1
|
Walter NM, Yde Ohki CM, Ruhstaller S, Del Campana L, Salazar Campos JM, Smigielski L, Rubio B, Walitza S, Grünblatt E. Neurodevelopmental effects of omega-3 fatty acids and its combination with Methylphenidate in iPSC models of ADHD. J Psychiatr Res 2025; 184:78-90. [PMID: 40043588 DOI: 10.1016/j.jpsychires.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) has been linked to altered neurodevelopmental processes, including proliferation and differentiation of neural stem cells (NSC). We aimed to investigate the role of Wnt signaling, a pathway critical for brain development, in ADHD and to determine if modulation of this pathway using ω-3/6 polyunsaturated fatty acids (PUFAs) may provide a beneficial treatment approach. Given the symptom heterogeneity in ADHD and the limited response to conventional therapies for some patients, we examined the effects of ω-3/6 PUFA treatment combined with Methylphenidate (MPH) on neurodevelopmental mechanisms using induced pluripotent stem cell (iPSC)-derived NSCs, comparing controls to ADHD patients. Our results show that ω-3/6 PUFAs differentially regulate Wnt activity in NSCs depending on the patient's condition and the composition of the treatments. These findings highlight the potential of ω-3 PUFA treatment as personalized support for neurodevelopmental processes in ADHD. They also emphasize the importance of investigating ADHD subgroups, including those unresponsive to stimulant treatments, as they may exhibit distinct phenotypes.
Collapse
Affiliation(s)
- Natalie M Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; ZNZ PhD Program, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Cristine M Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Sina Ruhstaller
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Letizia Del Campana
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - José Maria Salazar Campos
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Belén Rubio
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Müller T, Krug S, Kayali Ö, Leichter E, Jahn N, Winter L, Krüger THC, Kahl KG, Sinke C, Heitland I. Initial evidence for neural correlates following a therapeutic intervention: altered resting state functional connectivity in the default mode network following attention training technique. Front Psychiatry 2025; 16:1479283. [PMID: 40115647 PMCID: PMC11922856 DOI: 10.3389/fpsyt.2025.1479283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/27/2025] [Indexed: 03/23/2025] Open
Abstract
Introduction The Attention Training Technique (ATT) is a psychotherapeutic intervention in Metacogntive Therapy (MCT) and aims at reducing maladaptive processes by strengthening attentional flexibility. ATT has demonstrated efficacy in treating depression on a clinical level. Here, we evaluated ATT at the neural level. We examined functional connectivity (FC) of the default mode network (DMN). Method 48 individuals diagnosed with Major Depressive Disorder (MDD) and 51 healthy controls (HC) participated in a resting-state (rs) functional magnetic resonance imaging (fMRI) experiment. The participants received either one week of ATT or a sham intervention. Rs-fMRI scans before and after treatment were compared using seed-to-voxel analysis. Results The 2x2x2 analysis did not reach significance. Nevertheless, a resting-state connectivity effect was found on the basis of a posttest at the second measurement time point in MDD. After one week, MDD patients who had received ATT intervention presented lower functional connectivity between the left posterior cingulate cortex (PCC) and the bilateral middle frontal gyrus (MFG) as well as between the right PCC and the left MFG compared to the MDD patients in the sham group. In HC we observed higher rsFC in spatially close but not the same brain regions under the same experimental condition. Conclusion We found a first hint of a change at the neural level on the basis of ATT. Whether the changes in rsFC found here indicate an improvement in the flexible shift of attentional focus due to ATT needs to be investigated in further research paradigms. Further experiments have to show whether this change in functional connectivity can be used as a specific outcome measure of ATT treatment.
Collapse
Affiliation(s)
- Torben Müller
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Svenja Krug
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Özlem Kayali
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Erik Leichter
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Niklas Jahn
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Lotta Winter
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Tillmann H C Krüger
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
- Center for Systems Neuroscience Hannover, Hanover, Germany
| | - Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Christopher Sinke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Ivo Heitland
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| |
Collapse
|
3
|
Kaminski A, Xie H, Hawkins B, Vaidya CJ. Change in striatal functional connectivity networks across 2 years due to stimulant exposure in childhood ADHD: results from the ABCD sample. Transl Psychiatry 2024; 14:463. [PMID: 39505862 PMCID: PMC11541585 DOI: 10.1038/s41398-024-03165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Widely prescribed for Attention-Deficit/Hyperactivity Disorder (ADHD), stimulants (e.g., methylphenidate) have been studied for their chronic effects on the brain in prospective designs controlling dosage and adherence. While controlled approaches are essential, they do not approximate real-world stimulant exposure contexts where medication interruptions, dosage non-compliance, and polypharmacy are common. Brain changes in real-world conditions are largely unexplored. To fill this gap, we capitalized on the observational design of the Adolescent Brain Cognitive Development (ABCD) study to examine effects of stimulants on large-scale bilateral cortical networks' resting-state functional connectivity (rs-FC) with 6 striatal regions (left and right caudate, putamen, and nucleus accumbens) across two years in children with ADHD. Bayesian hierarchical regressions revealed associations between stimulant exposure and change in rs-FC of multiple striatal-cortical networks, affiliated with executive and visuo-motor control, which were not driven by general psychotropic medication. Of these connections, three were selective to stimulants versus stimulant naive: reduced rs-FC between caudate and frontoparietal network, and between putamen and frontoparietal and visual networks. Comparison with typically developing children in the ABCD sample revealed stronger rs-FC reduction in stimulant-exposed children for putamen and frontoparietal and visual networks, suggesting a normalizing effect of stimulants. 14% of stimulant-exposed children demonstrated reliable reduction in ADHD symptoms, and were distinguished by stronger rs-FC reduction between right putamen and visual network. Thus, stimulant exposure for a two-year period under real-world conditions modulated striatal-cortical functional networks broadly, had a normalizing effect on a subset of networks, and was associated with potential therapeutic effects involving visual attentional control.
Collapse
Affiliation(s)
- Adam Kaminski
- Department of Psychology, Georgetown University, Washington, DC, USA.
| | - Hua Xie
- Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | - Brylee Hawkins
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - Chandan J Vaidya
- Department of Psychology, Georgetown University, Washington, DC, USA.
- Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
4
|
Kaminski A, Xie H, Hawkins B, Vaidya CJ. Change in Striatal Functional Connectivity Networks Across Two Years Due to Stimulant Exposure in Childhood ADHD: Results from the ABCD Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304470. [PMID: 38562872 PMCID: PMC10984058 DOI: 10.1101/2024.03.18.24304470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Widely prescribed for Attention-Deficit/Hyperactivity Disorder (ADHD), stimulants (e.g., methylphenidate) have been studied for their chronic effects on the brain in prospective designs controlling dosage and adherence. While controlled approaches are essential, they do not approximate real-world stimulant exposure contexts where medication interruptions, dosage non-compliance, and polypharmacy are common. Brain changes in real-world conditions are largely unexplored. To fill this gap, we capitalized on the observational design of the Adolescent Brain Cognitive Development (ABCD) study to examine effects of stimulants on large-scale bilateral cortical networks' resting-state functional connectivity (rs-FC) with 6 striatal regions (left and right caudate, putamen, and nucleus accumbens) across two years in children with ADHD. Bayesian hierarchical regressions revealed associations between stimulant exposure and change in rs-FC of multiple striatal-cortical networks, affiliated with executive and visuo-motor control, which were not driven by general psychotropic medication. Of these connections, three were selective to stimulants versus stimulant naive: reduced rs-FC between caudate and frontoparietal network, and between putamen and frontoparietal and visual networks. Comparison with typically developing children in the ABCD sample revealed stronger rs-FC reduction in stimulant-exposed children for putamen and frontoparietal and visual networks, suggesting a normalizing effect of stimulants. 14% of stimulant-exposed children demonstrated reliable reduction in ADHD symptoms, and were distinguished by stronger rs-FC reduction between right putamen and visual network. Thus, stimulant exposure for a two-year period under real-world conditions modulated striatal-cortical functional networks broadly, had a normalizing effect on a subset of networks, and was associated with potential therapeutic effects involving visual attentional control.
Collapse
Affiliation(s)
- Adam Kaminski
- Department of Psychology, Georgetown University, Washington, DC
| | - Hua Xie
- Children’s Research Institute, Children’s National Medical Center, Washington, DC
| | - Brylee Hawkins
- Department of Psychology, Georgetown University, Washington, DC
| | - Chandan J. Vaidya
- Department of Psychology, Georgetown University, Washington, DC
- Children’s Research Institute, Children’s National Medical Center, Washington, DC
| |
Collapse
|
5
|
Wang X, Zhao K, Yao L, Fonzo GA, Satterthwaite TD, Rekik I, Zhang Y. Delineating Transdiagnostic Subtypes in Neurodevelopmental Disorders via Contrastive Graph Machine Learning of Brain Connectivity Patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582790. [PMID: 38496573 PMCID: PMC10942316 DOI: 10.1101/2024.02.29.582790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Neurodevelopmental disorders, such as Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD), are characterized by comorbidity and heterogeneity. Identifying distinct subtypes within these disorders can illuminate the underlying neurobiological and clinical characteristics, paving the way for more tailored treatments. We adopted a novel transdiagnostic approach across ADHD and ASD, using cutting-edge contrastive graph machine learning to determine subtypes based on brain network connectivity as revealed by resting-state functional magnetic resonance imaging. Our approach identified two generalizable subtypes characterized by robust and distinct functional connectivity patterns, prominently within the frontoparietal control network and the somatomotor network. These subtypes exhibited pronounced differences in major cognitive and behavioural measures. We further demonstrated the generalizability of these subtypes using data collected from independent study sites. Our data-driven approach provides a novel solution for parsing biological heterogeneity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xuesong Wang
- Data 61, Commonwealth Scientific and Industrial Research Organisation, New South Wales, Australia
| | - Kanhao Zhao
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Lina Yao
- Data 61, Commonwealth Scientific and Industrial Research Organisation, New South Wales, Australia
- School of Computer Science and Engineering, University of New South Wales, New South Wales, Australia
| | - Gregory A. Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | | | - Islem Rekik
- BASIRA Lab, Imperial-X and Department of Computing, Imperial College London, London, UK
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
6
|
Greenwood PB, DeSerisy M, Koe E, Rodriguez E, Salas L, Perera FP, Herbstman J, Pagliaccio D, Margolis AE. Combined and sequential exposure to prenatal second hand smoke and postnatal maternal distress is associated with cingulo-opercular global efficiency and attention problems in school-age children. Neurotoxicol Teratol 2024; 102:107338. [PMID: 38431065 PMCID: PMC11781759 DOI: 10.1016/j.ntt.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Prenatal exposure to secondhand (environmental) tobacco smoke (SHS) is associated with adverse neurodevelopmental outcomes, including altered functional activation of cognitive control brain circuitry and increased attention problems in children. Exposure to SHS is more common among Black youth who are also disproportionately exposed to socioeconomic disadvantage and concomitant maternal distress. We examine the combined effects of exposure to prenatal SHS and postnatal maternal distress on the global efficiency (GE) of the brain's cingulo-opercular (CO) and fronto-parietal control (FP) networks in childhood, as well as associated attention problems. METHODS Thirty-two children of non-smoking mothers followed in a prospective longitudinal birth cohort at the Columbia Center for Children's Environmental Health (CCCEH) completed magnetic resonance imaging (MRI) at ages 7-9 years old. GE scores were extracted from general connectivity data collected while children completed the Simon Spatial Incompatibility functional magnetic resonance imaging (fMRI) task. Prenatal SHS was measured using maternal urinary cotinine from the third trimester; postnatal maternal distress was assessed at child age 5 using the Psychiatric Epidemiology Research Interview (PERI-D). The Child Behavior Checklist (CBCL) measured Attention and Attention Deficit Hyperactivity Disorder (ADHD) problems at ages 7-9. Linear regressions examined the interaction between prenatal SHS and postnatal maternal distress on the GE of the CO or FP networks, as well as associations between exposure-related network alterations and attention problems. All models controlled for age, sex, maternal education at prenatal visit, race/ethnicity, global brain correlation, and mean head motion. RESULTS The prenatal SHS by postnatal maternal distress interaction term associated with the GE of the CO network (β = 0.673, Bu = 0.042, t(22) = 2.427, p = .024, D = 1.42, 95% CI [0.006, 0.079], but not the FP network (β = 0.138, Bu = 0.006, t(22) = 0.434, p = .668, 95% CI [-0.022, 0.033]). Higher GE of the CO network was associated with more attention problems (β = 0.472, Bu = 43.076, t(23) = 2.780, p = .011, D = 1.74, n = 31, 95% CI [11.024, 75.128], n = 31) and ADHD risk (β = 0.436, Bu = 21.961, t(29) = 2.567, p = .018, D = 1.81, 95% CI [4.219, 39.703], n = 30). CONCLUSIONS These preliminary findings suggest that sequential prenatal SHS exposure and postnatal maternal distress could alter the efficiency of the CO network and increase risk for downstream attention problems and ADHD. These findings are consistent with prior studies showing that prenatal SHS exposure is associated with altered function of brain regions that support cognitive control and with ADHD problems. Our model also identifies postnatal maternal distress as a significant moderator of this association. These data highlight the combined neurotoxic effects of exposure to prenatal SHS and postnatal maternal distress. Critically, such exposures are disproportionately distributed among youth from minoritized groups, pointing to potential pathways to known mental health disparities.
Collapse
Affiliation(s)
- Paige B Greenwood
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Mariah DeSerisy
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Emily Koe
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Elizabeth Rodriguez
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Leilani Salas
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Frederica P Perera
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Julie Herbstman
- Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - David Pagliaccio
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Amy E Margolis
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
7
|
Loo SK, Lenartowicz A, Norman LJ, Michelini G. Translating Decades of Neuroscience Research into Diagnostic and Treatment Biomarkers for ADHD. ADVANCES IN NEUROBIOLOGY 2024; 40:579-616. [PMID: 39562458 DOI: 10.1007/978-3-031-69491-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In this chapter, we review scientific findings that form the basis for neuroimaging and neurophysiological biomarkers for ADHD diagnosis and treatment. We then highlight the different challenges in translating mechanistic findings into biomarkers for ADHD diagnosis and treatment. Population heterogeneity is a primary barrier for identifying biomarkers of ADHD diagnosis, which requires shifts toward dimensional approaches that identify clinically useful subgroups or prospective biomarkers that can identify trajectories of illness, function, or treatment response. Methodological limitations, including emphasis on group level analyses of treatment effects in small sample sizes, are the primary barriers to biomarker discovery in ADHD treatment. Modifications to clinical trials, including shifting towards testing biomarkers of a priori prediction of functionally related brain targets, treatment response, and side effects, are suggested. Finally, future directions for biomarker work are discussed.
Collapse
Affiliation(s)
- Sandra K Loo
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Agatha Lenartowicz
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Luke J Norman
- National Institute of Mental Health, Bethesda, MD, USA
| | - Giorgia Michelini
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Parlatini V, Radua J, Solanes Font A, Wichers R, Maltezos S, Sanefuji M, Dell'Acqua F, Catani M, Thiebaut de Schotten M, Murphy D. Poor response to methylphenidate is associated with a smaller dorsal attentive network in adult Attention-Deficit/Hyperactivity Disorder (ADHD). Transl Psychiatry 2023; 13:303. [PMID: 37777529 PMCID: PMC10542768 DOI: 10.1038/s41398-023-02598-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Stimulants, such as methylphenidate (MPH), are effective in treating attention-deficit/hyperactivity disorder (ADHD), but there is individual variability in response, especially in adults. To improve outcomes, we need to understand the factors associated with adult treatment response. This longitudinal study investigated whether pre-treatment anatomy of the fronto-striatal and fronto-parietal attentional networks was associated with MPH treatment response. 60 adults with ADHD underwent diffusion brain imaging before starting MPH treatment, and response was measured at two months. We tested the association between brain anatomy and treatment response by using regression-based approaches; and compared the identified anatomical characteristics with those of 20 matched neurotypical controls in secondary analyses. Finally, we explored whether combining anatomical with clinical and neuropsychological data through machine learning provided a more comprehensive profile of factors associated with treatment response. At a group level, a smaller left dorsal superior longitudinal fasciculus (SLF I), a tract responsible for the voluntary control of attention, was associated with a significantly lower probability of being responders to two-month MPH-treatment. The association between the volume of the left SLF I and treatment response was driven by improvement on both inattentive and hyperactive/impulsive symptoms. Only non-responders significantly differed from controls in this tract metric. Finally, our machine learning approach identified clinico-neuropsychological factors associated with treatment response, such as higher cognitive performance and symptom severity at baseline. These novel findings add to our understanding of the pathophysiological mechanisms underlying response to MPH, pointing to the dorsal attentive network as playing a key role.
Collapse
Affiliation(s)
- Valeria Parlatini
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
| | - Joaquim Radua
- Institut d'Investigacions Biomediques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain
| | - Aleix Solanes Font
- Institut d'Investigacions Biomediques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain
| | - Rob Wichers
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Stefanos Maltezos
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Masafumi Sanefuji
- Research Centre for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Flavio Dell'Acqua
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Marco Catani
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Michel Thiebaut de Schotten
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Declan Murphy
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| |
Collapse
|
9
|
Fan J, Xia J, Liu Q, Wang X, Du H, Gao F, Han Y, Yu Q, Lu J, Xiao C, Tan C, Zhu X. Neural substrates for dissociation of cognition inhibition in autogenous- and reactive-type obsessive-compulsive disorder. J Psychiatr Res 2023; 165:150-157. [PMID: 37499486 DOI: 10.1016/j.jpsychires.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The taxonomy of autogenous- and reactive-type obsessive-compulsive disorder (OCD) (AO vs. RO) is one of the most valid subtyping approaches to the heterogeneity of OCD. The present study aimed to seek evidence of neural substrates supporting the dissociation of cognition inhibition in AO and RO which was revealed by our previous behavioral and electrophysiological work. METHODS A total of 165 patients with OCD (86 AO versus 79 RO), and 79 healthy controls (HC) underwent resting-state functional magnetic resonance imaging scans. Within-network connectivity, node strength, and edge-wise functional connectivity (FC) in cognition and response inhibition networks were calculated. Results from 3 cognition and 2 response inhibition network atlases were compared to confirm the robustness of the findings. RESULTS Both AO and RO showed lower within-network connectivity in response inhibition networks, while lower within cognition inhibition network connectivity was only detected in AO. Besides shared weaker node strength in the anterior insula (AI), anterior cingulate cortex (ACC), and supplementary motor area (SMA), AO had a broader range of nodes within cognition inhibition networks exhibiting weaker strength, including nodes in right inferior frontal gyrus (IFG), left parietal and occipital regions. Decreased FC of left AI-CC, left IFG-ACC, and frontal-parietal regions in cognition inhibition networks were found in AO. CONCLUSIONS Findings indicate that unlike deficits in connectivity within response inhibition networks which may reflect a common pathology in AO and RO, deficits in connectivity within cognition inhibition networks were more pronounced in AO. These findings strengthen our insight into the heterogeneity in OCD.
Collapse
Affiliation(s)
- Jie Fan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Mental Disorders, Changsha, 410011, Hunan, China; National Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jie Xia
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qian Liu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hongyu Du
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Feng Gao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yan Han
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Quanhao Yu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jingjie Lu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chuman Xiao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiongzhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Mental Disorders, Changsha, 410011, Hunan, China; National Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
10
|
Norman LJ, Price J, Ahn K, Sudre G, Sharp W, Shaw P. Longitudinal trajectories of childhood and adolescent attention deficit hyperactivity disorder diagnoses in three cohorts. EClinicalMedicine 2023; 60:102021. [PMID: 37333663 PMCID: PMC10272308 DOI: 10.1016/j.eclinm.2023.102021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Background Attention deficit/hyperactivity disorder (ADHD) is usually conceptualized as a childhood-onset neurodevelopmental disorder, in which symptoms either decrease steadily into adulthood or remain stable. A recent study challenged this view, reporting that for most with ADHD, diagnostic status fluctuates with age. We ask if such a 'fluctuating' ADHD symptom trajectory subgroup is present in other population-based and clinic-based cohorts, centered on childhood and adolescence. Methods Cohorts were the population-based Adolescent Brain Cognitive Development (ABCD: N = 9735), Neurobehavioral Clinical Research (NCR: N = 258), and the Nathan Kline Institute-Rockland (NKI-Rockland: N = 149). All participants had three or more assessments spanning different age windows. Participants were categorized into developmental diagnostic subgroups: fluctuant ADHD (defined by two or more switches between meeting and not meeting ADHD criteria), remitting ADHD, persisting ADHD, emerging ADHD and never affected. Data were collected between 2011 and 2022. Analyses were performed between May 2022 and April 2023. Findings A subgroup with fluctuant child and adolescent ADHD diagnoses was found in all cohorts (29.3% of participants with ADHD in ABCD, 26.6% in NCR and 17% in NKI-Rockland). While the proportion of those with fluctuant ADHD increased with the number of assessments, it never constituted the dominant subgroup. Interpretation We provide further evidence in three cohorts for the existence of a fluctuant ADHD diagnostic subgroup during childhood and adolescence, albeit in a minority of cases. Such fluctuant child and adolescent ADHD diagnoses may suggest a natural history more akin to relapsing-remitting mood disorders and/or a marked sensitivity to environmental shifts that occur across development. Funding Intramural programs of the NHGRI and NIMH.
Collapse
Affiliation(s)
- Luke J. Norman
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jolie Price
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kwangmi Ahn
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gustavo Sudre
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wendy Sharp
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip Shaw
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
11
|
Norman LJ, Sudre G, Price J, Shastri GG, Shaw P. Evidence from "big data" for the default-mode hypothesis of ADHD: a mega-analysis of multiple large samples. Neuropsychopharmacology 2023; 48:281-289. [PMID: 36100657 PMCID: PMC9751118 DOI: 10.1038/s41386-022-01408-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 12/26/2022]
Abstract
We sought to identify resting-state characteristics related to attention deficit/hyperactivity disorder, both as a categorical diagnosis and as a trait feature, using large-scale samples which were processed according to a standardized pipeline. In categorical analyses, we considered 1301 subjects with diagnosed ADHD, contrasted against 1301 unaffected controls (total N = 2602; 1710 males (65.72%); mean age = 10.86 years, sd = 2.05). Cases and controls were 1:1 nearest neighbor matched on in-scanner motion and key demographic variables and drawn from multiple large cohorts. Associations between ADHD-traits and resting-state connectivity were also assessed in a large multi-cohort sample (N = 10,113). ADHD diagnosis was associated with less anticorrelation between the default mode and salience/ventral attention (B = 0.009, t = 3.45, p-FDR = 0.004, d = 0.14, 95% CI = 0.004, 0.014), somatomotor (B = 0.008, t = 3.49, p-FDR = 0.004, d = 0.14, 95% CI = 0.004, 0.013), and dorsal attention networks (B = 0.01, t = 4.28, p-FDR < 0.001, d = 0.17, 95% CI = 0.006, 0.015). These results were robust to sensitivity analyses considering comorbid internalizing problems, externalizing problems and psychostimulant medication. Similar findings were observed when examining ADHD traits, with the largest effect size observed for connectivity between the default mode network and the dorsal attention network (B = 0.0006, t = 5.57, p-FDR < 0.001, partial-r = 0.06, 95% CI = 0.0004, 0.0008). We report significant ADHD-related differences in interactions between the default mode network and task-positive networks, in line with default mode interference models of ADHD. Effect sizes (Cohen's d and partial-r, estimated from the mega-analytic models) were small, indicating subtle group differences. The overlap between the affected brain networks in the clinical and general population samples supports the notion of brain phenotypes operating along an ADHD continuum.
Collapse
Affiliation(s)
- Luke J Norman
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Gustavo Sudre
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jolie Price
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gauri G Shastri
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip Shaw
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Alkalay S, Dan O. Effect of short-term methylphenidate on social impairment in children with attention deficit/hyperactivity disorder: systematic review. Child Adolesc Psychiatry Ment Health 2022; 16:93. [PMID: 36443766 PMCID: PMC9706974 DOI: 10.1186/s13034-022-00526-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Attention Deficit/Hyperactivity disorder (ADHD) is one of the most common disorders in school-age children. In addition to learning difficulties associated with the disorder's core symptoms of inattention and hyperactivity, children with ADHD display substantial social impairments. Methylphenidate (MPH) in formulations such as Ritalin or Concerta mitigates inattention and hyperactivity, but the effects of the therapy on social behavior in children with ADHD are not clear. This review aims to determine the effectiveness of short term (up to 6 months) MPH treatment on three domains of social skills in children aged 6-14 with ADHD: (i) Recognition of nonverbal emotional expressions, which are a marker of inherent (unlearned) social understanding, (ii) theory of mind (ToM) components that relate to learned cognition and social communication, and (iii) social competence in everyday environments. 15 relevant studies were identified based on inclusion/exclusion criteria. The results show mixed effects: the overall social performance as evaluated by parents, teachers or peers, and some components of ToM, were found to improve following a weeks-long course of MPH treatment. However, the effects of the medication are less clear when evaluating momentary/nonverbal social responses such as reactions to emotional facial expressions. While the findings of this review indicate that an MPH medication regime of order weeks to months could improve, to a degree, social impairment in children with ADHD, more studies are required to identify the medications' mechanism and confirm such a conclusion.
Collapse
Affiliation(s)
- Sarit Alkalay
- Department of Psychology, The Center for Psychobiological Research, Max Stern Jezreel Valley Academic College, P.O.B. 72, 10806, Sede Nahum, Israel.
| | - Orrie Dan
- Department of Psychology, The Center for Psychobiological Research, Max Stern Jezreel Valley Academic College, P.O.B. 72, 10806 Sede Nahum, Israel
| |
Collapse
|
13
|
Kaiser A, Broeder C, Cohen JR, Douw L, Reneman L, Schrantee A. Effects of a single-dose methylphenidate challenge on resting-state functional connectivity in stimulant-treatment naive children and adults with ADHD. Hum Brain Mapp 2022; 43:4664-4675. [PMID: 35781371 PMCID: PMC9491277 DOI: 10.1002/hbm.25981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Prior studies suggest that methylphenidate, the primary pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD), alters functional brain connectivity. As the neurotransmitter systems targeted by methylphenidate undergo significant alterations throughout development, the effects of methylphenidate on functional connectivity may also be modulated by age. Therefore, we assessed the effects of a single methylphenidate challenge on brain network connectivity in stimulant-treatment naïve children and adults with ADHD. We obtained resting-state functional MRI from 50 boys (10-12 years of age) and 49 men (23-40 years of age) with ADHD (DSM IV, all subtypes), before and after an oral challenge with 0.5 mg/kg methylphenidate; and from 11 boys and 12 men as typically developing controls. Connectivity strength (CS), eigenvector centrality (EC), and betweenness centrality (BC) were calculated for the striatum, thalamus, dorsal anterior cingulate cortex (dACC), and prefrontal cortex (PFC). In line with our hypotheses, we found that methylphenidate decreased measures of connectivity and centrality in the striatum and thalamus in children with ADHD, but increased the same metrics in adults with ADHD. Surprisingly, we found no major effects of methylphenidate in the dACC and PFC in either children or adults. Interestingly, pre-methylphenidate, participants with ADHD showed aberrant connectivity and centrality compared to controls predominantly in frontal regions. Our findings demonstrate that methylphenidate's effects on connectivity of subcortical regions are age-dependent in stimulant-treatment naïve participants with ADHD, likely due to ongoing maturation of dopamine and noradrenaline systems. These findings highlight the importance for future studies to take a developmental perspective when studying the effects of methylphenidate treatment.
Collapse
Affiliation(s)
- Antonia Kaiser
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Caroline Broeder
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jessica R. Cohen
- Department of Psychology and NeuroscienceUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
14
|
Michelini G, Norman LJ, Shaw P, Loo SK. Treatment biomarkers for ADHD: Taking stock and moving forward. Transl Psychiatry 2022; 12:444. [PMID: 36224169 PMCID: PMC9556670 DOI: 10.1038/s41398-022-02207-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
The development of treatment biomarkers for psychiatric disorders has been challenging, particularly for heterogeneous neurodevelopmental conditions such as attention-deficit/hyperactivity disorder (ADHD). Promising findings are also rarely translated into clinical practice, especially with regard to treatment decisions and development of novel treatments. Despite this slow progress, the available neuroimaging, electrophysiological (EEG) and genetic literature provides a solid foundation for biomarker discovery. This article gives an updated review of promising treatment biomarkers for ADHD which may enhance personalized medicine and novel treatment development. The available literature points to promising pre-treatment profiles predicting efficacy of various pharmacological and non-pharmacological treatments for ADHD. These candidate predictive biomarkers, particularly those based on low-cost and non-invasive EEG assessments, show promise for the future stratification of patients to specific treatments. Studies with repeated biomarker assessments further show that different treatments produce distinct changes in brain profiles, which track treatment-related clinical improvements. These candidate monitoring/response biomarkers may aid future monitoring of treatment effects and point to mechanistic targets for novel treatments, such as neurotherapies. Nevertheless, existing research does not support any immediate clinical applications of treatment biomarkers for ADHD. Key barriers are the paucity of replications and external validations, the use of small and homogeneous samples of predominantly White children, and practical limitations, including the cost and technical requirements of biomarker assessments and their unknown feasibility and acceptability for people with ADHD. We conclude with a discussion of future directions and methodological changes to promote clinical translation and enhance personalized treatment decisions for diverse groups of individuals with ADHD.
Collapse
Affiliation(s)
- Giorgia Michelini
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Luke J Norman
- Office of the Clinical Director, NIMH, Bethesda, MD, USA
| | - Philip Shaw
- Office of the Clinical Director, NIMH, Bethesda, MD, USA
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Sandra K Loo
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Buitelaar J, Bölte S, Brandeis D, Caye A, Christmann N, Cortese S, Coghill D, Faraone SV, Franke B, Gleitz M, Greven CU, Kooij S, Leffa DT, Rommelse N, Newcorn JH, Polanczyk GV, Rohde LA, Simonoff E, Stein M, Vitiello B, Yazgan Y, Roesler M, Doepfner M, Banaschewski T. Toward Precision Medicine in ADHD. Front Behav Neurosci 2022; 16:900981. [PMID: 35874653 PMCID: PMC9299434 DOI: 10.3389/fnbeh.2022.900981] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is a complex and heterogeneous neurodevelopmental condition for which curative treatments are lacking. Whilst pharmacological treatments are generally effective and safe, there is considerable inter-individual variability among patients regarding treatment response, required dose, and tolerability. Many of the non-pharmacological treatments, which are preferred to drug-treatment by some patients, either lack efficacy for core symptoms or are associated with small effect sizes. No evidence-based decision tools are currently available to allocate pharmacological or psychosocial treatments based on the patient's clinical, environmental, cognitive, genetic, or biological characteristics. We systematically reviewed potential biomarkers that may help in diagnosing ADHD and/or stratifying ADHD into more homogeneous subgroups and/or predict clinical course, treatment response, and long-term outcome across the lifespan. Most work involved exploratory studies with cognitive, actigraphic and EEG diagnostic markers to predict ADHD, along with relatively few studies exploring markers to subtype ADHD and predict response to treatment. There is a critical need for multisite prospective carefully designed experimentally controlled or observational studies to identify biomarkers that index inter-individual variability and/or predict treatment response.
Collapse
Affiliation(s)
- Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands.,Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm, Sweden.,Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, WA, Australia
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Arthur Caye
- Department of Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Nina Christmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Samuele Cortese
- Centre for Innovation in Mental Health, Academic Unit of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.,Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Solent National Health System Trust, Southampton, United Kingdom.,Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, United States.,Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - David Coghill
- Departments of Paediatrics and Psychiatry, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen V Faraone
- Departments of Psychiatry, Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, NY, United States
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Markus Gleitz
- Medice Arzneimittel Pütter GmbH & Co. KG, Iserlohn, Germany
| | - Corina U Greven
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Sandra Kooij
- Amsterdam University Medical Center, Location VUMc, Amsterdam, Netherlands.,PsyQ, Expertise Center Adult ADHD, The Hague, Netherlands
| | - Douglas Teixeira Leffa
- Department of Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Nanda Rommelse
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jeffrey H Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Guilherme V Polanczyk
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil.,ADHD Outpatient Program and Developmental Psychiatry Program, Hospital de Clinica de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Emily Simonoff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Mark Stein
- Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy.,Department of Public Health, Johns Hopkins University, Baltimore, MA, United States
| | - Yanki Yazgan
- GuzelGunler Clinic, Istanbul, Turkey.,Yale Child Study Center, New Haven, CT, United States
| | - Michael Roesler
- Institute for Forensic Psychology and Psychiatry, Neurocenter, Saarland, Germany
| | - Manfred Doepfner
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty of the University of Cologne, Cologne, Germany.,School for Child and Adolescent Cognitive Behavioural Therapy, University Hospital of Cologne, Cologne, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| |
Collapse
|
16
|
The Editors. 2021 Articles of Import and Impact. Am J Psychiatry 2022; 179:17-20. [PMID: 34974759 DOI: 10.1176/appi.ajp.2021.21111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Malina M, Keedy S, Weafer J, Van Hedger K, de Wit H. Effects of Methamphetamine on Within- and Between-Network Connectivity in Healthy Adults. Cereb Cortex Commun 2021; 2:tgab063. [PMID: 34859242 PMCID: PMC8633740 DOI: 10.1093/texcom/tgab063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Methamphetamine (MA) abuse remains an urgent public health problem. Understanding how the drug affects brain function will help to identify how it leads to abuse and dependence. Previous studies indicate that MA and other stimulants have complex effects on resting state functional connectivity. Here, we used a hypothesis-free approach to examine the acute effects of MA (20 mg oral) versus placebo on neural connectivity in healthy adults. Using networks identified by an independent component analysis with placebo data, we examined the effects of MA on connectivity within and between resting state networks. The drug did not significantly alter connectivity within networks. MA did alter connectivity between some networks: it increased connectivity between both the thalamus and cerebellum to sensorimotor and middle temporal gyrus. However, MA decreased connectivity between sensorimotor and middle temporal gyrus networks. MA produced its expected subjective effects, but these were not significantly related to connectivity. The findings extend our knowledge of how MA affects connectivity, by reporting that it affects between-network connectivity but not within-network connectivity. Future studies with other behavioral measures may reveal relationships between the neural and behavioral actions of the drug.
Collapse
Affiliation(s)
- Michael Malina
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 MarylandAvenue, Chicago, IL 60637,Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Avenue, Chicago, IL 60637
| | - Sarah Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 MarylandAvenue, Chicago, IL 60637,Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Avenue, Chicago, IL 60637
| | - Jessica Weafer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Avenue, Chicago, IL 60637,Department of Psychology, University of Kentucky, 106-B Kastle Hall, Lexington, KY 40506
| | - Kathryne Van Hedger
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Avenue, Chicago, IL 60637,Department of Clinical and Neurological Sciences, University of Western Ontario, University Hospital, 339 Windermere Road, London, Ontario N6A 5A5, Canada
| | - Harriet de Wit
- Address correspondence to Harriet de Wit, Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Pereira-Sanchez V, Franco AR, de Castro-Manglano P, Fernandez-Seara MA, Vallejo-Valdivielso M, Díez-Suárez A, Fernandez-Martinez M, Garcia de Eulate MR, Milham M, Soutullo CA, Castellanos FX. Resting-State fMRI to Identify the Brain Correlates of Treatment Response to Medications in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder: Lessons From the CUNMET Study. Front Psychiatry 2021; 12:759696. [PMID: 34867544 PMCID: PMC8635006 DOI: 10.3389/fpsyt.2021.759696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
Neuroimaging research seeks to identify biomarkers to improve the diagnosis, prognosis, and treatment of attention-deficit/hyperactivity disorder (ADHD), although clinical translation of findings remains distant. Resting-state functional magnetic resonance imaging (R-fMRI) is increasingly being used to characterize functional connectivity in the brain. Despite mixed results to date and multiple methodological challenges, dominant hypotheses implicate hyperconnectivity across brain networks in patients with ADHD, which could be the target of pharmacological treatments. We describe the experience and results of the Clínica Universidad de Navarra (Spain) Metilfenidato (CUNMET) pilot study. CUNMET tested the feasibility of identifying R-fMRI markers of clinical response in children with ADHD undergoing naturalistical pharmacological treatments. We analyzed cross-sectional data from 56 patients with ADHD (18 treated with methylphenidate, 18 treated with lisdexamfetamine, and 20 treatment-naive patients). Standard preprocessing and statistical analyses with attention to control for head motion and correction for multiple comparisons were performed. The only results that survived correction were noted in contrasts of children who responded clinically to lisdexamfetamine after long-term treatment vs. treatment-naive patients. In these children, we observed stronger negative correlations (anticorrelations) across nodes in six brain networks, which is consistent with higher across-network functional segregation in patients treated with lisdexamfetamine, i.e., less inter-network interference than in treatment-naive patients. We also note the lessons learned, which could help those pursuing clinically relevant multidisciplinary research in ADHD en route to eventual personalized medicine. To advance reproducible open science, our report is accompanied with links providing access to our data and analytic scripts.
Collapse
Affiliation(s)
- Victor Pereira-Sanchez
- Department of Child and Adolescent Psychiatry, New York University (NYU) Grossman School of Medicine, New York, NY, United States.,Departamento de Psiquiatría y Psicología Clínica, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alexandre R Franco
- Center for the Developing Brain, Child Mind Institute, New York, NY, United States.,Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | | | | | | | - Azucena Díez-Suárez
- Departamento de Psiquiatría y Psicología Clínica, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Michael Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, United States.,Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Cesar A Soutullo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Francisco X Castellanos
- Department of Child and Adolescent Psychiatry, New York University (NYU) Grossman School of Medicine, New York, NY, United States.,Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| |
Collapse
|