters. This study seeks to evaluate the morphological characteristics with a volume measurement of the striatal regions and a neuron density assessment within the studied areas across different developmental stages in Spontaneously Hypertensive Rats (SHRs) and Wistar Kyoto Rats (WKYs). Furthermore, the investigation aims to scrutinize the levels and activities of specific markers related to immune function, oxidative stress, and metabolism within the striatum of juvenile and maturing SHRs compared to WKYs. The findings reveal that the most pronounced reductions in striatal volume occur during the juvenile stage in SHRs, alongside alterations in neuronal density within these brain regions compared to WKYs. Additionally, SHRs exhibit heightened levels and activities of various markers, including RAC-alpha serine/threonine-protein kinase (AKT-1), glucocorticoid receptor (GCsRβ), malondialdehyde (MDA), sulfhydryl groups (-SH), glucose (G), iron (Fe), lactate dehydrogenase (LDH). alanine transaminase (ALT), and aspartate transaminase (AST). In summary, notable changes in striatal morphology and elevated levels of inflammatory, oxidative, and metabolic markers within the striatum may be linked to the disrupted brain development and maturation observed in ADHD.
Collapse
Affiliation(s)
- Ewelina Bogdańska-Chomczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Paweł Wojtacha
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Meng-Li Tsai
- Department of Biomechatronic Engineering, National Ilan University, Ylan 26047, Taiwan;
| | | | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska 30, 10-082 Olsztyn, Poland;
| |
Collapse
|
3
|
Franczak Ł, Podwalski P, Wysocki P, Dawidowski B, Jędrzejewski A, Jabłoński M, Samochowiec J. Impulsivity in ADHD and Borderline Personality Disorder: A Systematic Review of Gray and White Matter Variations. J Clin Med 2024; 13:6906. [PMID: 39598050 PMCID: PMC11594719 DOI: 10.3390/jcm13226906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction: Impulsivity is one of the overlapping symptoms common to borderline personality disorder (BPD) and attention deficit hyperactivity disorder (ADHD), but the neurobiological basis of these disorders remains uncertain. This systematic review aims to identify abnormalities in the gray and white matter associated with impulsivity in BPD and ADHD. Methods: We conducted a systematic search of the PubMed, Embase, and SCOPUS databases, adhering to PRISMA guidelines. Studies that investigated gray and white matter alterations in BPD or ADHD populations and their relationship with impulsivity were included. We reviewed information from 23 studies involving 992 participants, which included findings from structural MRI and DTI. Results: The review identified various nonhomogeneous changes associated with impulsivity in BPD and ADHD. BPD was mainly associated with abnormalities in the prefrontal cortex (PFC) and limbic areas, which correlated negatively with impulsivity. In contrast, impulsivity associated with ADHD was associated with structural changes in the caudate nucleus and frontal-striatal pathways. Despite the overlapping symptoms of impulsivity, the neurobiological mechanisms appeared to differ between the two disorders. Conclusions: These findings emphasize the distinct neurostructural correlates of impulsivity in BPD and ADHD. While both disorders show impulsivity as one of their main symptoms, the fundamental brain structures associated with this trait are different. BPD is primarily associated with abnormalities in the prefrontal cortex and limbic system, whereas the alterations seen in ADHD tend to focus on the caudate nucleus and frontostriatal pathways. Further research is needed to clarify these differences and their implications for treatment.
Collapse
Affiliation(s)
- Łukasz Franczak
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Patryk Wysocki
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Bartosz Dawidowski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Adam Jędrzejewski
- Independent Clinical Psychology Unit, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland;
| | - Marcin Jabłoński
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| |
Collapse
|
4
|
Baboli R, Cao M, Martin E, Halperin JM, Wu K, Li X. Distinct structural brain network properties in children with familial versus non-familial attention-deficit/hyperactivity disorder (ADHD). Cortex 2024; 179:1-13. [PMID: 39089096 PMCID: PMC11401761 DOI: 10.1016/j.cortex.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 06/17/2024] [Indexed: 08/03/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is among the most prevalent, inheritable, and heterogeneous childhood-onset neurodevelopmental disorders. Children with a hereditary background of ADHD have heightened risk of having ADHD and persistent impairment symptoms into adulthood. These facts suggest distinct familial-specific neuropathological substrates in ADHD that may exist in anatomical components subserving attention and cognitive control processing pathways during development. The objective of this study is to investigate the topological properties of the gray matter (GM) structural brain networks in children with familial ADHD (ADHD-F), non-familial ADHD (ADHD-NF), as well as matched controls. A total of 452 participants were involved, including 132, 165 and 155 in groups of ADHD-F, ADHD-NF and typically developed children, respectively. The GM structural brain network was constructed for each group using graph theoretical techniques with cortical and subcortical structures as nodes and correlations between volume of each pair of the nodes within each group as edges, while controlled for confounding factors using regression analysis. Relative to controls, children in both ADHD-F and ADHD-NF groups showed significantly higher nodal global and nodal local efficiencies in the left caudal middle frontal gyrus. Compared to controls and ADHD-NF, children with ADHD-F showed distinct structural network topological patterns associated with right precuneus (significantly higher nodal global efficiency and significantly higher nodal strength), left paracentral gyrus (significantly higher nodal strength and trend toward significantly higher nodal local efficiency) and left putamen (significantly higher nodal global efficiency and trend toward significantly higher nodal local efficiency). Our results for the first time in the field provide evidence of familial-specific structural brain network alterations in ADHD, that may contribute to distinct clinical/behavioral symptomology and developmental trajectories in children with ADHD-F.
Collapse
Affiliation(s)
- Rahman Baboli
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, USA; Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, USA
| | - Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, USA; Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, USA
| | - Elizabeth Martin
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, USA
| | - Jeffrey M Halperin
- Department of Psychology, Queens College, City University of New York, NY, USA
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, USA; Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ, USA.
| |
Collapse
|
5
|
Constant-Varlet C, Nakai T, Prado J. Intergenerational transmission of brain structure and function in humans: a narrative review of designs, methods, and findings. Brain Struct Funct 2024; 229:1327-1348. [PMID: 38710874 DOI: 10.1007/s00429-024-02804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Children often show cognitive and affective traits that are similar to their parents. Although this indicates a transmission of phenotypes from parents to children, little is known about the neural underpinnings of that transmission. Here, we provide a general overview of neuroimaging studies that explore the similarity between parents and children in terms of brain structure and function. We notably discuss the aims, designs, and methods of these so-called intergenerational neuroimaging studies, focusing on two main designs: the parent-child design and the multigenerational design. For each design, we also summarize the major findings, identify the sources of variability between studies, and highlight some limitations and future directions. We argue that the lack of consensus in defining the parent-child transmission of brain structure and function leads to measurement heterogeneity, which is a challenge for future studies. Additionally, multigenerational studies often use measures of family resemblance to estimate the proportion of variance attributed to genetic versus environmental factors, though this estimate is likely inflated given the frequent lack of control for shared environment. Nonetheless, intergenerational neuroimaging studies may still have both clinical and theoretical relevance, not because they currently inform about the etiology of neuromarkers, but rather because they may help identify neuromarkers and test hypotheses about neuromarkers coming from more standard neuroimaging designs.
Collapse
Affiliation(s)
- Charlotte Constant-Varlet
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Bron, France.
| | - Tomoya Nakai
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Bron, France
- Araya Inc., Tokyo, Japan
| | - Jérôme Prado
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Bron, France.
| |
Collapse
|
6
|
Wang Y, Ma L, Wang J, Ding Y, Liu N, Men W, Tan S, Gao JH, Qin S, He Y, Dong Q, Tao S. The neural and genetic underpinnings of different developmental trajectories of Attention-Deficit/Hyperactivity Symptoms in children and adolescents. BMC Med 2024; 22:223. [PMID: 38831366 PMCID: PMC11149188 DOI: 10.1186/s12916-024-03449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The trajectory of attention-deficit hyperactivity disorder (ADHD) symptoms in children and adolescents, encompassing descending, stable, and ascending patterns, delineates their ADHD status as remission, persistence or late onset. However, the neural and genetic underpinnings governing the trajectory of ADHD remain inadequately elucidated. METHODS In this study, we employed neuroimaging techniques, behavioral assessments, and genetic analyses on a cohort of 487 children aged 6-15 from the Children School Functions and Brain Development project at baseline and two follow-up tests for 1 year each (interval 1: 1.14 ± 0.32 years; interval 2: 1.14 ± 0.30 years). We applied a Latent class mixed model (LCMM) to identify the developmental trajectory of ADHD symptoms in children and adolescents, while investigating the neural correlates through gray matter volume (GMV) analysis and exploring the genetic underpinnings using polygenic risk scores (PRS). RESULTS This study identified three distinct trajectories (ascending-high, stable-low, and descending-medium) of ADHD symptoms from childhood through adolescence. Utilizing the linear mixed-effects (LME) model, we discovered that attention hub regions served as the neural basis for these three developmental trajectories. These regions encompassed the left anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), responsible for inhibitory control; the right inferior parietal lobule (IPL), which facilitated conscious focus on exogenous stimuli; and the bilateral middle frontal gyrus/precentral gyrus (MFG/PCG), accountable for regulating both dorsal and ventral attention networks while playing a crucial role in flexible modulation of endogenous and extrinsic attention. Furthermore, our findings revealed that individuals in the ascending-high group exhibited the highest PRS for ADHD, followed by those in the descending-medium group, with individuals in the stable-low group displaying the lowest PRS. Notably, both ascending-high and descending-medium groups had significantly higher PRS compared to the stable-low group. CONCLUSIONS The developmental trajectory of ADHD symptoms in the general population throughout childhood and adolescence can be reliably classified into ascending-high, stable-low, and descending-medium groups. The bilateral MFG/PCG, left ACC/mPFC, and right IPL may serve as crucial brain regions involved in attention processing, potentially determining these trajectories. Furthermore, the ascending-high pattern of ADHD symptoms exhibited the highest PRS for ADHD.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yuyin Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
7
|
Li J, Shu Y, Chen L, Wang B, Chen L, Zhan J, Kuang H, Xia G, Zhou F, Gong H, Zeng X. Disrupted topological organization of functional brain networks in traumatic axonal injury. Brain Imaging Behav 2024; 18:279-291. [PMID: 38044412 PMCID: PMC11156726 DOI: 10.1007/s11682-023-00832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Traumatic axonal injury (TAI) may result in the disruption of brain functional networks and is strongly associated with cognitive impairment. However, the neural mechanisms affecting the neurocognitive function after TAI remain to be elucidated. We collected the resting-state functional magnetic resonance imaging data from 28 patients with TAI and 28 matched healthy controls. An automated anatomical labeling atlas was used to construct a functional brain connectome. We utilized a graph theoretical approach to investigate the alterations in global and regional network topologies, and network-based statistics analysis was utilized to localize the connected networks more precisely. The current study revealed that patients with TAI and healthy controls both showed a typical small-world topology of the functional brain networks. However, patients with TAI exhibited a significantly lower local efficiency compared to healthy controls, whereas no significant difference emerged in other small-world properties (Cp, Lp, γ, λ, and σ) and global efficiency. Moreover, patients with TAI exhibited aberrant nodal centralities in some regions, including the frontal lobes, parietal lobes, caudate nucleus, and cerebellum bilaterally, and right olfactory cortex. The network-based statistics results showed alterations in the long-distance functional connections in the subnetwork in patients with TAI, involving these brain regions with significantly altered nodal centralities. These alterations suggest that brain networks of individuals with TAI present aberrant topological attributes that are associated with cognitive impairment, which could be potential biomarkers for predicting cognitive dysfunction and help understanding the neuropathological mechanisms in patients with TAI.
Collapse
Affiliation(s)
- Jian Li
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Liting Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bo Wang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Linglong Chen
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Jie Zhan
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Hongmei Kuang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Guojin Xia
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, 330006, Jiangxi, China.
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China.
| |
Collapse
|
8
|
Li X, Motwani C, Cao M, Martin E, Halperin JM. Working Memory-Related Neurofunctional Correlates Associated with the Frontal Lobe in Children with Familial vs. Non-Familial Attention Deficit/Hyperactivity Disorder. Brain Sci 2023; 13:1469. [PMID: 37891836 PMCID: PMC10605263 DOI: 10.3390/brainsci13101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high prevalence, heritability, and heterogeneity. Children with a positive family history of ADHD have a heightened risk of ADHD emergence, persistence, and executive function deficits, with the neural mechanisms having been under investigated. The objective of this study was to investigate working memory-related functional brain activation patterns in children with ADHD (with vs. without positive family histories (ADHD-F vs. ADHD-NF)) and matched typically developing children (TDC). Voxel-based and region of interest analyses were conducted on two-back task-based fMRI data of 362 subjects, including 186, 96, and 80 children in groups of TDC, ADHD-NF, and ADHD-F, respectively. Relative to TDC, both ADHD groups had significantly reduced activation in the left inferior frontal gyrus (IFG). And the ADHD-F group demonstrated a significant positive association of left IFG activation with task reaction time, a negative association of the right IFG with ADHD symptomatology, and a negative association of the IFG activation laterality index with the inattention symptom score. These results suggest that working memory-related functional alterations in bilateral IFGs may play distinct roles in ADHD-F, with the functional underdevelopment of the left IFG significantly informing the onset of ADHD symptoms. Our findings have the potential to assist in tailored diagnoses and targeted interventions in children with ADHD-F.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (C.M.); (M.C.); (E.M.)
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Chirag Motwani
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (C.M.); (M.C.); (E.M.)
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (C.M.); (M.C.); (E.M.)
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Elizabeth Martin
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (C.M.); (M.C.); (E.M.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey M. Halperin
- Department of Psychology, Queens College, City University of New York, New York, NY 11367, USA;
| |
Collapse
|
9
|
Levitt JJ, Zhang F, Vangel M, Nestor PG, Rathi Y, Cetin-Karayumak S, Kubicki M, Coleman MJ, Lewandowski KE, Holt DJ, Keshavan M, Bouix S, Öngür D, Breier A, Shenton ME, O'Donnell LJ. The organization of frontostriatal brain wiring in non-affective early psychosis compared with healthy subjects using a novel diffusion imaging fiber cluster analysis. Mol Psychiatry 2023; 28:2301-2311. [PMID: 37173451 PMCID: PMC11971472 DOI: 10.1038/s41380-023-02031-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Alterations in brain connectivity may underlie neuropsychiatric conditions such as schizophrenia. We here assessed the degree of convergence of frontostriatal fiber projections in 56 young adult healthy controls (HCs) and 108 matched Early Psychosis-Non-Affective patients (EP-NAs) using our novel fiber cluster analysis of whole brain diffusion magnetic resonance imaging tractography. METHODS Using whole brain tractography and our fiber clustering methodology on harmonized diffusion magnetic resonance imaging data from the Human Connectome Project for Early Psychosis we identified 17 white matter fiber clusters that connect frontal cortex (FCtx) and caudate (Cd) per hemisphere in each group. To quantify the degree of convergence and, hence, topographical relationship of these fiber clusters, we measured the inter-cluster mean distances between the endpoints of the fiber clusters at the level of the FCtx and of the Cd, respectively. RESULTS We found (1) in both groups, bilaterally, a non-linear relationship, yielding convex curves, between FCtx and Cd distances for FCtx-Cd connecting fiber clusters, driven by a cluster projecting from inferior frontal gyrus; however, in the right hemisphere, the convex curve was more flattened in EP-NAs; (2) that cluster pairs in the right (p = 0.03), but not left (p = 0.13), hemisphere were significantly more convergent in HCs vs EP-NAs; (3) in both groups, bilaterally, similar clusters projected significantly convergently to the Cd; and, (4) a significant group by fiber cluster pair interaction for 2 right hemisphere fiber clusters (numbers 5, 11; p = .00023; p = .00023) originating in selective PFC subregions. CONCLUSIONS In both groups, we found the FCtx-Cd wiring pattern deviated from a strictly topographic relationship and that similar clusters projected significantly more convergently to the Cd. Interestingly, we also found a significantly more convergent pattern of connectivity in HCs in the right hemisphere and that 2 clusters from PFC subregions in the right hemisphere significantly differed in their pattern of connectivity between groups.
Collapse
Affiliation(s)
- J J Levitt
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, 02301, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - F Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - M Vangel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - P G Nestor
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, 02301, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychology, University of Massachusetts, Boston, MA, 02125, USA
| | - Y Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - S Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - M Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - M J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - K E Lewandowski
- McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - D J Holt
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - M Keshavan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - S Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Software Engineering and Information Technology, École de technologie supérieure, Université du Québec, Montréal, QC, H3C 1K3, Canada
| | - D Öngür
- McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - A Breier
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - M E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - L J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Jones SA, Tipsord J, Nagel BJ, Nigg JT. A preliminary study of white matter correlates of a laboratory measure of attention and motor stability in attention-deficit/hyperactivity disorder. J Psychiatr Res 2023; 160:110-116. [PMID: 36804107 PMCID: PMC10023490 DOI: 10.1016/j.jpsychires.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/17/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a complex behavioral disorder, often difficult and time consuming to diagnose. Laboratory assessment of ADHD-related constructs of attention and motor activity may be helpful in elucidating neurobiology; however, neuroimaging studies evaluating laboratory measures of ADHD are lacking. In this preliminary study, we assessed the association between fractional anisotropy (FA), a measure of white matter microstructure, and laboratory measures of attention and motor behavior using the QbTest, a widely used measure thought to improve clinician diagnostic confidence. This is the first look at neural correlates of this widely used measure. The sample included adolescents and young adults (ages 12-20, 35% female) with ADHD (n = 31) and without (n = 52). As expected, ADHD status was associated with motor activity, and cognitive inattention and impulsivity in the laboratory. With regard to MRI findings, laboratory observed motor activity and inattention were associated with greater FA in white matter regions of the primary motor cortex. All three laboratory observations were associated with lower FA in regions subserving fronto-striatal-thalamic and frontoparietal (i.e. superior longitudinal fasciculus) circuitry. Further, FA in white matter regions of the prefrontal cortex appeared to mediate the relationship between ADHD status and motor activity on the QbTest. These findings, while preliminary, suggest that performance on certain laboratory tasks is informative with regard to neurobiological correlates of subdomains of the complex ADHD phenotype. In particular, we provide novel evidence for a relationship between an objective measure of motor hyperactivity and white matter microstructure in motor and attentional networks.
Collapse
Affiliation(s)
- Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Jessica Tipsord
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Joel T Nigg
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| |
Collapse
|
11
|
Fu Y, Gu M, Wang R, Xu J, Sun S, Zhang H, Huang D, Zhang Z, Peng F, Lin P. Abnormal functional connectivity of the frontostriatal circuits in type 2 diabetes mellitus. Front Aging Neurosci 2023; 14:1055172. [PMID: 36688158 PMCID: PMC9846649 DOI: 10.3389/fnagi.2022.1055172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a metabolic disorder associated with an increased incidence of cognitive and emotional disorders. Previous studies have indicated that the frontostriatal circuits play a significant role in brain disorders. However, few studies have investigated functional connectivity (FC) abnormalities in the frontostriatal circuits in T2DM. Objective We aimed to investigate the abnormal functional connectivity (FC) of the frontostriatal circuits in patients with T2DM and to explore the relationship between abnormal FC and diabetes-related variables. Methods Twenty-seven patients with T2DM were selected as the patient group, and 27 healthy peoples were selected as the healthy controls (HCs). The two groups were matched for age and sex. In addition, all subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological evaluation. Seed-based FC analyses were performed by placing six bilateral pairs of seeds within a priori defined subdivisions of the striatum. The functional connection strength of subdivisions of the striatum was compared between the two groups and correlated with each clinical variable. Results Patients with T2DM showed abnormalities in the FC of the frontostriatal circuits. Our findings show significantly reduced FC between the right caudate nucleus and left precentral gyrus (LPCG) in the patients with T2DM compared to the HCs. The FC between the prefrontal cortex (left inferior frontal gyrus, left frontal pole, right frontal pole, and right middle frontal gyrus) and the right caudate nucleus has a significant positive correlation with fasting blood glucose (FBG). Conclusion The results showed abnormal FC of the frontostriatal circuits in T2DM patients, which might provide a new direction to investigate the neuropathological mechanisms of T2DM.
Collapse
Affiliation(s)
- Yingxia Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Meiling Gu
- Department of Psychology, Nanjing Normal University, Nanjing, China
| | - Rui Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Juan Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shenglu Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Huifeng Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Dejian Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zongjun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Fei Peng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China,*Correspondence: Fei Peng, ; Pan Lin,
| | - Pan Lin
- Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Hunan, China,*Correspondence: Fei Peng, ; Pan Lin,
| |
Collapse
|
12
|
Teicher MH, Bolger E, Hafezi P, Garcia LCH, McGreenery CE, Weiser L, Ohashi K, Khan A. Open assessment of the therapeutic and rate-dependent effects of brain balance center® and interactive metronome® exercises on children with attention deficit hyperactivity disorder. Psychiatry Res 2023; 319:114973. [PMID: 36446221 DOI: 10.1016/j.psychres.2022.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022]
Abstract
The aim of this open study was to delineate domains of benefit and effect size measures to design an appropriately powered randomized control trial to assess the efficacy of Brain Balance@ exercises and Interactive Metronome@ training (BB/IM) on ADHD symptoms in children. Participants underwent an extensive 15-week, 5 time per week, at-home training program. Results were assessed in 16 youths with ADHD (14M/2F, 10.8±1.7 years) who completed the program and compared to 8 typically developing controls (4M/F4, 11.0±1.8 years). BB/IM was associated with a significant reduction of 8.3 and 8.2 points on the Conner's Parent Rating Scale - Revised and the ADHD Rating Scale - IV. BB/IM was not associated with improvement on the Quotient ADHD System but with rate-dependent effects on hyperactivity and attention that were similar to previously reported effects of low dose methylphenidate. Both therapeutic and rate-dependent effects were observed on the Tower of London. The study provides information that could be used to design a randomized control trial, which is required for proof of efficacy. A key limitation is that 59% of the 39 enrolled participants with ADHD dropped out of the study and a new study should include multiple ratings during the course of treatment.
Collapse
Affiliation(s)
- Martin H Teicher
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Developmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478, United States.
| | - Elizabeth Bolger
- Developmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478, United States
| | - Poopak Hafezi
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Developmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478, United States
| | - Laura C Hernandez Garcia
- Developmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478, United States
| | - Cynthia E McGreenery
- Developmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478, United States
| | - Leslie Weiser
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Developmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478, United States
| | - Kyoko Ohashi
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Developmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478, United States
| | - Alaptagin Khan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Developmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478, United States
| |
Collapse
|
13
|
Baboli R, Cao M, Halperin JM, Li X. Distinct Thalamic and Frontal Neuroanatomical Substrates in Children with Familial vs. Non-Familial Attention-Deficit/Hyperactivity Disorder (ADHD). Brain Sci 2022; 13:46. [PMID: 36672028 PMCID: PMC9856951 DOI: 10.3390/brainsci13010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent, inheritable, and heterogeneous neurodevelopmental disorder. Children with a family history of ADHD are at elevated risk of having ADHD and persisting its symptoms into adulthood. The objective of this study was to investigate the influence of having or not having positive family risk factor in the neuroanatomy of the brain in children with ADHD. Cortical thickness-, surface area-, and volume-based measures were extracted and compared in a total of 606 participants, including 132, 165, and 309 in groups of familial ADHD (ADHD-F), non-familial ADHD (ADHD-NF), and typically developed children, respectively. Compared to controls, ADHD probands showed significantly reduced gray matter surface area in the left cuneus. Among the ADHD subgroups, ADHD-F showed significantly increased gray matter volume in the right thalamus and significantly thinner cortical thickness in the right pars orbitalis. Among ADHD-F, an increased volume of the right thalamus was significantly correlated with a reduced DSM-oriented t-score for ADHD problems. The findings of this study may suggest that a positive family history of ADHD is associated with the structural abnormalities in the thalamus and inferior frontal gyrus; these anatomical abnormalities may significantly contribute to the emergence of ADHD symptoms.
Collapse
Affiliation(s)
- Rahman Baboli
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07039, USA
| | - Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07039, USA
| | - Jeffery M. Halperin
- Department of Psychology, Queens College, City University of New York, New York, NY 11367, USA
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
14
|
Yang Y, Lewis MM, Kong L, Mailman RB. A Dopamine D 1 Agonist Versus Methylphenidate in Modulating Prefrontal Cortical Working Memory. J Pharmacol Exp Ther 2022; 382:88-99. [PMID: 35661631 PMCID: PMC9341252 DOI: 10.1124/jpet.122.001215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Methylphenidate is used widely to treat symptoms of attention-deficit/hyperactivity disorder (ADHD), but like other stimulants has significant side effects. This study used a rodent model (spontaneously hypertensive rat) of spatial working memory (sWM) to compare the effects of methylphenidate with the novel dopamine D1-like receptor agonist 2-methyldihydrexidine. Acute oral administration of methylphenidate (1.5 mg/kg) caused sWM improvement in half of the tested rats, but impairment in the others. Both improvement or impairment were eliminated by administration of the D1 antagonist SCH39266 directly into the prefrontal cortex (PFC). Conversely, 2-methyldihydrexidine showed greater sWM improvement compared with methylphenidate without significant impairment in any subject. Its effects correlated negatively with vehicle-treated baseline performance (i.e., rats with lower baseline performance improved more than rats with higher baseline performance). These behavioral effects were associated with neural activities in the PFC. Single neuron firing rate was changed, leading to the alteration in neuronal preference to correct or error behavioral responses. Overall, 2-methyldihydrexidine was superior to methylphenidate in decreasing the neuronal preference, prospectively, in the animals whose behavior was improved. In contrast, methylphenidate, but not 2-methyldihydrexidine, significantly decreased neuronal preference, retrospectively, in those animals who had impaired performance. These results suggest that a D1 agonist may be more effective than methylphenidate in regulating sWM-related behavior through neural modulation of the PFC, and thus may be superior to methylphenidate or other stimulants as ADHD pharmacotherapy. SIGNIFICANCE STATEMENT: Methylphenidate is effective in ADHD by its indirect agonist stimulation of dopamine and/or adrenergic receptors, but the precise effects on specific targets are unclear. This study compared methylphenidate to a dopamine D1 receptor-selective agonist by investigating effects on working memory occurring via neural modulation in the prefrontal cortex. The data suggest that pharmacological treatment selectively targeting the dopamine D1 may offer a superior approach to ADHD pharmacotherapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology (Y.Y., M.M.L., R.B.M.), Department of Neurology (M.M.L., R.B.M.), and Department of Public Health Sciences (L.K.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Mechelle M Lewis
- Department of Pharmacology (Y.Y., M.M.L., R.B.M.), Department of Neurology (M.M.L., R.B.M.), and Department of Public Health Sciences (L.K.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Lan Kong
- Department of Pharmacology (Y.Y., M.M.L., R.B.M.), Department of Neurology (M.M.L., R.B.M.), and Department of Public Health Sciences (L.K.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Richard B Mailman
- Department of Pharmacology (Y.Y., M.M.L., R.B.M.), Department of Neurology (M.M.L., R.B.M.), and Department of Public Health Sciences (L.K.), Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
15
|
Lu L, Yang W, Zhang X, Tang F, Du Y, Fan L, Luo J, Yan C, Zhang J, Li J, Liu J, von Deneen KM, Yu D, Liu J, Yuan K. Potential brain recovery of frontostriatal circuits in heroin users after prolonged abstinence: A preliminary study. J Psychiatr Res 2022; 152:326-334. [PMID: 35785575 DOI: 10.1016/j.jpsychires.2022.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Neuroscientists have devoted efforts to explore potential brain recovery after prolonged abstinence in heroin users (HU). However, not much is known about whether frontostriatal circuits can recover after prolonged abstinence in HU. An eight-month longitudinal study was carried out for HU. Two MRI scans were obtained at baseline (HU1) and 8-month follow-up (HU2). The functional and structural connectivities of dorsal and ventral frontostriatal pathways were measured by resting-state functional connectivity (RSFC) and diffusion tensor imaging (DTI). Correlation analyses were employed to reveal the associations between neuroimaging and behavioral changes. Results suggested that relative to healthy controls (HCs), HU1 showed lower fractional anisotropy (FA) in the right dorsolateral prefrontal cortex (DLPFC)-to-caudate tracts and medial orbitofrontal cortex (mOFC)-to-nucleus accumbens (NAc) tracts as well as decreased RSFC in the left mOFC-NAc circuits. Longitudinal results revealed reduced craving and enhanced cognitive control in HU2 compared with HU1. After prolonged abstinence, HU2 showed increased FA values in the right DLPFC-caudate and mOFC-NAc tracts as well as increased RSFC strength in the bilateral mOFC-NAc circuits compared with HU1. In addition, changes in RSFC and FA values in the right mOFC-NAc circuit were negatively correlated with craving score changes. Similarly, negative correlations were also found between changes of RSFC in the bilateral DLPFC-caudate circuits and TMT-A scores. We provided scientific evidence for brain recovery of the dorsal and ventral frontostriatal circuits in HU after prolonged abstinence, and these circuits may be potential neuroimaging biomarkers for cognition and craving changes.
Collapse
Affiliation(s)
- Ling Lu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Wenhan Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaozi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Fei Tang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Fan
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Luo
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Cui Yan
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Zhang
- Hunan Judicial Police Academy, Changsha, China
| | - Jun Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Dahua Yu
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China.
| | - Kai Yuan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China.
| |
Collapse
|
16
|
Zhuo L, Zhao X, Zhai Y, Zhao B, Tian L, Zhang Y, Wang X, Zhang T, Gan X, Yang C, Wang W, Gao W, Wang Q, Rohde LA, Zhang J, Li Y. Transcutaneous electrical acupoint stimulation for children with attention-deficit/hyperactivity disorder: a randomized clinical trial. Transl Psychiatry 2022; 12:165. [PMID: 35449191 PMCID: PMC9022403 DOI: 10.1038/s41398-022-01914-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
Little is known about the effects of transcutaneous electrical acupoint stimulation (TEAS) for children with attention-deficit/hyperactivity disorder (ADHD). Here, we carried out a 4 week randomized clinical trial in which patients aged 6-12 years old with an ADHD diagnosis received TEAS or sham TEAS. The primary outcome measure was the investigator-rated Clinical Global Impression-Improvement (CGI-I) score at week 4. Secondary outcomes included changes from baseline to week 4 in the investigator-rated Clinical Global Impression-Severity of Illness (CGI-S) score, the Conners' Parent/Teacher Rating Scales-Revised: Short Form (CPRS-R: S/CTRS-R: S) score, go/no-go task performance, and functional near-infrared spectroscopy (fNIRS)-based oxygenated hemoglobin level within the prefrontal cortex. At week 4, the CGI-I score indicated improvement in 33.3% of the TEAS group compared with 7.7% of the sham group (P = 0.005). The TEAS group had a greater decrease in the mean CGI-S score (-0.87) than the sham TEAS group (-0.28) (P = 0.003). A greater enhancement in the mean cerebral oxygenated hemoglobin within the prefrontal cortex was found in the TEAS group (0.099 mM mm) compared with the sham TEAS group (0.005 mM mm) (P < 0.001). CPRS-R: S score, CTRS-R: S score, and go/no-go performance exhibited no significant improvement after TEAS treatment. The manipulation-associated adverse events were uncommon in both groups, and events were very mild. Our results show that noninvasive TEAS significantly improved general symptoms and increased prefrontal cortex blood flow within 4 weeks for children with ADHD. Further clinical trials are required to understand the long-term efficacy in a larger clinical sample. This trial was registered on ClinicalTrials.gov (NCT03917953).
Collapse
Affiliation(s)
- Lixia Zhuo
- grid.452438.c0000 0004 1760 8119Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Xiaoyan Zhao
- grid.452902.8Children’s Health Care Center, Xi’an Children’s Hospital, Xi’an, Shaanxi China
| | - Yifang Zhai
- grid.452438.c0000 0004 1760 8119Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Boqiang Zhao
- grid.452438.c0000 0004 1760 8119Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Lin Tian
- grid.452902.8Children’s Health Care Center, Xi’an Children’s Hospital, Xi’an, Shaanxi China
| | - Yannan Zhang
- grid.452902.8Children’s Health Care Center, Xi’an Children’s Hospital, Xi’an, Shaanxi China
| | - Xiaodan Wang
- grid.452438.c0000 0004 1760 8119Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Tingyu Zhang
- grid.511083.e0000 0004 7671 2506Department of Rehabilitation Medicine, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong China
| | - Xinyi Gan
- grid.452438.c0000 0004 1760 8119Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Cheng Yang
- grid.452438.c0000 0004 1760 8119Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Weigang Wang
- grid.508012.eDepartment of Acupuncture, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi China
| | - Wei Gao
- grid.452438.c0000 0004 1760 8119Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Qiang Wang
- grid.452438.c0000 0004 1760 8119Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Luis Augusto Rohde
- grid.8532.c0000 0001 2200 7498ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jie Zhang
- Children's Health Care Center, Xi'an Children's Hospital, Xi'an, Shaanxi, China.
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
17
|
Abstract
A hallmark of adaptation in humans and other animals is our ability to control how we think and behave across different settings. Research has characterized the various forms cognitive control can take-including enhancement of goal-relevant information, suppression of goal-irrelevant information, and overall inhibition of potential responses-and has identified computations and neural circuits that underpin this multitude of control types. Studies have also identified a wide range of situations that elicit adjustments in control allocation (e.g., those eliciting signals indicating an error or increased processing conflict), but the rules governing when a given situation will give rise to a given control adjustment remain poorly understood. Significant progress has recently been made on this front by casting the allocation of control as a decision-making problem. This approach has developed unifying and normative models that prescribe when and how a change in incentives and task demands will result in changes in a given form of control. Despite their successes, these models, and the experiments that have been developed to test them, have yet to face their greatest challenge: deciding how to select among the multiplicity of configurations that control can take at any given time. Here, we will lay out the complexities of the inverse problem inherent to cognitive control allocation, and their close parallels to inverse problems within motor control (e.g., choosing between redundant limb movements). We discuss existing solutions to motor control's inverse problems drawn from optimal control theory, which have proposed that effort costs act to regularize actions and transform motor planning into a well-posed problem. These same principles may help shed light on how our brains optimize over complex control configuration, while providing a new normative perspective on the origins of mental effort.
Collapse
|
18
|
Fehlbaum LV, Peters L, Dimanova P, Roell M, Borbás R, Ansari D, Raschle NM. Mother-child similarity in brain morphology: A comparison of structural characteristics of the brain's reading network. Dev Cogn Neurosci 2022; 53:101058. [PMID: 34999505 PMCID: PMC8749220 DOI: 10.1016/j.dcn.2022.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Substantial evidence acknowledges the complex gene-environment interplay impacting brain development and learning. Intergenerational neuroimaging allows the assessment of familial transfer effects on brain structure, function and behavior by investigating neural similarity in caregiver-child dyads. METHODS Neural similarity in the human reading network was assessed through well-used measures of brain structure (i.e., surface area (SA), gyrification (lG), sulcal morphology, gray matter volume (GMV) and cortical thickness (CT)) in 69 mother-child dyads (children's age~11 y). Regions of interest for the reading network included left-hemispheric inferior frontal gyrus, inferior parietal lobe and fusiform gyrus. Mother-child similarity was quantified by correlation coefficients and familial specificity was tested by comparison to random adult-child dyads. Sulcal morphology analyses focused on occipitotemporal sulcus interruptions and similarity was assessed by chi-square goodness of fit. RESULTS Significant structural brain similarity was observed for mother-child dyads in the reading network for lG, SA and GMV (r = 0.349/0.534/0.542, respectively), but not CT. Sulcal morphology associations were non-significant. Structural brain similarity in lG, SA and GMV were specific to mother-child pairs. Furthermore, structural brain similarity for SA and GMV was higher compared to CT. CONCLUSION Intergenerational neuroimaging techniques promise to enhance our knowledge of familial transfer effects on brain development and disorders.
Collapse
Affiliation(s)
- Lynn V Fehlbaum
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland
| | - Lien Peters
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Plamina Dimanova
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Margot Roell
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Réka Borbás
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Nora M Raschle
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland.
| |
Collapse
|
19
|
Prefrontal and frontostriatal structures mediate academic outcomes associated with ADHD symptoms. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Detecting microstructural white matter abnormalities of frontal pathways in children with ADHD using advanced diffusion models. Brain Imaging Behav 2021; 14:981-997. [PMID: 31041662 DOI: 10.1007/s11682-019-00108-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Studies using diffusion tensor imaging (DTI) have documented alterations in the attention and executive system in children and adolescents with attention-deficit/hyperactivity disorder (ADHD). While abnormalities in the frontal lobe have also been reported, the associated white matter fiber bundles have not been investigated comprehensively due to the complexity in tracing them through fiber crossings. Furthermore, most studies have used a non-specific DTI model to understand white matter abnormalities. We present results from a first study that uses a multi-shell diffusion MRI (dMRI) data set coupled with an advanced multi-fiber tractography algorithm to probe microstructural measures related to axonal/cellular density and volume of fronto-striato-thalamic pathways in children with ADHD (N = 30) and healthy controls (N = 28). Head motion was firstly examined as a priority in order to assure that no group difference existed. We investigated 45 different white matter fiber bundles in the brain. After correcting for multiple comparisons, we found lower axonal/cellular packing density and volume in ADHD children in 8 of the 45 fiber bundles, primarily in the right hemisphere as follows: 1) Superior longitudinal fasciculus-II (SLF-II) (right), 2) Thalamus to precentral gyrus (right), 3) Thalamus to superior-frontal gyrus (right), 4) Caudate to medial orbitofrontal gyrus (right), 5) Caudate to precentral gyrus (right), 6) Thalamus to paracentral gyrus (left), 7) Caudate to caudal middlefrontal gyrus (left), and 8) Cingulum (bilateral). Our results demonstrate reduced axonal/cellular density and volume in certain frontal lobe white matter fiber tracts, which sub-serve the attention function and executive control systems. Further, our work shows specific microstructural abnormalities in the striato-thalamo-cortical connections, which have not been previously reported in children with ADHD.
Collapse
|
21
|
Ní Bhroin M, Abo Seada S, Bonthrone AF, Kelly CJ, Christiaens D, Schuh A, Pietsch M, Hutter J, Tournier JD, Cordero-Grande L, Rueckert D, Hajnal JV, Pushparajah K, Simpson J, Edwards AD, Rutherford MA, Counsell SJ, Batalle D. Reduced structural connectivity in cortico-striatal-thalamic network in neonates with congenital heart disease. Neuroimage Clin 2020; 28:102423. [PMID: 32987301 PMCID: PMC7520425 DOI: 10.1016/j.nicl.2020.102423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
Impaired brain development has been observed in newborns with congenital heart disease (CHD). We performed graph theoretical analyses and network-based statistics (NBS) to assess global brain network topology and identify subnetworks of altered connectivity in infants with CHD prior to cardiac surgery. Fifty-eight infants with critical/serious CHD prior to surgery and 116 matched healthy controls as part of the developing Human Connectome Project (dHCP) underwent MRI on a 3T system and high angular resolution diffusion MRI (HARDI) was obtained. Multi-tissue constrained spherical deconvolution, anatomically constrained probabilistic tractography (ACT) and spherical-deconvolution informed filtering of tractograms (SIFT2) was used to construct weighted structural networks. Network topology was assessed and NBS was used to identify structural connectivity differences between CHD and control groups. Structural networks were partitioned into core and peripheral nodes, and edges classed as core, peripheral, or feeder. NBS identified one subnetwork with reduced structural connectivity in CHD infants involving basal ganglia, amygdala, hippocampus, cerebellum, vermis, and temporal and parieto-occipital lobe, primarily affecting core nodes and edges. However, we did not find significantly different global network characteristics in CHD neonates. This locally affected sub-network with reduced connectivity could explain, at least in part, the neurodevelopmental impairments associated with CHD.
Collapse
Affiliation(s)
- Megan Ní Bhroin
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Trinity College Institute of Neuroscience and Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Ireland
| | - Samy Abo Seada
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Christopher J Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Electrical Engineering (ESAT/PSI), KU Leuven, Leuven, Belgium
| | - Andreas Schuh
- Department of Computing, Imperial College London, London, UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Lucillio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Kuberan Pushparajah
- Paediatric Cardiology Department, Evelina London Children's Healthcare, London, UK
| | - John Simpson
- Congenital Heart Disease, Evelina London Children's Hospital, London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
22
|
Zhang F, Iwaki S. Correspondence Between Effective Connections in the Stop-Signal Task and Microstructural Correlations. Front Hum Neurosci 2020; 14:279. [PMID: 32848664 PMCID: PMC7396500 DOI: 10.3389/fnhum.2020.00279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fan Zhang
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sunao Iwaki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- *Correspondence: Sunao Iwaki
| |
Collapse
|
23
|
Serenko A, Turel O. Directing Technology Addiction Research in Information Systems. DATA BASE FOR ADVANCES IN INFORMATION SYSTEMS 2020. [DOI: 10.1145/3410977.3410982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Technology-related addictions have become common in many societies. Consequently, IS research has started examining such issues. In these embryonic stages of research, this line of work has already shown some promise in terms of understanding and tackling technology addiction problems. Nevertheless, there is a need to step back and understand the roots of technology-related addictions and how their foundations evolved in reference disciplines in order to be able to conduct more scientifically informed research on such issues. This study, therefore, explains the concept of behavioral addictions (the family of addictions to which technology-related addictions presumably belong), reviews the field's history and evolution, explains the relevant brain circuitry, and discusses similarities and differences between behavioral and substance addictions. A synthesis of this information provides eight key observations and recommendations that should help the field move forward.
Collapse
|
24
|
Hermosillo RJM, Mooney MA, Fezcko E, Earl E, Marr M, Sturgeon D, Perrone A, Dominguez OM, Faraone SV, Wilmot B, Nigg JT, Fair DA. Polygenic Risk Score-Derived Subcortical Connectivity Mediates Attention-Deficit/Hyperactivity Disorder Diagnosis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:330-341. [PMID: 32033925 PMCID: PMC7147985 DOI: 10.1016/j.bpsc.2019.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) has substantial heritability, and a recent large-scale investigation has identified common genome-wide significant loci associated with increased risk for ADHD. Along the same lines, many studies using noninvasive neuroimaging have identified differences in brain functional connectivity in children with ADHD. We attempted to bridge these studies to identify differences in functional connectivity associated with common genetic risk for ADHD using polygenic risk score (PRS). METHODS We computed ADHD PRSs for all participants in our sample (N = 315, children 7-13 years of age, 196 with ADHD and 119 unaffected comparison children) using ADHD data from the Psychiatric Genomics Consortium as a discovery set. Magnetic resonance imaging was used to evaluate resting-state functional connectivity of targeted subcortical structures. RESULTS The functional connectivity between 2 region pairs demonstrated a significant correlation to PRS: right caudate-parietal cortex and nucleus accumbens-occipital cortex. Connectivity between these areas, in addition to being correlated with PRS, was correlated with ADHD status. The connection between the caudate and the parietal region acted as a statistical suppressor, such that when it was included in a path model, the association between PRS and ADHD status was enhanced. CONCLUSIONS Our results suggest that functional connectivity to certain subcortical brain regions is directly altered by genetic variants, and certain cortico-subcortical connections may modulate ADHD-related genetic effects.
Collapse
Affiliation(s)
- Robert J M Hermosillo
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.
| | - Michael A Mooney
- Division of Bioinformatics & Computational Biology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Eric Fezcko
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon
| | - Eric Earl
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Mollie Marr
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Darrick Sturgeon
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Anders Perrone
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | | | - Stephen V Faraone
- Department of Psychiatry, Upstate Medical University, Syracuse, New York; Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York
| | - Beth Wilmot
- Division of Bioinformatics & Computational Biology, Oregon Health & Science University, Portland, Oregon; Oregon Clinical and Translational Research Institute, Portland, Oregon
| | - Joel T Nigg
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Division of Psychology, Oregon Health & Science University, Portland, Oregon
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Psychiatry, and Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
25
|
Newman VE, Liddell BJ, Beesley T, Most SB. Failures of executive function when at a height: Negative height-related appraisals are associated with poor executive function during a virtual height stressor. Acta Psychol (Amst) 2020; 203:102984. [PMID: 31887635 DOI: 10.1016/j.actpsy.2019.102984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022] Open
Abstract
It is difficult to maintain cognitive functioning in threatening contexts, even when it is imperative to do so. Research indicates that precarious situations can impair subsequent executive functioning, depending on whether they are appraised as threatening. Here, we used virtual reality to place participants at ground level or at a virtual height in order to examine the impact of a threat-related context on concurrent executive function and whether this relationship was modulated by negative appraisals of heights. Executive function was assessed via the Go/NoGo and N-Back tasks, indexing response inhibition and working memory updating respectively. Participants with negative appraisals of heights exhibited impaired executive function on both tasks when performing at a virtual height (i.e., a threat-related context) but not at ground-level, demonstrating the importance of considering the cognitive consequences of individual differences in negative interpretations of emotionally-evocative situations. We suggest that a virtual reality approach holds practical benefits for understanding how individuals are able to maintain cognitive ability when embedded within threatening situations.
Collapse
|
26
|
The prefrontal cortex and the caudate nucleus respond conjointly to methylphenidate (Ritalin). Concomitant behavioral and neuronal recording study. Brain Res Bull 2020; 157:77-89. [PMID: 31987926 DOI: 10.1016/j.brainresbull.2019.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/15/2019] [Accepted: 10/23/2019] [Indexed: 01/07/2023]
Abstract
Methylphenidate (MPD) is commonly used to treat attention-deficit hyperactivity disorder (ADHD). Recently, it is being abused for cognitive enhancement and recreation leading to concerns regarding its addictive potential. The prefrontal cortex (PFC) and caudate nucleus (CN) are two of the brain structures involved in the motive/reward circuit most affected by MPD and are also thought to be responsible for ADHD phenomena. This study is unique in that it investigated acute and chronic, dose-response MPD exposure on animals' behavior activity concomitantly with PFC and CN neuronal circuitry in freely behaving adult animals without the interference of anesthesia. Further, it compared acute and chronic MPD action on over 1,000 subcortical and cortical neurons simultaneously, allowing for a more accurate interpretation of drug action on corticostriatal neuronal circuitry. For this experiment, four groups of animals were used: saline (control), 0.6, 2.5, and 10.0 mg/kg MPD following acute and repetitive exposure. The data shows that the same MPD dose elicits behavioral sensitization in some animals and tolerance in others and that the PFC and CN neuronal activity correlates with the animals' behavioral responses to MPD. The expression of sensitization and tolerance are experimental biomarkers indicating that a drug has addictive potential. In general, a greater percentage of CN units responded to both acute and chronic MPD exposure as compared to PFC units. Dose response differences between the PFC and the CN units were observed. The dichotomy that some PFC and CN units responded to the same MPD dose by excitation and other units by attenuation in neuronal firing rate is discussed. In conclusion, to understand the mechanism of action of the drug, it is essential to study, simultaneously, on more than one brain site, the electrophysiological and behavioral effects of acute and chronic drug exposure, as sensitization and tolerance are experimental biomarkers indicating that a drug has addictive potential. The behavioral and neuronal data obtained from this study indicates that chronic MPD exposure results in behavioral and biochemical changes consistent with a substance abuse disorder.
Collapse
|
27
|
Chi MH, Chu CL, Lee IH, Hsieh YT, Chen KC, Chen PS, Yang YK. Altered Auditory P300 Performance in Parents with Attention Deficit Hyperactivity Disorder Offspring. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:509-516. [PMID: 31671488 PMCID: PMC6852684 DOI: 10.9758/cpn.2019.17.4.509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/02/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
Objective Altered event-related potential (ERP) performances have been noted in attention deficit hyperactivity disorder (ADHD) patients and reflect neurocognitive dysfunction. Whether these ERP alterations and correlated dysfunctions exist in healthy parents with ADHD offspring is worth exploring. Methods Thirteen healthy parents with ADHD offspring and thirteen healthy controls matched for age, sex and years of education were recruited. The auditory oddball paradigm was used to evaluate the P300 wave complex of the ERP, and the Wechsler Adult Intelligence Scale-Revised, Wisconsin Card Sorting Test, and continuous performance test were used to measure neurocognitive performance. Results Healthy parents with ADHD offspring had significantly longer auditory P300 latency at Fz than control group. However, no significant differences were found in cognitive performance. Conclusion The presence of a subtle alteration in electro-neurophysiological activity without explicit neurocognitive dysfunction suggests potential candidate of biological marker for parents with ADHD offspring.
Collapse
Affiliation(s)
- Mei Hung Chi
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Lin Chu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Educational Psychiatry & Counseling, National Pingtung University, Pingtung, Taiwan.,3Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I Hui Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Hsieh
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ko Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| |
Collapse
|
28
|
Li D, Li T, Niu Y, Xiang J, Cao R, Liu B, Zhang H, Wang B. Reduced hemispheric asymmetry of brain anatomical networks in attention deficit hyperactivity disorder. Brain Imaging Behav 2019; 13:669-684. [PMID: 29752654 DOI: 10.1007/s11682-018-9881-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite many studies reporting a variety of alterations in brain networks in patients with attention deficit hyperactivity disorder (ADHD), alterations in hemispheric anatomical networks are still unclear. In this study, we investigated topology alterations in hemispheric white matter in patients with ADHD and the relationship between these alterations and clinical features of the illness. Weighted hemispheric brain anatomical networks were first constructed for each of 40 right-handed patients with ADHD and 53 matched normal controls. Then, graph theoretical approaches were utilized to compute hemispheric topological properties. The small-world property was preserved in the hemispheric network. Furthermore, a significant group-by-hemisphere interaction was revealed in global efficiency, local efficiency and characteristic path length, attributed to the significantly reduced hemispheric asymmetry of global and local integration in patients with ADHD compared with normal controls. Specifically, reduced asymmetric regional efficiency was found in three regions. Finally, we found that the abnormal asymmetry of hemispheric brain anatomical network topology and regional efficiency were both associated with clinical features (the Adult ADHD Self-Report Scale and Wechsler Adult Intelligence Scale) in patients. Our findings provide new insights into the lateralized nature of hemispheric dysconnectivity and highlight the potential for using brain network measures of hemispheric asymmetry as neural biomarkers for ADHD and its clinical features.
Collapse
Affiliation(s)
- Dandan Li
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, 030024, Shanxi, China
| | - Ting Li
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, 030024, Shanxi, China
| | - Yan Niu
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, 030024, Shanxi, China
| | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, 030024, Shanxi, China
| | - Rui Cao
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, 030024, Shanxi, China
| | - Bo Liu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Bin Wang
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, 030024, Shanxi, China. .,Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
29
|
Prediction of sleep side effects following methylphenidate treatment in ADHD youth. NEUROIMAGE-CLINICAL 2019; 26:102030. [PMID: 31711956 PMCID: PMC7229354 DOI: 10.1016/j.nicl.2019.102030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/21/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023]
Abstract
Sleep problems after stimulant use in ADHD were predicted using machine learning. Step-wise combination of multi-level features enhanced prediction performance. Fronto-striatal connectivity and DAT1, ADRA2A, SLC6A2 SNPs were key features. An accuracy of 95.5% was achieved by Logistic Ridge Regression in the training data. An accuracy of 86.1% was achieved by J48 in the independent validation analysis.
Objective Sleep problems is the most common side effect of methylphenidate (MPH) treatment in ADHD youth and carry potential to negatively impact long-term self-regulatory functioning. This study aimed to examine whether applying machine learning approaches to pre-treatment demographic, clinical questionnaire, environmental, neuropsychological, genetic, and neuroimaging features can predict sleep side effects following MPH administration. Method The present study included 83 ADHD subjects as a training dataset. The participants were enrolled in an 8-week, open-label trial of MPH. The Barkley Stimulant Side Effects Rating Scale was used to determine the presence/absence of sleep problems at the 2nd week of treatment. Prediction of sleep side effects were performed with step-wise addition of variables measured at baseline: demographics (age, gender, IQ, height/weight) and clinical variables (ADHD Rating Scale-IV (ADHD-RS) and Disruptive Behavior Disorder rating scale) at stage 1, neuropsychological test (continuous performance test (CPT), Stroop color word test) and genetic/environmental variables (dopamine and norepinephrine receptor gene (DAT1, DRD4, ADRA2A, and SLC6A2) polymorphisms, blood lead, and urine cotinine level) at stage 2, and structural connectivities of frontostriatal circuits at stage 3. Three different machine learning algorithms ((Logistic Ridge Regression (LR), support vector machine (SVM), J48) were used for data analysis. Robustness of classifier model was validated in the independent dataset of 36 ADHD subjects. Results Classification accuracy of LR was 95.5% (area under receiver operating characteristic curve (AUC) 0.99), followed by SVM (91.0%, AUC 0.85) and J48 (90.0%, AUC 0.87) at stage 3 for predicting sleep problems. The inattention symptoms of ADHD-RS, CPT response time variability, the DAT1, ADRA2A DraI, and SLC6A2 A-3081T polymorphisms, and the structural connectivities between frontal and striatal brain regions were identified as the most differentiating subset of features. Validation analysis achieved accuracy of 86.1% (AUC 0.92) at stage 3 with J48. Conclusions Our results provide preliminary support to the combination of multimodal classifier, in particular, neuroimaging features, as an informative method that can assist in predicting MPH side effects in ADHD.
Collapse
|
30
|
Shukla DK, Chiappelli JJ, Sampath H, Kochunov P, Hare SM, Wisner K, Rowland LM, Hong LE. Aberrant Frontostriatal Connectivity in Negative Symptoms of Schizophrenia. Schizophr Bull 2019; 45:1051-1059. [PMID: 30576563 PMCID: PMC6737477 DOI: 10.1093/schbul/sby165] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Negative symptoms represent a distinct component of psychopathology in schizophrenia (SCZ) and are a stable construct over time. Although impaired frontostriatal connectivity has been frequently described in SCZ, its link with negative symptoms has not been carefully studied. We tested the hypothesis that frontostriatal connectivity at rest may be associated with the severity of negative symptoms in SCZ. Resting state functional connectivity (rsFC) data from 95 mostly medicated patients with SCZ and 139 healthy controls (HCs) were acquired. Negative symptoms were assessed using the Brief Negative Symptom Scale. The study analyzed voxel-wise rsFC between 9 frontal "seed regions" and the entire striatum, with the intention to reduce potential biases introduced by predefining any single frontal or striatal region. SCZ showed significantly reduced rsFC between the striatum and the right medial and lateral orbitofrontal cortex (OFC), lateral prefrontal cortex, and rostral anterior cingulate cortex compared with HCs. Further, rsFC between the striatum and the right medial OFC was significantly associated with negative symptom severity. The involved striatal regions were primarily at the ventral putamen. Our results support reduced frontostriatal functional connectivity in SCZ and implicate striatal connectivity with the right medial OFC in negative symptoms. This task-independent resting functional magnetic resonance imaging study showed that medial OFC-striatum functional connectivity is reduced in SCZ and associated with severity of negative symptoms. This finding supports a significant association between frontostriatal connectivity and negative symptoms and thus may provide a potential circuitry-level biomarker to study the neurobiological mechanisms of negative symptoms.
Collapse
Affiliation(s)
- Dinesh K Shukla
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD,To whom correspondence should be addressed; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, US; tel: 410-402-6028, fax: 410-402-6077, e-mail:
| | - Joshua John Chiappelli
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Hemalatha Sampath
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Stephanie M Hare
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Krista Wisner
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M Rowland
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
31
|
Receptor and circuit mechanisms underlying differential procognitive actions of psychostimulants. Neuropsychopharmacology 2019; 44:1820-1827. [PMID: 30683912 PMCID: PMC6785708 DOI: 10.1038/s41386-019-0314-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 11/08/2022]
Abstract
Psychostimulants, including methylphenidate (MPH), improve cognitive processes dependent on the prefrontal cortex (PFC) and extended frontostriatal circuitry. In both humans and animals, systemic MPH improves certain cognitive processes, such as working memory, in a narrow inverted-U-shaped manner. In contrast, other processes, including attention-related, are improved over a broader/right-shifted dose range. The current studies sought to elucidate the potential circuit and receptor mechanisms underlying the divergent dose-dependent procognitive effects of psychostimulants. We first observed that, as with working memory, although sustained attention testing was highly dependent on multiple frontostriatal regions, only MPH infusion into the dorsomedial PFC improved task performance. Importantly, the dose-response curve for this action was right-shifted relative to working memory, as seen with systemic administration. Additional studies examined the receptor mechanisms within the PFC associated with the procognitive actions of MPH across working memory and sustained attention tasks. We observed that PFC α2 and D1 receptors contributed to the beneficial effects of MPH across both cognitive tasks. However, α1 receptors only contributed to MPH-induced improvement in sustained attention. Moreover, activation of PFC α1 receptors was sufficient to improve sustained attention. This latter action contrasts with the impairing actions of PFC α1 receptors reported previously for working memory. These results provide further evidence for a prominent role of the PFC in the procognitive actions of MPH and demonstrate the divergent dose sensitivity across cognitive processes aligns with the differential involvement of PFC α1 receptors.
Collapse
|
32
|
Ho Jang S, Gyu Kwon H. Severe Apathy Due to Injury of Prefronto-caudate Tract. Transl Neurosci 2019; 10:157-159. [PMID: 31410297 PMCID: PMC6689209 DOI: 10.1515/tnsci-2019-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/15/2019] [Indexed: 11/15/2022] Open
Abstract
The caudate nucleus, which is vulnerable to hypoxic–ischemic brain injury (HI-BI), is important to cognitive function because it is connected to the prefrontal cortex. Using diffusion tensor tractography (DTT), no study on injury of the prefronto-caudate tract in a patient with HI-BI has been reported so far. Here, we report a patient with severe apathy who showed injury of the prefronto-caudate tract following HI-BI, which was demonstrated by DTT. A 38-year-old female patient suffered HI-BI induced by carbon monoxide poisoning following attempted suicide for a period of approximately four hours. From the onset, the patient showed severe apathy (7 months after onset-the Apathy Scale score was 24 [full score: 42]). Brain MR images taken at seven months after onset showed no abnormality. On 7-month DTT, the neural connectivity of the caudate nucleus to the medial prefrontal cortex (Brodmann area: 10 and 12) and orbitofrontal cortex (Brodmann area: 11 and 13) was decreased in both hemispheres. Using DTT, injury of the prefronto-caudate tract was demonstrated in a patient who showed severe apathy following HI-BI. We believe that injury of the prefronto-caudate tract might be a pathogenetic mechanism of apathy in patients with HI-BI.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Gyeongsan, South Korea
| | - Hyeok Gyu Kwon
- Department of Physical Therapy, College of Health Science, Eulji University, Daejeon, South Korea
| |
Collapse
|
33
|
Wu ZM, Llera A, Hoogman M, Cao QJ, Zwiers MP, Bralten J, An L, Sun L, Yang L, Yang BR, Zang YF, Franke B, Beckmann CF, Mennes M, Wang YF. Linked anatomical and functional brain alterations in children with attention-deficit/hyperactivity disorder. NEUROIMAGE-CLINICAL 2019; 23:101851. [PMID: 31077980 PMCID: PMC6514365 DOI: 10.1016/j.nicl.2019.101851] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
Abstract
Objectives Neuroimaging studies have independently demonstrated brain anatomical and functional impairments in participants with ADHD. The aim of the current study was to explore the relationship between structural and functional brain alterations in ADHD through an integrated analysis of multimodal neuroimaging data. Methods We performed a multimodal analysis to integrate resting-state functional magnetic resonance imaging (MRI), structural MRI, and diffusion-weighted imaging data in a large, single-site sample of children with and without diagnosis for ADHD. The inferred subject contributions were fed into regression models to investigate the relationships between diagnosis, symptom severity, gender, and age. Results Compared with controls, children with ADHD diagnosis showed altered white matter microstructure in widespread white matter fiber tracts as well as greater gray matter volume (GMV) in bilateral frontal regions, smaller GMV in posterior regions, and altered functional connectivity (FC) in default mode and fronto-parietal networks. Age-related growth of GMV of bilateral occipital lobe, FC in frontal regions as well as age-related decline of GMV in medial regions seen in controls appeared reversed in children with ADHD. In the whole group, higher symptom severity was related to smaller GMV in widespread regions in bilateral frontal, parietal, and temporal lobes, as well as greater GMV in intracalcarine and temporal cortices. Conclusions Through a multimodal analysis approach we show that structural and functional alterations in brain regions known to be altered in subjects with ADHD from unimodal studies are linked across modalities. The brain alterations were related to clinical features of ADHD, including disorder status, age, and symptom severity. Multimodal imaging analysis provides new insights in interconnected imaging findings. Co-occurrence of structural and functional brain alterations were observed in ADHD. The identified multimodal alterations are related to clinical features of ADHD.
Collapse
Affiliation(s)
- Zhao-Min Wu
- Shenzhen Children's Hospital, China; Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands.
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Qing-Jiu Cao
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Marcel P Zwiers
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Li An
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Li Sun
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | | | - Yu-Feng Zang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Maarten Mennes
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Yu-Feng Wang
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China.
| |
Collapse
|
34
|
Tai YC, Chi MH, Chu CL, Chiu NT, Yao WJ, Chen PS, Yang YK. Availability of Striatal Dopamine Transporter in Healthy Individuals With and Without a Family History of ADHD. J Atten Disord 2019; 23:665-670. [PMID: 27401239 DOI: 10.1177/1087054716654570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE ADHD is the most prevalent neurodevelopmental disorder. It is highly heritable and multifactorial, but the definitive causes remain unknown. Abnormal dopamine transporter (DAT) availability has been reported, but the data are inconsistent. The aim of this study was to examine whether DAT availability differs between healthy parents with and without ADHD offspring. METHOD Eleven healthy parents with ADHD offspring and 11 age- and sex-matched healthy controls without ADHD offspring were recruited. The availability of DAT was approximated using single-photon emission computed tomography, with [99mTc] TRODAT-1 as the ligand. RESULTS DAT availability in the basal ganglia, caudate nucleus, and putamen was significantly lower in the parents with ADHD offspring than in the healthy controls without ADHD offspring. CONCLUSION The results suggest that ADHD could be heritable via abnormal DAT activities.
Collapse
Affiliation(s)
- Ying Chun Tai
- 1 Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan.,2 Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei Hung Chi
- 2 Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Lin Chu
- 2 Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3 Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Nan Tsing Chiu
- 4 Department of Nuclear Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei Jen Yao
- 4 Department of Nuclear Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- 2 Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3 Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- 1 Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan.,2 Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3 Addiction Research Center, National Cheng Kung University, Tainan, Taiwan.,5 Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
35
|
De Simoni S, Jenkins PO, Bourke NJ, Fleminger JJ, Hellyer PJ, Jolly AE, Patel MC, Cole JH, Leech R, Sharp DJ. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury. Brain 2019; 141:148-164. [PMID: 29186356 PMCID: PMC5837394 DOI: 10.1093/brain/awx309] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/25/2017] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of executive dysfunction. We show for the first time that altered subcortical connectivity is associated with large-scale network disruption in traumatic brain injury and that this disruption is related to the cognitive impairments seen in these patients.
Collapse
Affiliation(s)
- Sara De Simoni
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Peter O Jenkins
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Niall J Bourke
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Jessica J Fleminger
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Peter J Hellyer
- Department of Bioengineering, Imperial College London, London, UK
| | - Amy E Jolly
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | | | - James H Cole
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Robert Leech
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| |
Collapse
|
36
|
Peers influence adolescent reward processing, but not response inhibition. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:284-295. [PMID: 29470796 DOI: 10.3758/s13415-018-0569-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most adolescent risk taking occurs in the presence of peers. Prior research suggests that peers alter adolescents' decision making by increasing reward sensitivity and the engagement of regions involved in the processing of rewards, primarily the striatum. However, the potential influence of peers on the capacity for impulse control, and the associated recruitment of the brain's control circuitry, has not yet been adequately examined. In the current study, adolescents underwent functional neuroimaging while they completed interleaved rounds of risk-taking and response-inhibition tasks. Social context was manipulated such that the participants believed they were either playing alone and unobserved, or watched by an anonymous peer. Compared to those who completed the tasks alone, adolescents in the peer condition took more risks during the risk-taking task and exhibited relatively heightened activation of the striatum. Activity within this striatal region also predicted individual differences in overall risk taking. In contrast, the presence of peers had no effect on behavioral response inhibition and had minimal impact on the engagement of typical cognitive control regions. In a subregion of the anterior insula engaged mutually by both tasks, activity was again found to be sensitive to social context during the risk-taking task, but not during the response-inhibition task. These findings extend the evidence that the presence of peers biases adolescents towards risk taking by increasing reward sensitivity rather than disrupting cognitive control.
Collapse
|
37
|
Muster R, Choudhury S, Sharp W, Kasparek S, Sudre G, Shaw P. Mapping the neuroanatomic substrates of cognition in familial attention deficit hyperactivity disorder. Psychol Med 2019; 49:590-597. [PMID: 29792238 PMCID: PMC6252155 DOI: 10.1017/s0033291718001241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND While the neuroanatomic substrates of symptoms of attention deficit hyperactivity disorder (ADHD) have been investigated, less is known about the neuroanatomic correlates of cognitive abilities pertinent to the disorder, particularly in adults. Here we define the neuroanatomic correlates of key cognitive abilities and determine if there are associations with histories of psychostimulant medication. METHODS We acquired neuroanatomic magnetic resonance imaging data from 264 members of 60 families (mean age 29.5; s.d. 18.4, 116 with ADHD). Using linear mixed model regression, we tested for associations between cognitive abilities (working memory, information processing, intelligence, and attention), symptoms and both cortical and subcortical volumes. RESULTS Symptom severity was associated with spatial working memory (t = -3.77, p = 0.0002), processing speed (t = -2.95, p = 0.004) and a measure of impulsive responding (t = 2.19, p = 0.03); these associations did not vary with age (all p > 0.1). Neuroanatomic associations of cognition varied by task but centered on prefrontal, lateral parietal and temporal cortical regions, the thalamus and putamen. The neuroanatomic correlates of ADHD symptoms overlapped significantly with those of working memory (Dice's overlap coefficient: spatial, p = 0.003; verbal, p = 0.001) and information processing (p = 0.02). Psychostimulant medication history was associated with neither cognitive skills nor with a brain-cognition relationships. CONCLUSIONS Diagnostic differences in the cognitive profile of ADHD does not vary significantly with age; nor were cognitive differences associated with psychostimulant medication history. The neuroanatomic substrates of working memory and information overlapped with those for symptoms within these extended families, consistent with a pathophysiological role for these cognitive skills in familial ADHD.
Collapse
Affiliation(s)
| | | | | | | | | | - Philip Shaw
- Corresponding author, Philip Shaw, Bldg 31, B1B37, Bethesda 20892, , T: (301) 451-4010, F: (301) 480-3108
| |
Collapse
|
38
|
Injury of the prefronto-caudate tract in a patient with apathy following intracerebral hemorrhage in the caudate nucleus. Acta Neurol Belg 2019; 119:143-145. [PMID: 30637669 DOI: 10.1007/s13760-019-01077-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
|
39
|
The Correlation between the Frontostriatal Network and Impulsivity in Internet Gaming Disorder. Sci Rep 2019; 9:1191. [PMID: 30718701 PMCID: PMC6361914 DOI: 10.1038/s41598-018-37702-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/05/2018] [Indexed: 01/15/2023] Open
Abstract
As excessive use of internet gaming has become a serious public health concern, increasing studies have revealed that impulsivity is one of the important risk factors of internet gaming disorder (IGD). This study was designed to investigate the altered resting-state functional connectivity (FC) of the bilateral orbitofrontal cortex (OFC) in IGD participants and to examine its relationship with impulsivity compared with the normal controls (NC). Seed-based analyses verified that participants with IGD displayed decreased FC between the OFC and frontal, striatal, temporal and occipital regions different from NC. Moreover, IGD participants showed weankened FC from the OFC with dorsal anterior cingulate cortex as well as with dorsolateral prefrontal cortex and dorsal striatum as the results of group difference. These results could suggest that the decreased frontostriatal connectivity was associated with excessive internet gaming. Also, the increased FC in frontostriatal regions was correlated with impulse control in the NC but not the IGD participants. Further insight into the brain circuitry on frontostriatal could provide the target for developing treatment approaches of impulse control in IGD.
Collapse
|
40
|
Loe IM, Adams JN, Feldman HM. Executive Function in Relation to White Matter in Preterm and Full Term Children. Front Pediatr 2019; 6:418. [PMID: 30697535 PMCID: PMC6341022 DOI: 10.3389/fped.2018.00418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Executive function (EF) refers to cognitive abilities used to guide goal-directed behavior. Diffusion Tensor Imaging (DTI) provides quantitative characterization of white matter tracts in the brain. Children with preterm birth often have EF impairments and white matter injury. Aim: To examine the degree of association between EF scores and white matter fractional anisotropy (FA) as measured by DTI in children born preterm and term Study design: Cross-sectional study Subjects: Participants, 9-16 years of age, born preterm (n = 25; mean gestational age 28.6 weeks; mean birth weight 1,191 grams), and full term (n = 20) Outcome measures: White matter FA analyzed with Tract-Based Spatial Statistics, a technique that generates a skeleton representing the core of white matter tracts throughout the brain. Behavioral scores from EF tasks examining working memory, spatial memory capacity, and multiple skills from the Stockings of Cambridge. Results: The groups performed comparably on all tasks. In both groups, unfavorable working memory strategy scores were associated with lower FA. Other measures of EF were not associated with whole skeleton FA in either group in either direction. Conclusions: Strategy score on a spatial working memory task was associated with FA in preterm and full term children, suggesting common underlying neurobiology in both groups. Associations were found in frontal-parietal connections and other major tracts. Lack of associations between other EF tasks and FA may be due to variation in how children accomplish these EF tasks. Future research is required to fully understand the neurobiology of EF in children born preterm.
Collapse
Affiliation(s)
- Irene M. Loe
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Jenna N. Adams
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Heidi M. Feldman
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| |
Collapse
|
41
|
Yuan K, Zhao M, Yu D, Manza P, Volkow ND, Wang GJ, Tian J. Striato-cortical tracts predict 12-h abstinence-induced lapse in smokers. Neuropsychopharmacology 2018; 43:2452-2458. [PMID: 30131564 PMCID: PMC6180048 DOI: 10.1038/s41386-018-0182-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022]
Abstract
Striatal circuit dysfunction is implicated in smoking behaviors and lapses during abstinence attempts. However, little is known about whether the structural connectivity of striatal tracts can be used to predict abstinence-induced craving and lapses. The tract strengths of striatal circuits were compared in 53 male nicotine-dependent cigarette smokers and 58 matched nonsmokers, using seed-based classification by diffusion tensor imaging (DTI) probabilistic tractography with 10 a priori target masks. A 12-h abstinence procedure was then employed, after which 31 individuals abstained and 22 lapsed. Linear regression and binary logistic regression was conducted to test whether the tract strength of frontostriatal circuits was associated with craving changes in abstainers and predicted lapse in smokers. Compared with nonsmokers, in the left hemisphere, smokers showed weaker tract strength in striatum-medial orbitofrontal cortex (mOFC), striatum-ventral lateral prefrontal cortex (vlPFC), striatum-inferior frontal gyrus (IFG) and striatum-posterior cingulate cortex (PCC) (Bonferroni corrected, p < 0.05/20 = 0.0025). In abstainers, the abstinence-induced increases in craving were associated with the tract strength of the left striatum-mOFC and striatum-vlPFC. The tract strength of left striatum-dorsolateral PFC (dlPFC) predicted lapse in smokers with an accuracy of 68.3%. These results provide system-level insights into the weaker tract strength of frontostriatal circuits in male smokers and their potential roles as neuroimaging markers for abstinence-induced craving and risk of lapse. Future studies in female smokers are needed to determine if this generalizes across genders.
Collapse
Affiliation(s)
- Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China. .,National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD, 20892, USA. .,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi,, 710071, People's Republic of China. .,Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, People's Republic of China. .,Guangxi Key Laboratory of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin, 541001, People's Republic of China.
| | - Meng Zhao
- 0000 0001 0707 115Xgrid.440736.2School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071 People’s Republic of China ,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi’an, Shaanxi, 710071 People’s Republic of China
| | - Dahua Yu
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi’an, Shaanxi, 710071 People’s Republic of China
| | - Peter Manza
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD 20892 USA
| | - Nora D. Volkow
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD 20892 USA ,0000 0001 2297 5165grid.94365.3dNational Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892 USA
| | - Gene-Jack Wang
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jie Tian
- 0000 0001 0707 115Xgrid.440736.2School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071 People’s Republic of China ,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi’an, Shaanxi, 710071 People’s Republic of China ,0000000119573309grid.9227.eInstitute of Automation, Chinese Academy of Sciences, Beijing, 100190 People’s Republic of China
| |
Collapse
|
42
|
Sudre G, Mangalmurti A, Shaw P. Growing out of attention deficit hyperactivity disorder: Insights from the 'remitted' brain. Neurosci Biobehav Rev 2018; 94:198-209. [PMID: 30194962 PMCID: PMC9616204 DOI: 10.1016/j.neubiorev.2018.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Abstract
We consider developmental and cognitive models to explain why some children 'grow out' of attention deficit hyperactivity disorder (ADHD) by adulthood. The first model views remission as a convergence towards more typical brain function and structure. In support, some studies find that adult remitters are indistinguishable from those who were never affected in the neural substrates of 'top-down' mechanisms of cognitive control, some 'bottom-up' processes of vigilance/response preparation, prefrontal cortical morphology and intrinsic functional connectivity. A second model postulates that remission is driven by the recruitment of new brain systems that compensate for ADHD symptoms. It draws support from demonstrations of atypical, but possibly beneficial, patterns of connectivity within the cognitive control network in adult remitters. The final model holds that some childhood ADHD anomalies show lifelong persistence, regardless of adult outcome, supported by shared reports of anomalies in remitters and persisters in posterior cerebral and striato-thalamic regions. The models are compatible: different processes driving remission might occur in different brain regions. These models provide a framework for future studies which might inform novel treatments to 'accelerate' remission.
Collapse
Affiliation(s)
- Gustavo Sudre
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, and The National Institute of Mental Health, NIH, United States
| | - Aman Mangalmurti
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, and The National Institute of Mental Health, NIH, United States
| | - Philip Shaw
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, and The National Institute of Mental Health, NIH, United States.
| |
Collapse
|
43
|
Gee DG, Bath KG, Johnson CM, Meyer HC, Murty VP, van den Bos W, Hartley CA. Neurocognitive Development of Motivated Behavior: Dynamic Changes across Childhood and Adolescence. J Neurosci 2018; 38:9433-9445. [PMID: 30381435 PMCID: PMC6209847 DOI: 10.1523/jneurosci.1674-18.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The ability to anticipate and respond appropriately to the challenges and opportunities present in our environments is critical for adaptive behavior. Recent methodological innovations have led to substantial advances in our understanding of the neurocircuitry supporting such motivated behavior in adulthood. However, the neural circuits and cognitive processes that enable threat- and reward-motivated behavior undergo substantive changes over the course of development, and these changes are less well understood. In this article, we highlight recent research in human and animal models demonstrating how developmental changes in prefrontal-subcortical neural circuits give rise to corresponding changes in the processing of threats and rewards from infancy to adulthood. We discuss how these developmental trajectories are altered by experiential factors, such as early-life stress, and highlight the relevance of this research for understanding the developmental onset and treatment of psychiatric disorders characterized by dysregulation of motivated behavior.
Collapse
Affiliation(s)
- Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT 06520,
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| | - Carolyn M Johnson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Heidi C Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA 19122
| | - Wouter van den Bos
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands, and
| | | |
Collapse
|
44
|
Yuan K, Yu D, Zhao M, Li M, Wang R, Li Y, Manza P, Shokri-Kojori E, Wiers CE, Wang GJ, Tian J. Abnormal frontostriatal tracts in young male tobacco smokers. Neuroimage 2018; 183:346-355. [PMID: 30130644 DOI: 10.1016/j.neuroimage.2018.08.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Dysfunctions in frontostriatal circuits have been associated with craving and cognitive control in smokers. However, the relevance of white matter (WM) diffusion properties of the ventral and dorsal frontostriatal tracts for behaviors associated with smoking remains relatively unknown, especially in young adulthood, a critical time period for the development and maintenance of addiction. Here, diffusion tensor imaging (DTI) and probabilistic tractography were used to investigate the WM tracts of the ventral and dorsal frontostriatal circuits in two independent studies (Study1: 36 male smokers (21.3 ± 1.3 years) vs. 35 male nonsmokers (21.2 ± 1.3 years); Study2: 29 male smokers (21.4 ± 1.1 years) vs. 25 male nonsmokers (21.0 ± 1.4 years)). Subjective craving was measured by the Questionnaire on Smoking Urges (QSU) and cognitive control ability was assessed with the Stroop task. In both studies, smokers committed more response errors than nonsmokers during the incongruent condition of the Stroop task. Relative to controls, smokers showed lower fractional anisotropy (FA) and higher radial diffusivity in left medial orbitofrontal cortex-to-nucleus accumbens fiber tracts (ventral frontostriatal path) and also lower FA in right dorsolateral prefrontal cortex-to-caudate fiber tracts (dorsal frontostriatal path). The FA values of the right dorsal fibers were negatively correlated with incongruent response Stroop errors in smokers, whereas the mean diffusivity values of the left ventral fibers were positively correlated with craving in smokers. Thus, WM diffusion properties of the dorsal and ventral frontostriatal tracts were associated with cognitive control and craving, respectively, in young male tobacco smokers. These data highlight the importance of studying WM in relation to neuropsychological changes underlying smoking.
Collapse
Affiliation(s)
- Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China; Laboratory of Neuroimaging, National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD, 20892, USA; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, PR China; Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, PR China; Guangxi Key Laboratory of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin, Guangxi, 541004, PR China.
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, PR China
| | - Meng Zhao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, PR China
| | - Min Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, PR China
| | - Ruonan Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, PR China
| | - Yangding Li
- Guangxi Key Laboratory of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin, Guangxi, 541004, PR China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD, 20892, USA
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD, 20892, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD, 20892, USA
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD, 20892, USA
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, PR China; Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
45
|
Hinton KE, Lahey BB, Villalta-Gil V, Boyd BD, Yvernault BC, Werts KB, Plassard AJ, Applegate B, Woodward ND, Landman BA, Zald DH. Right Fronto-Subcortical White Matter Microstructure Predicts Cognitive Control Ability on the Go/No-go Task in a Community Sample. Front Hum Neurosci 2018; 12:127. [PMID: 29706875 PMCID: PMC5908979 DOI: 10.3389/fnhum.2018.00127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/19/2018] [Indexed: 01/27/2023] Open
Abstract
Go/no-go tasks are widely used to index cognitive control. This construct has been linked to white matter microstructure in a circuit connecting the right inferior frontal gyrus (IFG), subthalamic nucleus (STN), and pre-supplementary motor area. However, the specificity of this association has not been tested. A general factor of white matter has been identified that is related to processing speed. Given the strong processing speed component in successful performance on the go/no-go task, this general factor could contribute to task performance, but the general factor has often not been accounted for in past studies of cognitive control. Further, studies on cognitive control have generally employed small unrepresentative case-control designs. The present study examined the relationship between go/no-go performance and white matter microstructure in a large community sample of 378 subjects that included participants with a range of both clinical and subclinical nonpsychotic psychopathology. We found that white matter microstructure properties in the right IFG-STN tract significantly predicted task performance, and remained significant after controlling for dimensional psychopathology. The general factor of white matter only reached statistical significance when controlling for dimensional psychopathology. Although the IFG-STN and general factor tracts were highly correlated, when both were included in the model, only the IFG-STN remained a significant predictor of performance. Overall, these findings suggest that while a general factor of white matter can be identified in a young community sample, white matter microstructure properties in the right IFG-STN tract show a specific relationship to cognitive control. The findings highlight the importance of examining both specific and general correlates of cognition, especially in tasks with a speeded component.
Collapse
Affiliation(s)
- Kendra E Hinton
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Benjamin B Lahey
- Department of Public Health Sciences, University of Chicago, Chicago, IL, United States
| | - Victoria Villalta-Gil
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Brian D Boyd
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Katherine B Werts
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Andrew J Plassard
- School of Engineering, Vanderbilt University, Nashville, TN, United States
| | - Brooks Applegate
- Department of Educational Leadership, Research and Technology, Western Michigan University, Kalamazoo, MI, United States
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bennett A Landman
- School of Engineering, Vanderbilt University, Nashville, TN, United States
| | - David H Zald
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
46
|
Naaijen J, Lythgoe DJ, Zwiers MP, Hartman CA, Hoekstra PJ, Buitelaar JK, Aarts E. Anterior cingulate cortex glutamate and its association with striatal functioning during cognitive control. Eur Neuropsychopharmacol 2018; 28:381-391. [PMID: 29395624 DOI: 10.1016/j.euroneuro.2018.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 02/02/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by structural, functional and neurochemical alterations of the fronto-striatal circuits and by deficits in cognitive control. In particular, ADHD has been associated with impairments in top-down fronto-striatal glutamate-signalling. However, it is unknown whether fronto-striatal glutamate is related to cognitive control dysfunction. Here we explored whether and how anterior cingulate cortex (ACC) glutamate relates to striatal BOLD-responses during cognitive control. We used proton magnetic resonance spectroscopy to evaluate glutamate-to-creatine ratios in 62 participants (probands with ADHD n=19, unaffected siblings n=24 and typical controls n=19, mean age=20.4). Spectra were collected from the ACC and the dorsal striatum and glutamate-to-creatine ratios were extracted. Thirty-two participants additionally took part in a functional magnetic resonance imaging (fMRI) Stroop task to investigate neural responses during cognitive control. Given small sample sizes we report all effects with p<0.10 along with effect sizes. ADHD subjects showed decreased glutamate-to-creatine ratios in the ACC (F=3.81, p=0.059, ηp2=0.104; medium to large effect-size) compared with controls. Importantly, decreased ACC glutamate-to-creatine ratios were associated with increased striatal BOLD-responses during cognitive control (rho=-0.41, p=0.019; medium effect-size), independent of diagnosis. Increased striatal responses tended to be associated with more errors during the task and more hyperactivity/impulsivity symptoms (rho=0.34, p=0.058 and rho=0.33, p=0.068, respectively); the latter two being correlated too (rho=0.37, p=0.037), all with medium effect sizes. Our results suggest that ACC glutamate in ADHD might be associated with striatal (dys)functioning during the Stroop task, supporting the role of fronto-striatal glutamate in cognitive control.
Collapse
Affiliation(s)
- Jilly Naaijen
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - David J Lythgoe
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, London, United Kingdom
| | - Marcel P Zwiers
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina A Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - Pieter J Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, The Netherlands
| | - Esther Aarts
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
47
|
Umbach R, Raine A, Leonard NR. Cognitive Decline as a Result of Incarceration and the Effects of a CBT/MT Intervention: A Cluster-Randomized Controlled Trial. CRIMINAL JUSTICE AND BEHAVIOR 2018; 45:31-55. [PMID: 29795707 PMCID: PMC5961486 DOI: 10.1177/0093854817736345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study primarily tests whether incarceration negatively affects cognitive functioning; namely emotion regulation, cognitive control, and emotion recognition. As a secondary interest, we test protective effects of a Cognitive Behavioral Therapy/Mindfulness Training (CBT/MT) intervention. Dormitories containing 197 incarcerated males aged 16-18 were randomly assigned to either a CBT/MT program or an active control condition. A cognitive task was administered pre-treatment and again four months later, upon treatment completion. Performance on all outcome variables was significantly worse at follow-up compared to baseline. There were marginally significant group by time interactions. While the control group performance significantly declined in both cognitive control and emotion regulation, the CBT/MT group showed no significant decline in either outcome. This is the first study to probe the effects of incarceration on these three processes. Findings suggest that incarceration worsens a known risk factor for crime (cognitive functioning), and that a CBT/MT intervention may help buffer against declines.
Collapse
Affiliation(s)
| | - Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania
| | | |
Collapse
|
48
|
Ji H, Xu L, Wang Z, Fan X, Wu L. Differential microRNA expression in the prefrontal cortex of mouse offspring induced by glyphosate exposure during pregnancy and lactation. Exp Ther Med 2017; 15:2457-2467. [PMID: 29467848 PMCID: PMC5792815 DOI: 10.3892/etm.2017.5669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023] Open
Abstract
Glyphosate is the active ingredient in numerous herbicide formulations. The role of glyphosate in neurotoxicity has been reported in human and animal models. However, the detailed mechanism of the role of glyphosate in neuronal development remains unknown. Recently, several studies have reported evidence linking neurodevelopmental disorders (NDDs) with gestational glyphosate exposure. The current group previously identified microRNAs (miRNAs) that are associated with the etiology of NDDs, but their expression levels in the developing brain following glyphosate exposure have not been characterized. In the present study, miRNA expression patterns were evaluated in the prefrontal cortex (PFC) of 28 postnatal day mouse offspring following glyphosate exposure during pregnancy and lactation. An miRNA microarray detected 55 upregulated and 19 downregulated miRNAs in the PFC of mouse offspring, and 20 selected deregulated miRNAs were further evaluated by quantitative polymerase chain reaction (PCR). A total of 11 targets of these selected deregulated miRNAs were analyzed using bioinformatics. Gene Ontology (GO) terms associated with the relevant miRNAs included neurogenesis (GO:0050769), neuron differentiation (GO:0030182) and brain development (GO:0007420). The genes Cdkn1a, Numbl, Notch1, Fosl1 and Lef1 are involved in the Wnt and Notch signaling pathways, which are closely associated with neural development. PCR arrays for the mouse Wnt and Notch signaling pathways were used to validate the effects of glyphosate on the expression pattern of genes involved in the Wnt and Notch pathways. Nr4a2 and Wnt7b were downregulated, while Dkk1, Dixdc1, Runx1, Shh, Lef-1 and Axin2 were upregulated in the PFC of mice offspring following glyphosate exposure during pregnancy and lactation. These results indicated abnormalities of the Wnt/β-catenin and Notch pathways. These findings may be of particular interest for understanding the mechanism of glyphosate-induced neurotoxicity, as well as helping to clarify the association between glyphosate and NDDs.
Collapse
Affiliation(s)
- Hua Ji
- Department of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Linhao Xu
- Department of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Zheng Wang
- Department of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Xinli Fan
- Department of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Lihui Wu
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
49
|
Jang SH, Chang CH, Jung YJ, Lee HD. Recovery of akinetic mutism and injured prefronto-caudate tract following shunt operation for hydrocephalus and rehabilitation: A case report. Medicine (Baltimore) 2017; 96:e9117. [PMID: 29390310 PMCID: PMC5815722 DOI: 10.1097/md.0000000000009117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
RATIONALE A 76-year-old female patient was diagnosed with an aneurysmal subarachnoid hemorrhage following rupture of a right posterior communicating artery aneurysm. PATIENT CONCERNS She was treated surgically with clipping of the aneurysmal neck. Six months after onset, when starting rehabilitation at our hospital, she showed no spontaneous movement or speech. DIAGNOSES:: aneurysmal subarachnoid hemorrhage following rupture of a right posterior communicating artery aneurysm. INTERVENTIONS During 2 months' rehabilitation, her AM did not improve significantly. As there was no apparent change, she underwent a ventriculo-peritoneal shunt operation for hydrocephalus 8 months after her stroke. After the surgery, she remained in the AM state, but participated in a comprehensive rehabilitative management program similar to that before shunt operation. During 1 month's intensive rehabilitation, her AM gradually improved. At 9 months after onset, she became able to perform some daily activities by herself including eating, washing, and dressing. In addition, she could speak with some fluency. OUTCOMES On 6-month DTT, the neural connectivity of the caudate nucleus (CN) to the medial prefrontal cortex (PFC, Broadmann area [BA]: 10 and 12) and orbito-frontal cortex (BA 11 and 13) was low in both hemispheres. However, the neural connectivity of the CN to the medial PFC increased on both sides on 9-month DTT. The integrity of the arcuate fasciculus (AF) was preserved in both hemispheres on both 6- and 9-month DTTs. LESSONS Recovery of AM and injured PCTs was observed in a stroke patient.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation
| | - Chul Hoon Chang
- Department of Neurosurgery, College of Medicine, Yeungnam University, Republic of Korea
| | - Young Jin Jung
- Department of Neurosurgery, College of Medicine, Yeungnam University, Republic of Korea
| | - Han Do Lee
- Department of Physical Medicine and Rehabilitation
| |
Collapse
|
50
|
Rapin L, Poissant H, Mendrek A. Atypical Activations of Fronto-Cerebellar Regions During Forethought in Parents of Children With ADHD. J Atten Disord 2017; 21:1050-1058. [PMID: 24591263 DOI: 10.1177/1087054714524983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Although several studies suggest heritability of ADHD, only a few investigations of possible associations between people at risk and neural abnormalities in ADHD exist. In this study, we tested whether parents of children with ADHD would show atypical patterns of cerebral activations during forethought, a feature of working memory. METHOD Using Functional Magnetic Resonance Imaging (fMRI), we compared 12 parents of children with ADHD and 9 parents of control children during a forethought task. RESULTS Parents of children with ADHD exhibited significantly increased neural activations in the posterior lobes of the cerebellum and in the left inferior frontal gyrus, relative to parents of control children. CONCLUSION These findings are consistent with previous reports in children and suggest the fronto-cerebellar circuit's abnormalities during forethought in parents of children with ADHD. Future studies of people at risk of ADHD are needed to fully understand the extent of the fronto-cerebellar heritability.
Collapse
|