1
|
Dong W, Zhang Q, Zhao YX, Zhang XB. Sodium carboxymethylcellulose disrupts intestinal cell homeostasis by repressing Notch signaling in Drosophila. Int J Biol Macromol 2025; 286:138419. [PMID: 39647758 DOI: 10.1016/j.ijbiomac.2024.138419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Sodium carboxymethylcellulose (CMC), a cellulose derivative, is mainly used in food industry as additives. However, its supplementation has potentially negative effects on organisms. In this study, the effects of CMC on the physiological parameters and intestinal homeostasis in organisms were investigated using Drosophila melanogaster as a model. The results show that CMC did not affect survival and fecundity in flies at three detected concentrations. The puc activity analysis revealed that the CMC did not induce apoptosis in adult midgut. In adults treated with 5 % CMC, the midgut contained fewer progenitor cells and showed reduced mitosis compared to control flies. In addition, an increased enteroendocrine (EE) cells ratio was observed in midgut of 5 % CMC-fed flies. The RT-qPCR results revealed that notch expression was downregulated in 5 % CMC-fed flies, whereas no significant differences in mRNA expression levels were found for genes involved in midgut development. Consistently, the number of Notch positive clones was reduced in flies treated with 5 % CMC compared to controls. Taken together, our results suggest that CMC disrupts intestinal cell homeostasis by repressing Notch signaling. These findings provide a new perspective on the effects of CMC on organisms.
Collapse
Affiliation(s)
- Wei Dong
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China.
| | - Qian Zhang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China
| | - Ya Xuan Zhao
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China
| | - Xu-Bo Zhang
- Research Institute of Applied Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Zhang J, Xu Y, Liu Y, Yue L, Jin H, Chen Y, Wang D, Wang M, Chen G, Yang L, Zhang G, Zhang X, Li S, Zhao H, Zhao Y, Niu G, Gao Y, Cai Z, Yang F, Zhu C, Zhu D. Genetic Testing for Global Developmental Delay in Early Childhood. JAMA Netw Open 2024; 7:e2415084. [PMID: 38837156 PMCID: PMC11154162 DOI: 10.1001/jamanetworkopen.2024.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/03/2024] [Indexed: 06/06/2024] Open
Abstract
Importance Global developmental delay (GDD) is characterized by a complex etiology, diverse phenotypes, and high individual heterogeneity, presenting challenges for early clinical etiologic diagnosis. Cognitive impairment is the core symptom, and despite the pivotal role of genetic factors in GDD development, the understanding of them remains limited. Objectives To assess the utility of genetic detection in patients with GDD and to examine the potential molecular pathogenesis of GDD to identify targets for early intervention. Design, Setting, and Participants This multicenter, prospective cohort study enrolled patients aged 12 to 60 months with GDD from 6 centers in China from July 4, 2020, to August 31, 2023. Participants underwent trio whole exome sequencing (trio-WES) coupled with copy number variation sequencing (CNV-seq). Bioinformatics analysis was used to unravel pathogenesis and identify therapeutic targets. Main Outcomes and Measures The main outcomes of this study involved enhancing the rate of positive genetic diagnosis for GDD, broadening the scope of genetic testing indications, and investigating the underlying pathogenesis. The classification of children into levels of cognitive impairment was based on the developmental quotient assessed using the Gesell scale. Results The study encompassed 434 patients with GDD (262 [60%] male; mean [SD] age, 25.75 [13.24] months) with diverse degrees of cognitive impairment: mild (98 [23%]), moderate (141 [32%]), severe (122 [28%]), and profound (73 [17%]). The combined use of trio-WES and CNV-seq resulted in a 61% positive detection rate. Craniofacial abnormalities (odds ratio [OR], 2.27; 95% CI, 1.45-3.56), moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70), and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35) were associated with a higher risk of carrying genetic variants. Additionally, bioinformatics analysis suggested that genetic variants may induce alterations in brain development and function, which may give rise to cognitive impairment. Moreover, an association was found between the dopaminergic pathway and cognitive impairment. Conclusions and Relevance In this cohort study of patients with GDD, combining trio-WES with CNV-seq was a demonstrable, instrumental strategy for advancing the diagnosis of GDD. The close association among genetic variations, brain development, and clinical phenotypes contributed valuable insights into the pathogenesis of GDD. Notably, the dopaminergic pathway emerged as a promising focal point for potential targets in future precision medical interventions for GDD.
Collapse
Affiliation(s)
- Jiamei Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Liu
- Kunming Children’s Hospital, Kunming, China
| | - Ling Yue
- Department of Neurological Rehabilitation, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Hongfang Jin
- Qinghai Provincial Women and Children’s Hospital, Xining, China
| | | | - Dong Wang
- Department of Pediatric Neurology, Xi’an Children’s Hospital, Xi’an, China
| | - Mingmei Wang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gongxun Chen
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangyu Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Department of Pediatric Neurology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sansong Li
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiling Zhao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunxia Zhao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohui Niu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqiang Gao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijun Cai
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Dengna Zhu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Qu S, Zhou X, Wang Z, Wei Y, Zhou H, Zhang X, Zhu Q, Wang Y, Yang Q, Jiang L, Ma Y, Gao Y, Kong L, Zhang L. The effects of methylphenidate and atomoxetine on Drosophila brain at single-cell resolution and potential drug repurposing for ADHD treatment. Mol Psychiatry 2024; 29:165-185. [PMID: 37957291 PMCID: PMC11078728 DOI: 10.1038/s41380-023-02314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The stimulant methylphenidate (MPH) and the non-stimulant atomoxetine (ATX) are frequently used for the treatment of attention-deficit/hyperactivity disorder (ADHD); however, the function of these drugs in different types of brain cells and their effects on related genes remain largely unknown. To address these questions, we built a pipeline for the simultaneous examination of the activity behavior and transcriptional responses of Drosophila melanogaster at single-cell resolution following drug treatment. We selected the Drosophila with significantly increased locomotor activities (hyperactivity-like behavior) following the administration of each drug in comparison with the control (same food as the drug-treated groups with 5% sucrose, yeast, and blue food dye solution) using EasyFlyTracker. Subsequently, single cell RNA sequencing (scRNASEQ) was used to capture the transcriptome of 82,917 cells, unsupervised clustering analysis of which yielded 28 primary cell clusters representing the major cell types in adult Drosophila brain. Indeed, both neuronal and glial cells responded to MPH and ATX. Further analysis of differentially expressed genes (DEGs) revealed distinct transcriptional changes associated with these two drugs, such as two well-studied dopamine receptor genes (Dop2R and DopEcR) were responsive to MPH but not to ATX at their optimal doses, in addition to genes involved in dopamine metabolism pathways such as Syt1, Sytalpha, Syt7, and Ih in different cell types. More importantly, MPH also suppressed the expression of genes encoding other neurotransmitter receptors and synaptic signaling molecules in many cell types, especially those for Glu and GABA, while the responsive effects of ATX were much weaker. In addition to monoaminergic neuronal transmitters, other neurotransmitters have also shown a similar pattern with respect to a stronger effect associated with MPH than with ATX. Moreover, we identified four distinct glial cell subtypes responsive to the two drugs and detected a greater number of differentially expressed genes associated with ensheathing and astrocyte-like glia. Furthermore, our study provides a rich resource of candidate target genes, supported by drug set enrichment analysis (P = 2.10E-4; hypergeometric test), for the further exploration of drug repurposing. The whole list of candidates can be found at ADHDrug ( http://adhdrug.cibr.ac.cn/ ). In conclusion, we propose a fast and cost-efficient pipeline to explore the underlying molecular mechanisms of ADHD drug treatment in Drosophila brain at single-cell resolution, which may further facilitate drug repurposing applications.
Collapse
Affiliation(s)
- Susu Qu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| | - Xiangyu Zhou
- Chinese Institute for Brain Research, Beijing, China
| | - Zhicheng Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Yi Wei
- Chinese Institute for Brain Research, Beijing, China
| | - Han Zhou
- Chinese Institute for Brain Research, Beijing, China
| | | | - Qingjie Zhu
- Chinese Institute for Brain Research, Beijing, China
| | - Yanmin Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Likun Jiang
- Department of Computer Science, Xiamen University, Xiamen, China
| | - Yuan Ma
- Chinese Institute for Brain Research, Beijing, China
| | - Yuan Gao
- Chinese Institute for Brain Research, Beijing, China
| | - Lei Kong
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
4
|
Banach-Latapy A, Rincheval V, Briand D, Guénal I, Spéder P. Differential adhesion during development establishes individual neural stem cell niches and shapes adult behaviour in Drosophila. PLoS Biol 2023; 21:e3002352. [PMID: 37943883 PMCID: PMC10635556 DOI: 10.1371/journal.pbio.3002352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023] Open
Abstract
Neural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Drosophila larval brain, the cortex glia (CG) encase individual NSC lineages in membranous chambers, organising the stem cell population and newborn neurons into a stereotypic structure. We first found that CG wrap around lineage-related cells regardless of their identity, showing that lineage information builds CG architecture. We then discovered that a mechanism of temporally controlled differential adhesion using conserved complexes supports the individual encasing of NSC lineages. An intralineage adhesion through homophilic Neuroglian interactions provides strong binding between cells of a same lineage, while a weaker interaction through Neurexin-IV and Wrapper exists between NSC lineages and CG. Loss of Neuroglian results in NSC lineages clumped together and in an altered CG network, while loss of Neurexin-IV/Wrapper generates larger yet defined CG chamber grouping several lineages together. Axonal projections of newborn neurons are also altered in these conditions. Further, we link the loss of these 2 adhesion complexes specifically during development to locomotor hyperactivity in the resulting adults. Altogether, our findings identify a belt of adhesions building a neurogenic niche at the scale of individual stem cell and provide the proof of concept that niche properties during development shape adult behaviour.
Collapse
Affiliation(s)
- Agata Banach-Latapy
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| | | | - David Briand
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| | - Isabelle Guénal
- Université Paris-Saclay, UVSQ, LGBC, 78000, Versailles, France
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
5
|
Ribasés M, Mitjans M, Hartman CA, Soler Artigas M, Demontis D, Larsson H, Ramos-Quiroga JA, Kuntsi J, Faraone SV, Børglum AD, Reif A, Franke B, Cormand B. Genetic architecture of ADHD and overlap with other psychiatric disorders and cognition-related phenotypes. Neurosci Biobehav Rev 2023; 153:105313. [PMID: 37451654 PMCID: PMC10789879 DOI: 10.1016/j.neubiorev.2023.105313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) co-occurs with many other psychiatric disorders and traits. In this review, we summarize and interpret the existing literature on the genetic architecture of these comorbidities based on hypothesis-generating approaches. Quantitative genetic studies indicate that genetic factors play a substantial role in the observed co-occurrence of ADHD with many different disorders and traits. Molecular genetic correlations derived from genome-wide association studies and results of studies based on polygenic risk scores confirm the general pattern but provide effect estimates that are smaller than those from twin studies. The identification of the specific genetic variants and biological pathways underlying co-occurrence using genome-wide approaches is still in its infancy. The first analyses of causal inference using genetic data support causal relationships between ADHD and comorbid disorders, although bidirectional effects identified in some instances point to complex relationships. While several issues in the methodology and inferences from the results are still to be overcome, this review shows that the co-occurrence of ADHD with many psychiatric disorders and traits is genetically interpretable.
Collapse
Affiliation(s)
- M Ribasés
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - M Mitjans
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalonia, Spain
| | - C A Hartman
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M Soler Artigas
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - D Demontis
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - H Larsson
- School of Medical Sciences, Örebro University, Örebro, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - J A Ramos-Quiroga
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Kuntsi
- Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - S V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - A D Børglum
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - A Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - B Franke
- Departments of Cognitive Neuroscience and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - B Cormand
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Duan K, Chen J, Calhoun VD, Jiang W, Rootes-Murdy K, Schoenmacker G, Silva RF, Franke B, Buitelaar JK, Hoogman M, Oosterlaan J, Hoekstra PJ, Heslenfeld D, Hartman CA, Sprooten E, Arias-Vasquez A, Turner JA, Liu J. Genomic patterns linked to gray matter alterations underlying working memory deficits in adults and adolescents with attention-deficit/hyperactivity disorder. Transl Psychiatry 2023; 13:50. [PMID: 36774336 PMCID: PMC9922257 DOI: 10.1038/s41398-023-02349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder, with onset in childhood and a considerable likelihood to persist into adulthood. Our previous work has identified that across adults and adolescents with ADHD, gray matter volume (GMV) alteration in the frontal cortex was consistently associated with working memory underperformance, and GMV alteration in the cerebellum was associated with inattention. Recent knowledge regarding ADHD genetic risk loci makes it feasible to investigate genomic factors underlying these persistent GMV alterations, potentially illuminating the pathology of ADHD persistence. Based on this, we applied a sparsity-constrained multivariate data fusion approach, sparse parallel independent component analysis, to GMV variations in the frontal and cerebellum regions and candidate risk single nucleotide polymorphisms (SNPs) data from 341 unrelated adult participants, including 167 individuals with ADHD, 47 unaffected siblings, and 127 healthy controls. We identified one SNP component significantly associated with one GMV component in superior/middle frontal regions and replicated this association in 317 adolescents from ADHD families. The association was stronger in individuals with ADHD than in controls, and stronger in adults and older adolescents than in younger ones. The SNP component highlights 93 SNPs in long non-coding RNAs mainly in chromosome 5 and 21 protein-coding genes that are significantly enriched in human neuron cells. Eighteen identified SNPs have regulation effects on gene expression, transcript expression, isoform percentage, or methylation level in frontal regions. Identified genes highlight MEF2C, CADM2, and CADPS2, which are relevant for modulating neuronal substrates underlying high-level cognition in ADHD, and their causality effects on ADHD persistence await further investigations. Overall, through a multivariate analysis, we have revealed a genomic pattern underpinning the frontal gray matter variation related to working memory deficit in ADHD.
Collapse
Affiliation(s)
- Kuaikuai Duan
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Vince D Calhoun
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Wenhao Jiang
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | | | - Gido Schoenmacker
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rogers F Silva
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Oosterlaan
- Department of Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk Heslenfeld
- Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Catharina A Hartman
- Department of Psychiatry, University of Groningen, Groningen, The Netherlands
| | - Emma Sprooten
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jessica A Turner
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA.
- Department of Computer Science, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
8
|
Trappc9 Deficiency Impairs the Plasticity of Stem Cells. Int J Mol Sci 2022; 23:ijms23094900. [PMID: 35563289 PMCID: PMC9101649 DOI: 10.3390/ijms23094900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic mutations of trappc9 cause intellectual disability with the atrophy of brain structures and variable obesity by poorly understood mechanisms. Trappc9-deficient mice develop phenotypes resembling pathological changes in humans and appear overweight shortly after weaning, and thus are useful for studying the pathogenesis of obesity. Here, we investigated the effects of trappc9 deficiency on the proliferation and differentiation capacity of adipose-derived stem cells (ASCs). We isolated ASCs from mice before overweight was developed and found that trappc9-null ASCs exhibited signs of premature senescence and cell death. While the lineage commitment was retained, trappc9-null ASCs preferred adipogenic differentiation. We observed a profound accumulation of lipid droplets in adipogenic cells derived from trappc9-deficient ASCs and marked differences in the distribution patterns and levels of calcium deposited in osteoblasts obtained from trappc9-null ASCs. Biochemical studies revealed that trappc9 deficiency resulted in an upregulated expression of rab1, rab11, and rab18, and agitated autophagy in ASCs. Moreover, we found that the content of neural stem cells in both the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus vastly declined in trappc9-null mice. Collectively, our results suggest that obesity, as well as brain structure hypoplasia induced by the deficiency of trappc9, involves an impairment in the plasticity of stem cells.
Collapse
|
9
|
Fu X, Yao T, Chen X, Li H, Wu J. MEF2C gene variations are associated with ADHD in the Chinese Han population: a case-control study. J Neural Transm (Vienna) 2022; 129:431-439. [PMID: 35357565 DOI: 10.1007/s00702-022-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/12/2022] [Indexed: 11/30/2022]
Abstract
Myocyte enhancer factor 2C (MEF2C) is associated with hyperactivity and might be a novel risk gene for susceptibility to attention deficit hyperactivity disorder (ADHD). Therefore, this study aimed to explore the association between MEF2C genetic variants and ADHD in the Chinese Han population. A total of 215 patients with ADHD and 233 controls were recruited for this study. The Swanson, Nolan, and Pelham version IV questionnaire was used to evaluate the clinical features of ADHD. In silico analysis was used to annotate the biological functions of the promising single nucleotide polymorphisms. Our findings indicated that MEF2C rs587490 was significantly associated with ADHD in the multiplicative model (OR = 0.640, p = 0.002). Participants with the rs587490 TT allele exhibited less hyperactivity/impulsivity than those with the rs587490 CC allele. Furthermore, the expression quantitative trait loci analysis suggested that rs587490 could regulate the gene expression of MEF2C in the hippocampus, putamen, thalamus, and frontal white matter. Our study concluded that the MEF2C rs587490 T allele is significantly associated with a reduced risk of ADHD in the Chinese Han population, which provides new insight into the genetic etiology of ADHD.
Collapse
Affiliation(s)
- Xihang Fu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ting Yao
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Huiru Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Ben Ayed I, Bouchaala W, Bouzid A, Feki W, Souissi A, Ben Nsir S, Ben Said M, Sammouda T, Majdoub F, Kharrat I, Kamoun F, Elloumi I, Kamoun H, Tlili A, Masmoudi S, Triki C. Further insights into the spectrum phenotype of TRAPPC9 and CDK5RAP2 genes, segregating independently in a large Tunisian family with intellectual disability and microcephaly. Eur J Med Genet 2021; 64:104373. [PMID: 34737153 DOI: 10.1016/j.ejmg.2021.104373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
Intellectual disability (ID) often co-occurs with other neurologic phenotypes making molecular diagnosis more challenging particularly in consanguineous populations with the co-segregation of more than one ID-related gene in some cases. In this study, we investigated the phenotype of three patients from a large Tunisian family with significant ID phenotypic variability and microcephaly and performed a clinical exome sequencing in two cases. We identified, within the first branch, a homozygous variant in the TRAPPC9 gene (p.Arg472Ter) in two cases presenting severe ID, absent speech, congenital/secondary microcephaly in addition to autistic features, supporting the implication of TRAPPC9 in the "secondary" autism spectrum disorders and congenital microcephaly. In the second branch, we identified a homozygous variant (p.Lys189ArgfsTer15) in the CDK5RAP2 gene associated with an heterozygous TRAPPC9 variant (p.Arg472Ter) in one case harbouring primary hereditary microcephaly (MCPH) associated with an inter-hypothalamic adhesion, mixed hearing loss, selective thinning in the retinal nerve fiber layer and parafoveal ganglion cell complex, and short stature. Our findings expand the spectrum of the recently reported neurosensorial abnormalities and revealed the variable phenotype expressivity of CDK5RAP2 defect. Our study highlights the complexity of the genetic background of microcephaly/ID and the efficiency of the exome sequencing to provide an accurate diagnosis and to improve the management and follow-up of such patients.
Collapse
Affiliation(s)
- Ikhlas Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Tunisia; Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Tunisia.
| | - Wafa Bouchaala
- Child Neurology Department, University Hedi Chaker Hospital of Sfax, Tunisia; Research Laboratory "Neuropédiatrie" LR19ES15, Sfax University, Tunisia
| | - Amal Bouzid
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Tunisia; Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Wiem Feki
- Radiology Department, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Sihem Ben Nsir
- Child Neurology Department, University Hedi Chaker Hospital of Sfax, Tunisia; Research Laboratory "Neuropédiatrie" LR19ES15, Sfax University, Tunisia
| | - Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Takwa Sammouda
- Department of Ophthalmology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Fatma Majdoub
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Tunisia
| | - Ines Kharrat
- Department of Otorhinolaryngology, University Habib Bourguiba Hospital of Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, University Hedi Chaker Hospital of Sfax, Tunisia; Research Laboratory "Neuropédiatrie" LR19ES15, Sfax University, Tunisia
| | - Ines Elloumi
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Hassen Kamoun
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Tunisia; Laboratory of Human Molecular Genetics, LR33ES99, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates; Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Chahnez Triki
- Child Neurology Department, University Hedi Chaker Hospital of Sfax, Tunisia; Research Laboratory "Neuropédiatrie" LR19ES15, Sfax University, Tunisia
| |
Collapse
|
11
|
Zhang B, Ding Z, Li L, Xie LK, Fan YJ, Xu YZ. Two oppositely-charged sf3b1 mutations cause defective development, impaired immune response, and aberrant selection of intronic branch sites in Drosophila. PLoS Genet 2021; 17:e1009861. [PMID: 34723968 PMCID: PMC8559932 DOI: 10.1371/journal.pgen.1009861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
SF3B1 mutations occur in many cancers, and the highly conserved His662 residue is one of the hotspot mutation sites. To address effects on splicing and development, we constructed strains carrying point mutations at the corresponding residue His698 in Drosophila using the CRISPR-Cas9 technique. Two mutations, H698D and H698R, were selected due to their frequent presence in patients and notable opposite charges. Both the sf3b1-H698D and–H698R mutant flies exhibit developmental defects, including less egg-laying, decreased hatching rates, delayed morphogenesis and shorter lifespans. Interestingly, the H698D mutant has decreased resistance to fungal infection, while the H698R mutant shows impaired climbing ability. Consistent with these phenotypes, further analysis of RNA-seq data finds altered expression of immune response genes and changed alternative splicing of muscle and neural-related genes in the two mutants, respectively. Expression of Mef2-RB, an isoform of Mef2 gene that was downregulated due to splicing changes caused by H698R, partly rescues the climbing defects of the sf3b1-H698R mutant. Lariat sequencing reveals that the two sf3b1-H698 mutations cause aberrant selection of multiple intronic branch sites, with the H698R mutant using far upstream branch sites in the changed alternative splicing events. This study provides in vivo evidence from Drosophila that elucidates how these SF3B1 hotspot mutations alter splicing and their consequences in development and in the immune system. In the past decade, one of the important findings in the RNA splicing field has been that somatic SF3B1 mutations widely occur in many cancers. Including R625, H662, K666, K700 and E902, there are five hotspot mutation sites in the highly conserved HEAT repeats of SF3B1. Several kinds of H662 mutations have been found widely in MDS, AML, CLL and breast cancers; however, it remains unclear how these H662 mutations alter splicing and whether they have in vivo effects on development. To address these questions, in this manuscript, we first summarized the H662 mutations in human diseases and constructed two corresponding Drosophila mutant strains, sf3b1-H698D and -H698R using CRISPR-Cas9. Analyses of these two fly strains find that the two oppositely charged Sf3b1-H698 mutants are defective in development. In addition, one mutant has decreased climbing ability, whereas the other mutant has impaired immune response. Further RNA-seq allows us to find responsible genes in each mutant strain, and lariat sequencing reveals that both mutations cause aberrant selection of the intronic branch sites. Our findings provide the first in vivo evidence that Sf3b1 mutations result in defective development, and also reveal a molecular mechanism of these hotspot histidine mutations that enhance the use of cryptic branch sites to alter splicing. Importantly, we demonstrate that the H698R mutant prefers to use far upstream branch sites.
Collapse
Affiliation(s)
- Bei Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Zhan Ding
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Liang Li
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Ling-Kun Xie
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
- * E-mail:
| |
Collapse
|
12
|
Rivero O, Alhama-Riba J, Ku HP, Fischer M, Ortega G, Álmos P, Diouf D, van den Hove D, Lesch KP. Haploinsufficiency of the Attention-Deficit/Hyperactivity Disorder Risk Gene St3gal3 in Mice Causes Alterations in Cognition and Expression of Genes Involved in Myelination and Sialylation. Front Genet 2021; 12:688488. [PMID: 34650588 PMCID: PMC8505805 DOI: 10.3389/fgene.2021.688488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Genome wide association meta-analysis identified ST3GAL3, a gene encoding the beta-galactosidase-alpha-2,3-sialyltransferase-III, as a risk gene for attention-deficit/hyperactivity disorder (ADHD). Although loss-of-function mutations in ST3GAL3 are implicated in non-syndromic autosomal recessive intellectual disability (NSARID) and West syndrome, the impact of ST3GAL3 haploinsufficiency on brain function and the pathophysiology of neurodevelopmental disorders (NDDs), such as ADHD, is unknown. Since St3gal3 null mutant mice display severe developmental delay and neurological deficits, we investigated the effects of partial inactivation of St3gal3 in heterozygous (HET) knockout (St3gal3±) mice on behavior as well as expression of markers linked to myelination processes and sialylation pathways. Our results reveal that male St3gal3 HET mice display cognitive deficits, while female HET animals show increased activity, as well as increased cognitive control, compared to their wildtype littermates. In addition, we observed subtle alterations in the expression of several markers implicated in oligodendrogenesis, myelin formation, and protein sialylation as well as cell adhesion/synaptic target glycoproteins of ST3GAL3 in a brain region- and/or sex-specific manner. Taken together, our findings indicate that haploinsufficiency of ST3GAL3 results in a sex-dependent alteration of cognition, behavior and markers of brain plasticity.
Collapse
Affiliation(s)
- Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Valencia, Spain
| | - Judit Alhama-Riba
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Hsing-Ping Ku
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Matthias Fischer
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Gabriela Ortega
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Péter Álmos
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - David Diouf
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
13
|
Novel Compound Heterozygous Mutation in TRAPPC9 Gene: The Relevance of Whole Genome Sequencing. Genes (Basel) 2021; 12:genes12040557. [PMID: 33921338 PMCID: PMC8068822 DOI: 10.3390/genes12040557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Advances in high-throughput technologies and its implementation worldwide have had a considerable impact on the elucidation of the molecular causes underlying neurodevelopmental psychiatric disorders, especially for autism spectrum disorder and intellectual disability (ID). Nevertheless, etiology remains elusive in close to 50% of cases, even in those families with multiple affected individuals, strongly hinting at a genetic cause. Here we present a case report of two siblings affected with severe ID and other comorbidities, who embarked on a genetic testing odyssey until diagnosis was reached by using whole genome sequencing (WGS). WGS identified a maternally inherited novel missense variant (NM_031466.7:c.1037G > A; p.Gly346Glu) and a paternally inherited 90 kb intragenic deletion in TRAPPC9 gene. This report demonstrates the clinical utility of WGS in patients who remain undiagnosed after whole exome sequencing.
Collapse
|
14
|
Singgih EL, van der Voet M, Schimmel-Naber M, Brinkmann EL, Schenck A, Franke B. Investigating cytosolic 5'-nucleotidase II family genes as candidates for neuropsychiatric disorders in Drosophila (114/150 chr). Transl Psychiatry 2021; 11:55. [PMID: 33462198 PMCID: PMC7813868 DOI: 10.1038/s41398-020-01149-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Cytosolic 5'-nucleotidases II (cNT5-II) are an evolutionary conserved family of 5'-nucleotidases that catalyze the intracellular hydrolysis of nucleotides. In humans, the family is encoded by five genes, namely NT5C2, NT5DC1, NT5DC2, NT5DC3, and NT5DC4. While very little is known about the role of these genes in the nervous system, several of them have been associated with neuropsychiatric disorders. Here, we tested whether manipulating neuronal expression of cNT5-II orthologues affects neuropsychiatric disorders-related phenotypes in the model organism Drosophila melanogaster. We investigated the brain expression of Drosophila orthologues of cNT5-II family (dNT5A-CG2277, dNT5B-CG32549, and dNT5C-CG1814) using quantitative real-time polymerase chain reaction (qRT-PCR). Using the UAS/Gal4 system, we also manipulated the expression of these genes specifically in neurons. The knockdown was subjected to neuropsychiatric disorder-relevant behavioral assays, namely light-off jump reflex habituation and locomotor activity, and sleep was measured. In addition, neuromuscular junction synaptic morphology was assessed. We found that dNT5A, dNT5B, and dNT5C were all expressed in the brain. dNT5C was particularly enriched in the brain, especially at pharate and adult stages. Pan-neuronal knockdown of dNT5A and dNT5C showed impaired habituation learning. Knockdown of each of the genes also consistently led to mildly reduced activity and/or increased sleep. None of the knockdown models displayed significant alterations in synaptic morphology. In conclusion, in addition to genetic associations with psychiatric disorders in humans, altered expression of cNT5-II genes in the Drosophila nervous system plays a role in disease-relevant behaviors.
Collapse
Affiliation(s)
- Euginia L. Singgih
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique van der Voet
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marlies Schimmel-Naber
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emma L. Brinkmann
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annette Schenck
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Ke Y, Weng M, Chhetri G, Usman M, Li Y, Yu Q, Ding Y, Wang Z, Wang X, Sultana P, DiFiglia M, Li X. Trappc9 deficiency in mice impairs learning and memory by causing imbalance of dopamine D1 and D2 neurons. SCIENCE ADVANCES 2020; 6:6/47/eabb7781. [PMID: 33208359 PMCID: PMC7673810 DOI: 10.1126/sciadv.abb7781] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/01/2020] [Indexed: 05/06/2023]
Abstract
Genetic mutations in the gene encoding transport protein particle complex 9 (trappc9), a subunit of TRAPP that acts as a guanine nucleotide exchange factor for rab proteins, cause intellectual disability with brain structural malformations by elusive mechanisms. Here, we report that trappc9-deficient mice exhibit a broad range of behavioral deficits and postnatal delay in growth of the brain. Contrary to volume decline of various brain structures, the striatum of trappc9 null mice was enlarged. An imbalance existed between dopamine D1 and D2 receptor containing neurons in the brain of trappc9-deficient mice; pharmacological manipulation of dopamine receptors improved performances of trappc9 null mice to levels of wild-type mice on cognitive tasks. Loss of trappc9 compromised the activation of rab11 in the brain and resulted in retardation of endocytic receptor recycling in neurons. Our study elicits a pathogenic mechanism and a potential treatment for trappc9-linked disorders including intellectual disability.
Collapse
Affiliation(s)
- Yuting Ke
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Meiqian Weng
- Mucosal Immunology Laboratory, Combined Program in Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Gaurav Chhetri
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Qing Yu
- Department of Nephrology, Shanghai General Hospital, 650 Songjiang Road, Songjiang District, Shanghai 201620, China
| | - Yingzhuo Ding
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Xiaolong Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Pinky Sultana
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Xueyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
16
|
Bodnar B, DeGruttola A, Zhu Y, Lin Y, Zhang Y, Mo X, Hu W. Emerging role of NIK/IKK2-binding protein (NIBP)/trafficking protein particle complex 9 (TRAPPC9) in nervous system diseases. Transl Res 2020; 224:55-70. [PMID: 32434006 PMCID: PMC7442628 DOI: 10.1016/j.trsl.2020.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/05/2023]
Abstract
NFκB signaling and protein trafficking network play important roles in various biological and pathological processes. NIK-and-IKK2-binding protein (NIBP), also known as trafficking protein particle complex 9 (TRAPPC9), is a prototype member of a novel protein family, and has been shown to regulate both NFκB signaling pathway and protein transport/trafficking. NIBP is extensively expressed in the nervous system and plays an important role in regulating neurogenesis and neuronal differentiation. NIBP/TRAPPC9 mutations have been linked to an autosomal recessive intellectual disability syndrome, called NIBP Syndrome, which is characterized by nonsyndromic autosomal recessive intellectual disability along with other symptoms such as obesity, microcephaly, and facial dysmorphia. As more cases of NIBP Syndrome are identified, new light is being shed on the role of NIBP/TRAPPC9 in the central nervous system developments and diseases. NIBP is also involved in the enteric nervous system. This review will highlight the importance of NIBP/TRAPPC9 in central and enteric nervous system diseases, and the established possible mechanisms for developing a potential therapeutic.
Collapse
Affiliation(s)
- Brittany Bodnar
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Arianna DeGruttola
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yuanjun Zhu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Yuan Lin
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Karam CS, Coie LA, Javitch JA. Small Flies Meet Big Data: Genetic Convergence of Neurodevelopmental Disorders Modeled in Drosophila. Am J Psychiatry 2020; 177:482-484. [PMID: 32475139 PMCID: PMC7537407 DOI: 10.1176/appi.ajp.2020.20040412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Caline S. Karam
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Lilian A. Coie
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States,Department of Neurobiology and Behavior, Columbia University, New York, NY, United States
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States,Department of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
18
|
Affiliation(s)
- Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
19
|
Harvey PD. An Array of Studies Addressing Cognition and Cognitively Defined Neuropsychiatric Conditions: Many More Connections Than You Might Think. Am J Psychiatry 2020; 177:491-496. [PMID: 32475142 DOI: 10.1176/appi.ajp.2020.20040407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Six articles in the June 2020 issue of the American Journal of Psychiatry address the overall construct of cognition. These articles have a broad connection to cognition, which is itself a broad concept. From the experimental psychology perspective, cognition is the set of processes associated with attending, learning, knowing, and remembering. From the clinical perspective, a number of neuropsychiatric conditions are defined by the presence of cognitive impairment, with onset ranging from childhood, such as attention deficit hyperactivity disorder and intellectual disability, to later life, such as dementia. Other conditions have notable cognitive impairments even if specific cognitive impairments are not an explicit part of their formal diagnostic criteria, including autism spectrum disorder and schizophrenia. Thus, the array of articles in this issue are related to each other and also may make important points about the role of cognition in everyday functioning and the connections between cognitive impairments in neuropsychiatric conditions and in the human population in general. Further, these articles address the neurobiological substrates that have an impact on cognition, with important implications in other domains, such as genomics. Finally, through sophisticated research methods, they clarify the results of previous studies that were affected by a variety of methodological challenges.
Collapse
Affiliation(s)
- Philip D Harvey
- University of Miami Miller School of Medicine, Miami; and Bruce W. Carter Miami VA Medical Center, Miami
| |
Collapse
|