1
|
Dubois AEE, Audet-Duchesne E, Knoth IS, Martin CO, Jizi K, Tamer P, Younis N, Jacquemont S, Dumas G, Lippé S. Genetic modulation of brain dynamics in neurodevelopmental disorders: the impact of copy number variations on resting-state EEG. Transl Psychiatry 2025; 15:139. [PMID: 40216767 PMCID: PMC11992136 DOI: 10.1038/s41398-025-03324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Research has shown that many copy number variations (CNVs) increase the risk of neurodevelopmental disorders (e.g., autism, ADHD, schizophrenia). However, little is known about the effects of CNVs on brain development and function. Resting-state electroencephalography (EEG) is a suitable method to study the disturbances of neuronal functioning in CNVs. We aimed to determine whether there are resting-state EEG signatures that are characteristic of children with pathogenic CNVs. EEG resting-state brain activity of 109 CNV carriers (66 deletion carriers, 43 duplication carriers) aged 3 to 17 years was recorded for 4 minutes. To better account for developmental variations, EEG indices (power spectral density and functional connectivity) were corrected with a normative model estimated from 256 Healthy Brain Network controls. Results showed a decreased exponent of the aperiodic activity and a reduced alpha peak frequency in CNV carriers. Additionally, the study showed altered periodic components and connectivity in several frequency bands. Deletion and duplication carriers exhibited a similar overall pattern of deviations in spectral and connectivity measures, although the significance and effect sizes relative to the control group varied across frequency bands. Deletion and duplication carriers can be differentiated by their periodic power in the gamma band and connectivity in the low alpha band, with duplication carriers showing more disrupted alterations than deletion carriers. The distinctive alterations in spectral patterns were found to be most prominent during adolescence. The results suggest that CNV carriers show electrophysiological alterations compared to neurotypical controls, regardless of the gene dosage effect and their affected genomic region. At the same time, while duplications and deletions share common electrophysiological alterations, each exhibits distinct brain alteration signatures that reflect gene dosage-specific effects.
Collapse
Affiliation(s)
- Adrien E E Dubois
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Elisabeth Audet-Duchesne
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, QC, H2V 2S9, Canada
| | - Inga Sophia Knoth
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Charles-Olivier Martin
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Khadije Jizi
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Petra Tamer
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Nadine Younis
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Sébastien Jacquemont
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, University de Montreal, Montreal, QC, H3T 1C5, Canada
| | - Guillaume Dumas
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada.
- Department of Psychiatry and Addictology, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Mila - Québec AI Institute, University of Montreal, Montreal, QC, Canada.
| | - Sarah Lippé
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada.
- Department of Psychology, University of Montreal, Montreal, QC, H2V 2S9, Canada.
| |
Collapse
|
2
|
Mockevičius A, Griškova-Bulanova I. Phase-amplitude coupling during auditory steady-state stimulation: a methodological review. Rev Neurosci 2025:revneuro-2024-0165. [PMID: 39900547 DOI: 10.1515/revneuro-2024-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025]
Abstract
Auditory steady-state response (ASSR) is a robust method to probe gamma (>30 Hz) activity in a controlled manner. While typically the magnitude and the phase synchronization over stimulus repetitions of ASSR is assessed, other measures are being investigated. One of them is phase-amplitude coupling (PAC), which reflects the interactions between lower frequency phase and higher frequency amplitude. Considering that the number of studies assessing PAC during auditory steady-state stimulation has grown recently, in the present work, we aimed to perform a comprehensive overview of PAC methodological approaches in ASSR studies. We sought to evaluate the studies according to PAC analysis issues emphasized in empirical and theoretical PAC studies. Our work showed considerable variability in the methodology among the reviewed studies. Furthermore, the reviewed works address methodological issues and confounding factors of PAC relatively poorly and are characterized by insufficient descriptions of the applied approaches. Our review shows that systematic research of PAC in the context of ASSR is imperative in order to properly evaluate the presence of PAC during the auditory steady-state stimulation.
Collapse
Affiliation(s)
- Aurimas Mockevičius
- Institute of Bioscience, Life Sciences Center, 54694 Vilnius University , Saulėtekio ave. 7, LT-10257, Vilnius, Lithuania
- Faculty of Medicine, Translational Health Research Institute, 54694 Vilnius University , Žaliųjų ež. str. 2, LT- 08406, Vilnius, Lithuania
| | - Inga Griškova-Bulanova
- Institute of Bioscience, Life Sciences Center, 54694 Vilnius University , Saulėtekio ave. 7, LT-10257, Vilnius, Lithuania
- Faculty of Medicine, Translational Health Research Institute, 54694 Vilnius University , Žaliųjų ež. str. 2, LT- 08406, Vilnius, Lithuania
| |
Collapse
|
3
|
McKeon SD, Perica MI, Calabro FJ, Foran W, Hetherington H, Moon CH, Luna B. Prefrontal excitation/inhibition balance supports adolescent enhancements in circuit signal to noise ratio. Prog Neurobiol 2024; 243:102695. [PMID: 39622336 DOI: 10.1016/j.pneurobio.2024.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
The development and refinement of neuronal circuitry allow for stabilized and efficient neural recruitment, supporting adult-like behavioral performance. During adolescence, the maturation of PFC is proposed to be a critical period (CP) for executive function, driven by a break in balance between glutamatergic excitation and GABAergic inhibition (E/I) neurotransmission. During CPs, cortical circuitry fine-tunes to improve information processing and reliable responses to stimuli, shifting from spontaneous to evoked activity, enhancing the SNR, and promoting neural synchronization. Harnessing 7 T MR spectroscopy and EEG in a longitudinal cohort (N = 164, ages 10-32 years, 283 neuroimaging sessions), we outline associations between age-related changes in glutamate and GABA neurotransmitters and EEG measures of cortical SNR. We find developmental decreases in spontaneous activity and increases in cortical SNR during our auditory steady state task using 40 Hz stimuli. Decreases in spontaneous activity were associated with glutamate levels in DLPFC, while increases in cortical SNR were associated with more balanced Glu and GABA levels. These changes were associated with improvements in working memory performance. This study provides evidence of CP plasticity in the human PFC during adolescence, leading to stabilized circuitry that allows for the optimal recruitment and integration of multisensory input, resulting in improved executive function.
Collapse
Affiliation(s)
- Shane D McKeon
- Department of Bioengineering, University of Pittsburgh, PA, USA; The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA.
| | - Maria I Perica
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, PA, USA
| | - Finnegan J Calabro
- Department of Bioengineering, University of Pittsburgh, PA, USA; The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Hoby Hetherington
- Resonance Research Incorporated, Billerica, MA, USA; Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, PA, USA
| | - Beatriz Luna
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Latrèche C, Mancini V, McGinn N, Rochas V, Férat V, Forrer S, Schneider M, Eliez S. Safety and feasibility of home-based transcranial alternating current stimulation in youths with 22q11.2 deletion syndrome. Front Neurosci 2024; 18:1453839. [PMID: 39513044 PMCID: PMC11541232 DOI: 10.3389/fnins.2024.1453839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
Neurodevelopmental disorders such as attention deficit and/or hyperactivity disorder (ADHD) and schizophrenia are characterized by core impairment in executive functions (EF). Despite the development of various behavioral interventions to enhance EF, the evidence is still scarce. Alternatively, non-invasive brain stimulation tools such as transcranial alternating current stimulation (tACS) has emerged as a potential strategy to alleviate cognitive deficits. Previous studies have demonstrated the safety, feasibility, and efficacy of one single tACS session in different clinical populations. However, the effects of tACS appear limited and need to be sustained to be considered an effective cognitive neurorehabilitation tool. Recent studies have used home-based, repeated tACS sessions in individuals with neurodegenerative diseases. To our knowledge, the safety and feasibility of such an intensive protocol remains to be tested in a younger population with neurodevelopmental disorders. Using a randomized double-blind sham-controlled design, we administered home-based, repeated tACS sessions to seven individuals aged 14-25 with 22q11.2 deletion syndrome (22q11.2DS), which confers an increased risk for neurodevelopmental disorders. We aimed to assess the safety, tolerability, and feasibility of tACS. Findings from this ongoing clinical trial revealed a favorable safety profile, with frequent yet transient and mainly mild adverse effects. The intervention proved to be feasible, shown by very high adherence rates and positive user experiences. Future studies should therefore investigate whether prolonged exposure to tACS can lead to long-lasting cognitive outcomes. Clinical trial registration ClinicalTrials.gov, identifier NCT05664412.
Collapse
Affiliation(s)
- Caren Latrèche
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Nova McGinn
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Human Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Victor Férat
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Human Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Silas Forrer
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
5
|
McKeon SD, Perica MI, Calabro FJ, Foran W, Hetherington H, Moon CH, Luna B. Prefrontal Excitation/ Inhibition Balance Supports Adolescent Enhancements in Circuit Signal to Noise Ratio. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608100. [PMID: 39229165 PMCID: PMC11370379 DOI: 10.1101/2024.08.15.608100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The development and refinement of neuronal circuitry allow for stabilized and efficient neural recruitment, supporting adult-like behavioral performance. During adolescence, the maturation of PFC is proposed to be a critical period (CP) for executive function, driven by a break in balance between glutamatergic excitation and GABAergic inhibition (E/I) neurotransmission. During CPs, cortical circuitry fine-tunes to improve information processing and reliable responses to stimuli, shifting from spontaneous to evoked activity, enhancing the SNR, and promoting neural synchronization. Harnessing 7T MR spectroscopy and EEG in a longitudinal cohort (N = 164, ages 10-32 years, 283 neuroimaging sessions), we outline associations between age-related changes in glutamate and GABA neurotransmitters and EEG measures of cortical SNR. We find developmental decreases in spontaneous activity and increases in cortical SNR during our auditory steady state task using 40 Hz stimuli. Decreases in spontaneous activity were associated with glutamate levels in DLPFC, while increases in cortical SNR were associated with more balanced Glu and GABA levels. These changes were associated with improvements in working memory performance. This study provides evidence of CP plasticity in the human PFC during adolescence, leading to stabilized circuitry that allows for the optimal recruitment and integration of multisensory input, resulting in improved executive function.
Collapse
Affiliation(s)
- Shane D. McKeon
- Department of Bioengineering, University of Pittsburgh, PA, USA
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA
| | - Maria I. Perica
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Department of Bioengineering, University of Pittsburgh, PA, USA
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Hoby Hetherington
- Resonance Research Incorporated, Billerica, MA, USA
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, PA, USA
| | - Beatriz Luna
- The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, PA, USA
| |
Collapse
|
6
|
Yu L, Peng W, Lin W, Luo Y, Hu D, Zhao G, Xu H, Dou Z, Zhang Q, Hong X, Yu S. Electroencephalography connectome changes in chronic insomnia disorder are correlated with neurochemical signatures. Sleep 2024; 47:zsae080. [PMID: 38520362 DOI: 10.1093/sleep/zsae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
STUDY OBJECTIVES This study aimed to investigate the alterations in resting-state electroencephalography (EEG) global brain connectivity (GBC) in patients with chronic insomnia disorder (CID) and to explore the correlation between macroscale connectomic variances and microscale neurotransmitter distributions. METHODS We acquired 64-channel EEG from 35 female CID patients and 34 healthy females. EEG signals were source-localized using individual brain anatomy and orthogonalized to mitigate volume conduction. Correlation coefficients between band-limited source-space power envelopes of the DK 68 atlas were computed and averaged across regions to determine specific GBC values. A support vector machine (SVM) classifier utilizing GBC features was employed to differentiate CID patients from controls. We further used Neurosynth and a 3D atlas of neurotransmitter receptors/transporters to assess the cognitive functions and neurotransmitter landscape associated with CID cortical abnormality maps, respectively. RESULTS CID patients exhibited elevated GBC within the medial prefrontal cortex and limbic cortex, particularly at the gamma carrier frequency, compared to controls (pFDR < .05). GBC patterns were found to effectively distinguish CID patients from controls with a precision of 90.8% in the SVM model. The cortical abnormality maps were significantly correlated with meta-analytic terms like "cognitive control" and "emotion regulation." Notably, GBC patterns were associated with neurotransmitter profiles (pspin < .05), with neurotransmitter systems such as norepinephrine, dopamine, and serotonin making significant contributions. CONCLUSIONS This work characterizes the EEG connectomic profile of CID, facilitating the cost-effective clinical translation of EEG-derived markers. Additionally, the linkage between GBC patterns and neurotransmitter distribution offers promising avenues for developing targeted treatment strategies for CID.
Collapse
Affiliation(s)
- Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daijie Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Xu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zhang
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiaojuan Hong
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Latrèche C, Mancini V, Rochas V, Maeder J, Cantonas LM, Férat V, Schneider M, Michel CM, Eliez S. Using transcranial alternating current stimulation to enhance working memory skills in youths with 22q11.2 deletion syndrome: A randomized double-blind sham-controlled study. Psychiatry Res 2024; 335:115835. [PMID: 38460352 DOI: 10.1016/j.psychres.2024.115835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
Abnormal cognitive development, particularly working memory (WM) deficits, is among the first apparent manifestations of psychosis. Yet, cognitive impairment only shows limited response to current pharmacological treatment. Alternative interventions to target cognition are highly needed in individuals at high risk for psychosis, like carriers of 22q11.2 deletion syndrome (22q11.2DS). Here we applied theta-tuned transcranial alternating current stimulation (tACS) between frontal and temporal regions during a visual WM task in 34 deletion carriers. We conducted a double-blind sham-controlled study over three consecutive days. The stimulation parameters were derived from individual structural MRI scan and HD-EEG data acquired at baseline (Day 1) to model current intensity and individual preferential theta peak. Participants were randomized to either sham or tACS (Days 2 and 3) and then completed a visual WM task and a control task. Our findings reveal that tACS was safe and well-tolerated among participants. We found a significantly increased accuracy in the visual WM but not the control task following tACS. Moreover, this enhancement in WM accuracy was greater after tACS than during tACS, indicating stronger offline effects than online effects. Our study therefore supports the application of repeated sessions of brain stimulation in 22q11.2DS.
Collapse
Affiliation(s)
- Caren Latrèche
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland.
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Switzerland; Human Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Johanna Maeder
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland
| | - Lucia M Cantonas
- Autism Brain and Behavior Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Victor Férat
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Maude Schneider
- Clinical Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Switzerland
| |
Collapse
|
8
|
Ma YY, Gao Y, Wu HQ, Liang XY, Li Y, Lu H, Liu CZ, Ning XL. OPM-MEG Measuring Phase Synchronization on Source Time Series: Application in Rhythmic Median Nerve Stimulation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1426-1434. [PMID: 38530717 DOI: 10.1109/tnsre.2024.3381173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The magnetoencephalogram (MEG) based on array optically pumped magnetometers (OPMs) has the potential of replacing conventional cryogenic superconducting quantum interference device. Phase synchronization is a common method for measuring brain oscillations and functional connectivity. Verifying the feasibility and fidelity of OPM-MEG in measuring phase synchronization will help its widespread application in the study of aforementioned neural mechanisms. The analysis method on source-level time series can weaken the influence of instantaneous field spread effect. In this paper, the OPM-MEG was used for measuring the evoked responses of 20Hz rhythmic and arrhythmic median nerve stimulation, and the inter-trial phase synchronization (ITPS) and inter-reginal phase synchronization (IRPS) of primary somatosensory cortex (SI) and secondary somatosensory cortex (SII) were analysed. The results find that under rhythmic condition, the evoked responses of SI and SII show continuous oscillations and the effect of resetting phase. The values of ITPS and IRPS significantly increase at the stimulation frequency of 20Hz and its harmonic of 40Hz, whereas the arrhythmic stimulation does not exhibit this phenomenon. Moreover, in the initial stage of stimulation, the ITPS and IRPS values are significantly higher at Mu rhythm in the rhythmic condition compared to arrhythmic. In conclusion, the results demonstrate the ability of OPM-MEG in measuring phase pattern and functional connectivity on source-level, and may also prove beneficial for the study on the mechanism of rhythmic stimulation therapy for rehabilitation.
Collapse
|
9
|
Spencer KM. Gamma Oscillations as a Biomarker of Neural Circuit Function in Psychosis: Where Are We, and Where Do We Go from Here? ADVANCES IN NEUROBIOLOGY 2024; 40:321-349. [PMID: 39562450 DOI: 10.1007/978-3-031-69491-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This chapter is a selective and critical review of the literature on gamma oscillations in schizophrenia and related studies in other relevant fields that pertain to the hypothesis that abnormal gamma oscillations underlie symptoms of psychosis in individuals with schizophrenia. These gamma abnormalities result from deficient recurrent inhibition, in which parvalbumin-expressing, fast-spiking inhibitory interneurons do not receive sufficient excitation from N-methyl-D-aspartate receptors, resulting in a loss of phasic control over pyramidal cell spiking and impairment of gamma generation. The evidence for this hypothesis is critically reviewed, focusing on studies in the areas of visual feature binding, auditory steady-state response, and spontaneous gamma activity. The current state of the field is discussed, and recommendations for future directions are presented.
Collapse
Affiliation(s)
- Kevin M Spencer
- Research Service, VA Boston Healthcare System, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Rué-Queralt J, Mancini V, Rochas V, Latrèche C, Uhlhaas PJ, Michel CM, Plomp G, Eliez S, Hagmann P. The coupling between the spatial and temporal scales of neural processes revealed by a joint time-vertex connectome spectral analysis. Neuroimage 2023; 280:120337. [PMID: 37604296 DOI: 10.1016/j.neuroimage.2023.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Brain oscillations are produced by the coordinated activity of large groups of neurons and different rhythms are thought to reflect different modes of information processing. These modes, in turn, are known to occur at different spatial scales. Nevertheless, how these rhythms support different spatial modes of information processing at the brain scale is not yet fully understood. Here we use "Joint Time-Vertex Spectral Analysis" to characterize the joint spectral content of brain activity both in time (temporal frequencies) and in space over the connectivity graph (spatial connectome harmonics). This method allows us to characterize the relationship between spatially localized or distributed neural processes on one side and their respective temporal frequency bands in source-reconstructed M/EEG signals. We explore this approach on two different datasets, an auditory steady-state response (ASSR) and a visual grating task. Our results suggest that different information processing mechanisms are carried out at different frequency bands: while spatially distributed activity (which may also be interpreted as integration) specifically occurs at low temporal frequencies (alpha and theta) and low graph spatial frequencies, localized electrical activity (i.e., segregation) is observed at high temporal frequencies (high and low gamma) over restricted high spatial graph frequencies. Crucially, the estimated contribution of the distributed and localized neural activity predicts performance in a behavioral task, demonstrating the neurophysiological relevance of the joint time-vertex spectral representation.
Collapse
Affiliation(s)
- Joan Rué-Queralt
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland; Perceptual Networks Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Human Neuroscience Platform, Fondation Campus Biotech Geneva, Switzerland
| | - Caren Latrèche
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland, United Kingdom; Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Gijs Plomp
- Perceptual Networks Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| |
Collapse
|
11
|
Mancini V, Saleh MG, Delavari F, Bagautdinova J, Eliez S. Excitatory/Inhibitory Imbalance Underlies Hippocampal Atrophy in Individuals With 22q11.2 Deletion Syndrome With Psychotic Symptoms. Biol Psychiatry 2023; 94:569-579. [PMID: 37011759 DOI: 10.1016/j.biopsych.2023.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Abnormal neurotransmitter levels have been reported in individuals at high risk for schizophrenia, leading to a shift in the excitatory/inhibitory balance. However, it is unclear whether these alterations predate the onset of clinically relevant symptoms. Our aim was to explore in vivo measures of excitatory/inhibitory balance in 22q11.2 deletion carriers, a population at genetic risk for psychosis. METHODS Glx (glutamate+glutamine) and GABA+ (gamma-aminobutyric acid with macromolecules and homocarnosine) concentrations were estimated in the anterior cingulate cortex, superior temporal cortex, and hippocampus using the Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) sequence and the Gannet toolbox in 52 deletion carriers and 42 control participants. T1-weighted images were acquired longitudinally and processed with FreeSurfer version 6 to extract hippocampal volume. Subgroup analyses were conducted in deletion carriers with psychotic symptoms. RESULTS While no differences were found in the anterior cingulate cortex, deletion carriers had higher levels of Glx in the hippocampus and superior temporal cortex and lower levels of GABA+ in the hippocampus than control participants. We additionally found a higher Glx concentration in the hippocampus of deletion carriers with psychotic symptoms. Finally, more pronounced hippocampal atrophy was significantly associated with increased Glx levels in deletion carriers. CONCLUSIONS We provide evidence for an excitatory/inhibitory imbalance in temporal brain structures of deletion carriers, with a further hippocampal Glx increase in individuals with psychotic symptoms that was associated with hippocampal atrophy. These results are in line with theories proposing abnormally enhanced glutamate levels as a mechanistic explanation for hippocampal atrophy via excitotoxicity. Our results highlight a central role of glutamate in the hippocampus of individuals at genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Muhammad G Saleh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Joëlle Bagautdinova
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
12
|
Grent-'t-Jong T, Brickwedde M, Metzner C, Uhlhaas PJ. 40-Hz Auditory Steady-State Responses in Schizophrenia: Toward a Mechanistic Biomarker for Circuit Dysfunctions and Early Detection and Diagnosis. Biol Psychiatry 2023; 94:550-560. [PMID: 37086914 DOI: 10.1016/j.biopsych.2023.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/24/2023]
Abstract
There is converging evidence that 40-Hz auditory steady-state responses (ASSRs) are robustly impaired in schizophrenia and could constitute a potential biomarker for characterizing circuit dysfunctions as well as enable early detection and diagnosis. Here, we provide an overview of the mechanisms involved in 40-Hz ASSRs, drawing on computational, physiological, and pharmacological data with a focus on parameters modulating the balance between excitation and inhibition. We will then summarize findings from electro- and magnetoencephalographic studies in participants at clinical high risk for psychosis, patients with first-episode psychosis, and patients with schizophrenia to identify the pattern of deficits across illness stages, the relationship with clinical variables, and the prognostic potential. Finally, data on genetics and developmental modifications will be reviewed, highlighting the importance of late modifications of 40-Hz ASSRs during adolescence, which are closely related to the underlying changes in GABA (gamma-aminobutyric acid) interneurons. Together, our review suggests that 40-Hz ASSRs may constitute an informative electrophysiological approach to characterize circuit dysfunctions in psychosis that could be relevant for the development of mechanistic biomarkers.
Collapse
Affiliation(s)
- Tineke Grent-'t-Jong
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marion Brickwedde
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Metzner
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany; School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
13
|
Gamma oscillations provide insights into cortical circuit development. Pflugers Arch 2023; 475:561-568. [PMID: 36864347 PMCID: PMC10105678 DOI: 10.1007/s00424-023-02801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Rhythmic coordination in gamma oscillations provides temporal structure to neuronal activity. Gamma oscillations are commonly observed in the mammalian cerebral cortex, are altered early on in several neuropsychiatric disorders, and provide insights into the development of underlying cortical networks. However, a lack of knowledge on the developmental trajectory of gamma oscillations prevented the combination of findings from the immature and the adult brain. This review is intended to provide an overview on the development of cortical gamma oscillations, the maturation of the underlying network, and the implications for cortical function and dysfunction. The majority of information is drawn from work in rodents with particular emphasis on the prefrontal cortex, the developmental trajectory of gamma oscillations, and potential implications for neuropsychiatric disorders. Current evidence supports the idea that fast oscillations during development are indeed an immature form of adult gamma oscillations and can help us understand the pathology of neuropsychiatric disorders.
Collapse
|
14
|
22q11.2 Deletion Syndrome as a Neural Model for Schizophrenia. Biol Psychiatry 2022; 92:338-340. [PMID: 35953167 DOI: 10.1016/j.biopsych.2022.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 01/01/2023]
|
15
|
Mancini V, Rochas V, Seeber M, Grent-'t-Jong T, Rihs TA, Latrèche C, Uhlhaas PJ, Michel CM, Eliez S. Oscillatory Neural Signatures of Visual Perception Across Developmental Stages in Individuals With 22q11.2 Deletion Syndrome. Biol Psychiatry 2022; 92:407-418. [PMID: 35550793 DOI: 10.1016/j.biopsych.2022.02.961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Numerous behavioral studies have highlighted the contribution of visual perceptual deficits to the nonverbal cognitive profile of individuals with 22q11.2 deletion syndrome. However, the neurobiological processes underlying these widespread behavioral alterations are yet to be fully understood. Thus, in this paper, we investigated the role of neural oscillations toward visuoperceptual deficits to elucidate the neurobiology of sensory impairments in deletion carriers. METHODS We acquired 125 high-density electroencephalography recordings during a visual grating task in a group of 62 deletion carriers and 63 control subjects. Stimulus-elicited oscillatory responses were analyzed with 1) time-frequency analysis using wavelets decomposition at sensor and source level, 2) intertrial phase coherence, and 3) Granger causality connectivity in source space. Additional analyses examined the development of neural oscillations across age bins. RESULTS Deletion carriers had decreased theta-band (4-8 Hz) and gamma-band (58-68 Hz) spectral power compared with control subjects in response to the visual stimuli, with an absence of age-related increase of theta- and gamma-band responses. Moreover, adult deletion carriers had decreased gamma- and theta-band responses but increased alpha/beta desynchronization (10-25 Hz) that correlated with behavioral performance. Granger causality estimates reflected an increased frontal-occipital connectivity in the beta range (22-40 Hz). CONCLUSIONS Deletion carriers exhibited decreased theta- and gamma-band responses to visual stimuli, while alpha/beta desynchronization was preserved. Overall, the lack of age-related changes in deletion carriers implicates developmental impairments in circuit mechanisms underlying neural oscillations. The dissociation between the maturation of theta/gamma- and alpha/beta-band responses may indicate a selective impairment in supragranular cortical layers, leading to compensatory top-down connectivity.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Human Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Martin Seeber
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Tineke Grent-'t-Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland; Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Tonia A Rihs
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Caren Latrèche
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland; Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging, Lausanne, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
16
|
Yue W, Huang H, Duan J. Potential diagnostic biomarkers for schizophrenia. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:385-416. [PMID: 37724326 PMCID: PMC10388817 DOI: 10.1515/mr-2022-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 09/20/2023]
Abstract
Schizophrenia (SCH) is a complex and severe mental disorder with high prevalence, disability, mortality and carries a heavy disease burden, the lifetime prevalence of SCH is around 0.7%-1.0%, which has a profound impact on the individual and society. In the clinical practice of SCH, key problems such as subjective diagnosis, experiential treatment, and poor overall prognosis are still challenging. In recent years, some exciting discoveries have been made in the research on objective biomarkers of SCH, mainly focusing on genetic susceptibility genes, metabolic indicators, immune indices, brain imaging, electrophysiological characteristics. This review aims to summarize the biomarkers that may be used for the prediction and diagnosis of SCH.
Collapse
Affiliation(s)
- Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University) and Chinese Academy of Medical Sciences Research Unit, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University Health System, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Latrèche C, Maeder J, Mancini V, Schneider M, Eliez S. Effects of risperidone on psychotic symptoms and cognitive functions in 22q11.2 deletion syndrome: Results from a clinical trial. Front Psychiatry 2022; 13:972420. [PMID: 36386982 PMCID: PMC9643534 DOI: 10.3389/fpsyt.2022.972420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Carriers of the 22q11.2 deletion syndrome (22q11DS) have an enhanced risk of developing psychotic disorders. Full-blown psychosis is typically diagnosed by late adolescence/adulthood. However, cognitive decline is already apparent as early as childhood. Recent findings in mice show that antipsychotic medication administered during adolescence has a long-lasting neuroprotective effect. These findings offer promising evidence for implementing preventive treatment in humans at risk for psychosis. METHODS We conducted a 12-week double-blind randomized controlled clinical trial with individuals with 22q11DS. Recruitment difficulties resulted in a final sample size of 13 participants (n = 6 treated with antipsychotics and n = 7 receiving placebo). We examined the response to treatment and assessed its short- and long-term effects on psychotic symptomatology using the Structured Interview for Psychosis-Risk Syndromes (SIPS) and cognitive measures. RESULTS First, two treated participants discontinued treatment after experiencing adverse events. Second, treated participants showed a short-term improvement in 33.3% of the SIPS items, mainly those targeting negative symptoms. Third, reliable improvements in at least one measure of working memory and attention were respectively found in 83.3 and 66.7% of treated participants. CONCLUSION This is the first double-blind study to investigate the potential neuroprotective effect of antipsychotics in humans at risk for psychosis. Our preliminary results suggest that antipsychotic treatment may prevent long-term deterioration in clinical symptoms and cognitive skills. Yet, given the limited sample size, our findings need to be replicated in larger samples. To do so, future studies may rather adopt open-label or retrospective designs to ensure sufficient power. CLINICAL TRIAL REGISTRATION [www.ClinicalTrials.gov], identifier [NCT04639960].
Collapse
Affiliation(s)
- Caren Latrèche
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Johanna Maeder
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Maude Schneider
- Clinical Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.,Research Group Psychiatry, Department of Neuroscience, Center for Contextual Psychiatry, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|