1
|
Cognitive deficits after COVID-19 associated with brain injury biomarkers and volume loss. Nat Med 2025; 31:41-42. [PMID: 39587370 DOI: 10.1038/s41591-024-03379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
|
2
|
Wood GK, Sargent BF, Ahmad ZUA, Tharmaratnam K, Dunai C, Egbe FN, Martin NH, Facer B, Pendered SL, Rogers HC, Hübel C, van Wamelen DJ, Bethlehem RAI, Giunchiglia V, Hellyer PJ, Trender W, Kalsi G, Needham E, Easton A, Jackson TA, Cunningham C, Upthegrove R, Pollak TA, Hotopf M, Solomon T, Pett SL, Shaw PJ, Wood N, Harrison NA, Miller KL, Jezzard P, Williams G, Duff EP, Williams S, Zelaya F, Smith SM, Keller S, Broome M, Kingston N, Husain M, Vincent A, Bradley J, Chinnery P, Menon DK, Aggleton JP, Nicholson TR, Taylor JP, David AS, Carson A, Bullmore E, Breen G, Hampshire A, Michael BD, Paddick SM, Leek EC. Posthospitalization COVID-19 cognitive deficits at 1 year are global and associated with elevated brain injury markers and gray matter volume reduction. Nat Med 2025; 31:245-257. [PMID: 39312956 PMCID: PMC11750706 DOI: 10.1038/s41591-024-03309-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The spectrum, pathophysiology and recovery trajectory of persistent post-COVID-19 cognitive deficits are unknown, limiting our ability to develop prevention and treatment strategies. We report the 1-year cognitive, serum biomarker and neuroimaging findings from a prospective, national study of cognition in 351 COVID-19 patients who required hospitalization, compared with 2,927 normative matched controls. Cognitive deficits were global, associated with elevated brain injury markers and reduced anterior cingulate cortex volume 1 year after COVID-19. Severity of the initial infective insult, postacute psychiatric symptoms and a history of encephalopathy were associated with the greatest deficits. There was strong concordance between subjective and objective cognitive deficits. Longitudinal follow-up in 106 patients demonstrated a trend toward recovery. Together, these findings support the hypothesis that brain injury in moderate to severe COVID-19 may be immune-mediated, and should guide the development of therapeutic strategies.
Collapse
Affiliation(s)
- Greta K Wood
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Brendan F Sargent
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Zain-Ul-Abideen Ahmad
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kukatharmini Tharmaratnam
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Cordelia Dunai
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Franklyn N Egbe
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Naomi H Martin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Bethany Facer
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sophie L Pendered
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Henry C Rogers
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Christopher Hübel
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Centre for Register-based Research, Aarhus Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel J van Wamelen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Center of Excellence, King's College Hospital, London, UK
- Department of Neurology; Centre of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Peter J Hellyer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - William Trender
- Department of Brain Sciences, Imperial College London, London, UK
| | - Gursharan Kalsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Edward Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ava Easton
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Encephalitis International, Malton, UK
| | - Thomas A Jackson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel Upthegrove
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Matthew Hotopf
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tom Solomon
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- The Pandemic Institute, University of Liverpool, Liverpool, UK
- Department of Neurology, Walton Centre Foundation Trust, Liverpool, UK
| | - Sarah L Pett
- MRC Clinical Trials Unit, UCL, London, UK
- Institute of Clinical Trials and Methodology, UCL, London, UK
- Institute for Global Health, UCL, London, UK
| | - Pamela J Shaw
- Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, NIHR Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Nicholas Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, UCL, London, UK
- UCL Genetics Institute, Division of Biosciences, UCL, London, UK
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre, School of Medicine, Cardiff University, Cardiff, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Guy Williams
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eugene P Duff
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, London, UK
| | - Steven Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Simon Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Matthew Broome
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Nathalie Kingston
- NIHR Bioresource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Masud Husain
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Angela Vincent
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - John Bradley
- NIHR Bioresource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Patrick Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Section of Perioperative, Acute, Critical Care and Emergency Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Timothy R Nicholson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Neuropsychiatry Research and Education Group, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Old Age Psychiatry, Tyne and Wear NHS Trust, Newcastle, UK
| | - Anthony S David
- Department of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Alan Carson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ed Bullmore
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Psychiatry, Institute of Behavioural and Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - Adam Hampshire
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Benedict D Michael
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- Department of Neurology, Walton Centre Foundation Trust, Liverpool, UK.
| | - Stella-Maria Paddick
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Department of Old Age Psychiatry, Gateshead Health NHS Foundation Trust, Gateshead, UK
- Millenium Institute for Care Research (MICARE), Santiago, Chile
| | - E Charles Leek
- Department of Psychology, Institute of Population Health, Institute of Life and Human Sciences, University of Liverpool, Liverpool, UK
- School of Psychology, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Zhang LY, Liu X, Wu YC, Wang GD. New-onset seizure and acute encephalopathy. Pract Neurol 2024; 24:252-256. [PMID: 38378268 DOI: 10.1136/pn-2023-003994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Affiliation(s)
- Lin-Yuan Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Liu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Dong Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Duve K, Petakh P, Kamyshnyi O. COVID-19-associated encephalopathy: connection between neuroinflammation and microbiota-gut-brain axis. Front Microbiol 2024; 15:1406874. [PMID: 38863751 PMCID: PMC11165208 DOI: 10.3389/fmicb.2024.1406874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
While neurological complications of COVID-19, such as encephalopathy, are relatively rare, their potential significant impact on long-term morbidity is substantial, especially given the large number of infected patients. Two proposed hypotheses for the pathogenesis of this condition are hypoxia and the uncontrolled release of proinflammatory cytokines. The gut microbiota plays an important role in regulating immune homeostasis and overall gut health, including its effects on brain health through various pathways collectively termed the gut-brain axis. Recent studies have shown that COVID-19 patients exhibit gut dysbiosis, but how this dysbiosis can affect inflammation in the central nervous system (CNS) remains unclear. In this context, we discuss how dysbiosis could contribute to neuroinflammation and provide recent data on the features of neuroinflammation in COVID-19 patients.
Collapse
Affiliation(s)
- Khrystyna Duve
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
| |
Collapse
|
5
|
Zhang T, Zhang QF, Yang HM, Liu P, Sun P, Li YM, Zhang Z, Huang YZ, Yu XY, Chao-Lu-Men QQG, Su Q, Liu CF. Children with severe neurological symptoms associated with SARS-CoV-2 infection during Omicron pandemic in China. Pediatr Res 2024; 95:1088-1094. [PMID: 37990079 DOI: 10.1038/s41390-023-02904-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND To analyze the clinical characteristics and outcomes of children with severe neurological symptoms associated with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection during the Omicron pandemic in China. METHODS This study used a questionnaire to obtain data from pediatric intensive care unit (PICU) centers in seven tertiary hospitals in Northeast China from December 1, 2022, to January 31, 2023. RESULTS A total of 255 patients were confirmed to have SARS-CoV-2 infection, and 45 patients (17.65 %) were included in this study. Of these, seven (15.6%) patients died, and the median time from admission to death was 35 h (IQR, 14-120 h). Twenty (52.6%) survivors experienced neurological sequelae. Patients with platelet counts lower than 100 × 109/L had a higher incidence of complications such as multiple organ dysfunction, mechanical ventilation rate, and mortality. Cranial magnetic resonance imaging (MRI) always reveals cerebral tissue edema, with some severe lesions forming a softening site. CONCLUSION Children infected with SARS-CoV-2 often exhibit severe neurological symptoms, and in some cases, they may rapidly develop malignant cerebral edema or herniation, leading to a fatal outcome. An early decrease in platelet count may associated with an unfavorable prognosis. IMPACT Since early December 2022, China has gradually adjusted its prevention and control policy of SARS-CoV-2; Omicron outbreaks have occurred in some areas for a relatively short period. Due to the differences in ethnicity, endemic strains and vaccination status, there was a little difference from what has been reported about children with SARS-CoV-2 infection with severe neurological symptoms in abroad. This is the first multicenter clinical study in children with nervous system involvement after acute SARS-CoV-2 infection in China, and helpful for pediatricians to have a more comprehensive understanding of the clinical symptoms and prognosis of such disease.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiao-Feng Zhang
- Department of Pediatric Intensive Care Unit, Dalian Women and Children's Medical Group, Dalian, China
| | - Hong-Mei Yang
- Department of Pediatric Intensive Care Unit, Dalian Women and Children's Medical Group, Dalian, China
| | - Pin Liu
- Department of Pediatric Intensive Care Unit, Shenyang Children's Hospital, Shenyang, China
| | - Peng Sun
- Department of Pediatric Intensive Care Unit, Shenyang Children's Hospital, Shenyang, China
| | - Yu-Mei Li
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Zhen Zhang
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | | | - Xin-Yan Yu
- Department of Critical Medicine, Jiangnan Hospital of the Sixth Affiliated Hospital of Harbin Medical University (Harbin Children's Hospital), Harbin, China
| | - Qi-Qi-Ge Chao-Lu-Men
- Department of Intensive Care Unit, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| | - Qin Su
- Department of Intensive Care Unit, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Nikolla DA, Oskvarek JJ, Zocchi MS, Rahman NA, Leubitz A, Moghtaderi A, Black BS, Pines JM. Defining Incidental Versus Non-incidental COVID-19 Hospitalizations. Cureus 2024; 16:e56546. [PMID: 38646211 PMCID: PMC11027788 DOI: 10.7759/cureus.56546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Background Rates of COVID-19 hospitalization are an important measure of the health system burden of severe COVID-19 disease and have been closely followed throughout the pandemic. The highly transmittable, but often less severe, Omicron COVID-19 variant has led to an increase in hospitalizations with incidental COVID-19 diagnoses where COVID-19 is not the primary reason for admission. There is a strong public health need for a measure that is implementable at low cost with standard electronic health record (EHR) datasets that can separate these incidental hospitalizations from non-incidental hospitalizations where COVID-19 is the primary cause or an important contributor. Two crude metrics are in common use. The first uses in-hospital administration of dexamethasone as a marker of non-incidental COVID-19 hospitalizations. The second, used by the United States (US) CDC, relies on a limited set of COVID-19-related diagnoses (i.e., respiratory failure, pneumonia). Both measures likely undercount non-incidental COVID-19 hospitalizations. We therefore developed an improved EHR-based measure that is better able to capture the full range of COVID-19 hospitalizations. Methods We conducted a retrospective study of ED visit data from a national emergency medicine group from April 2020 to August 2023. We assessed the CDC approach, the dexamethasone-based measure, and alternative approaches that rely on co-diagnoses likely to be related to COVID-19, to determine the proportion of non-incidental COVID-19 hospitalizations. Results Of the 153,325 patients diagnosed with COVID-19 at 112 general EDs in 17 US states, and admitted or transferred, our preferred measure classified 108,243 (70.6%) as non-incidental, compared to 71,066 (46.3%) using the dexamethasone measure and 77,399 (50.5%) using the CDC measure. Conclusions Identifying non-incidental COVID-19 hospitalizations using ED administration of dexamethasone or the CDC measure provides substantially lower estimates than our preferred measure.
Collapse
Affiliation(s)
- Dhimitri A Nikolla
- Department of Internal Medicine / Emergency Medicine, Lake Erie College of Osteopathic Medicine, Erie, USA
- Department of Emergency Medicine, Allegheny Health Network, Erie, USA
- US Acute Care Solutions (USACS) Research Group, US Acute Care Solutions, Canton, USA
| | - Jonathan J Oskvarek
- Department of Emergency Medicine, Summa Health System, Akron, USA
- US Acute Care Solutions (USACS) Research Group, US Acute Care Solutions, Canton, USA
| | - Mark S Zocchi
- Heller School for Social Policy and Management, Brandeis University, Waltham, USA
- US Acute Care Solutions (USACS) Research Group, US Acute Care Solutions, Canton, USA
| | - Nishad A Rahman
- Department of Emergency Medicine, LifeBridge Health - Sinai Hospital, Baltimore, USA
- US Acute Care Solutions (USACS) Research Group, US Acute Care Solutions, Canton, USA
| | - Andrew Leubitz
- Department of Emergency Medicine, Adventist HealthCare - Shady Grove Medical Center, Rockville, USA
- US Acute Care Solutions (USACS) Research Group, US Acute Care Solutions, Canton, USA
| | - Ali Moghtaderi
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Bernard S Black
- Pritzker School of Law and Kellogg School of Management, Northwestern University, Chicago, USA
| | - Jesse M Pines
- Department of Emergency Medicine, Allegheny Health Network, Pittsburgh, USA
- US Acute Care Solutions (USACS) Research Group, US Acute Care Solutions, Canton, USA
| |
Collapse
|
7
|
Ikemizu Y, Oda Y, Hirose Y, Sasaki T, Iyo M. Cerebellar and Occipital Alterations in Brain Perfusion in a Patient With Post-acute COVID-19 Encephalopathy Misdiagnosed As Primary Psychotic Disorder. Cureus 2024; 16:e52953. [PMID: 38406081 PMCID: PMC10894069 DOI: 10.7759/cureus.52953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
We describe the case of an unvaccinated 21-year-old Japanese male who experienced psychotic symptoms attributed to encephalopathy, known as post-acute COVID-19 syndrome (PACS). One week after his discharge following the remission of a SARS-CoV-2 infection, he experienced hyperactive delirium and unexpected movements of his limbs. As COVID-19-associated encephalopathy was suspected as a cause of the psychotic symptoms, he was admitted to the Department of Neurology. He received antiviral and steroid pulse therapy, but his psychiatric symptoms did not improve completely. Consequently, he was admitted to our psychiatric ward with a diagnosis of a primary psychotic disorder. Although he did not take psychopharmacotherapy, he gradually achieved a remission of psychiatric symptoms. At three months post-SARS-CoV-2 infection, single-photon emission computed tomography (SPECT) revealed hypoperfusion in the bilateral cerebellar dentate nuclei and occipital lobes. However, no abnormal findings were observed on fluorine-18 fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) at six months after the infection. This case indicates that (1) brain perfusion SPECT can be effective for detecting functional alterations in post-acute COVID-19-associated encephalopathy, and (2) it is necessary to carefully monitor patients' progress instead of quickly diagnosing a primary psychotic disorder.
Collapse
Affiliation(s)
- Yuki Ikemizu
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba, JPN
- Research Center for Child Mental Development, Chiba University, Chiba, JPN
| | - Yasunori Oda
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba, JPN
| | - Yuki Hirose
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba, JPN
| | - Tsuyoshi Sasaki
- Department of Child Psychiatry, Chiba University Hospital, Chiba, JPN
| | - Masaomi Iyo
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba, JPN
| |
Collapse
|
8
|
Brown RL, Benjamin L, Lunn MP, Bharucha T, Zandi MS, Hoskote C, McNamara P, Manji H. Pathophysiology, diagnosis, and management of neuroinflammation in covid-19. BMJ 2023; 382:e073923. [PMID: 37595965 DOI: 10.1136/bmj-2022-073923] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Although neurological complications of SARS-CoV-2 infection are relatively rare, their potential long term morbidity and mortality have a significant impact, given the large numbers of infected patients. Covid-19 is now in the differential diagnosis of a number of common neurological syndromes including encephalopathy, encephalitis, acute demyelinating encephalomyelitis, stroke, and Guillain-Barré syndrome. Physicians should be aware of the pathophysiology underlying these presentations to diagnose and treat patients rapidly and appropriately. Although good evidence has been found for neurovirulence, the neuroinvasive and neurotropic potential of SARS-CoV-2 is limited. The pathophysiology of most complications is immune mediated and vascular, or both. A significant proportion of patients have developed long covid, which can include neuropsychiatric presentations. The mechanisms of long covid remain unclear. The longer term consequences of infection with covid-19 on the brain, particularly in terms of neurodegeneration, will only become apparent with time and long term follow-up.
Collapse
Affiliation(s)
- Rachel L Brown
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Institute of Immunity and Transplantation, London, UK
| | - Laura Benjamin
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Laboratory of Molecular and Cell Biology, London, UK
| | - Michael P Lunn
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Tehmina Bharucha
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Department of Biochemistry, University of Oxford, UK
| | - Michael S Zandi
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Chandrashekar Hoskote
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Patricia McNamara
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hadi Manji
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
9
|
Otani K, Fukushima H, Matsuishi K. COVID-19 delirium and encephalopathy: Pathophysiology assumed in the first 3 years of the ongoing pandemic. BRAIN DISORDERS 2023; 10:100074. [PMID: 37056914 PMCID: PMC10076074 DOI: 10.1016/j.dscb.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Background The coronavirus disease (COVID-19) continues to spread worldwide. It has a high rate of delirium, even in young patients without comorbidities. Infected patients required isolation because of the high infectivity and virulence of COVID-19. The high prevalence of delirium in COVID-19 primarily results from encephalopathy and neuroinflammation caused by acute respiratory distress syndrome (ARDS)-associated cytokine storm. Acute respiratory distress syndrome has been linked to delirium and psychotic symptoms in the subacute phase (4 to 12 weeks), termed post-acute COVID-19 syndrome (PACS), and to brain fog, cognitive dysfunction, and fatigue, termed "long COVID," which persists beyond 12 weeks. However, no review article that mentions "COVID-19 delirium" have never been reported. Basic Procedures This narrative review summarizes data on delirium associated with acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and related neurological symptoms of persistent post-infection illness (PACS or long COVID) after persistence of cognitive dysfunction. Thus, we describe the pathophysiological hypothesis of COVID-19 delirium and its continuation as long COVID. This review also describes the treatment of delirium complicated by COVID-19 pneumonia. Main Findings SARS-CoV-2 infection is associated with encephalopathy and delirium. An association between COVID-19 infection and Alzheimer's disease has been suggested, and studies are being conducted from multiple facets including genetics, cytology, and postmortem study. Principal Conclusions This review suggests that COVID-19 has important short and long-term neuropsychiatric effects. Several hypotheses have been proposed that highlight potential neurobiological mechanisms as causal factors, including neuronal-inflammatory pathways by cytokine storm and cellular senescence, and chronic inflammation.
Collapse
Affiliation(s)
- Kyohei Otani
- Department of Psychiatry, Kobe City Medical Center General Hospital, 2-1-1, Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Psychiatry, Kakogawa Central City Hospital, 439, Kakogawa-cho honmachi, Kakogawa City, Hyogo, 675-8611, Japan
| | - Haruko Fukushima
- Department of Psychiatry, Kobe City Medical Center General Hospital, 2-1-1, Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Kunitaka Matsuishi
- Department of Psychiatry, Kobe City Medical Center General Hospital, 2-1-1, Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
10
|
Schmidt W, Pawlak-Buś K, Jóźwiak B, Leszczyński P. Identification of Clinical Response Predictors of Tocilizumab Treatment in Patients with Severe COVID-19 Based on Single-Center Experience. J Clin Med 2023; 12:jcm12062429. [PMID: 36983429 PMCID: PMC10051490 DOI: 10.3390/jcm12062429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Hyperinflammation in COVID-19 plays a crucial role in pathogenesis and severity; thus, many immunomodulatory agents are applied in its treatment. We aimed to identify good clinical response predictors of tocilizumab (TCZ) treatment in severe COVID-19, among clinical, laboratory, and radiological variables. We conducted a prospective, observational study with 120 patients with severe COVID-19 not improving despite dexamethasone (DEX) treatment. We used parametric and non-parametric statistics, univariate logistic regression, receiver operating characteristic (ROC) curves, and nonlinear factors tertile analysis. In total, 86 (71.7%) patients achieved the primary outcome of a good clinical response to TCZ. We identified forty-nine predictive factors with potential utility in patient selection and treatment monitoring. The strongest included time from symptom onset between 9 and 12 days, less than 70% of estimated radiological lung involvement, and lower activity of lactate dehydrogenase. Additional predictors were associated with respiratory function, vitamin D concentration, comorbidities, and inflammatory/organ damage biomarkers. Adverse events analysis proved the safety of such a regimen. Our study confirmed that using TCZ early in the hyperinflammatory phase, before severe respiratory failure development, is most beneficial. Considering the described predictive factors, employing simple and widely available laboratory, radiological, and clinical tools can optimize patient selection for immunomodulatory treatment with TCZ.
Collapse
Affiliation(s)
- Wiktor Schmidt
- Department of Rheumatology, Systemic Connective Tissue Diseases and Immunotherapy of Rheumatic Diseases, J. Strus Municipal Hospital, 61-285 Poznan, Poland
- Department of Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Katarzyna Pawlak-Buś
- Department of Rheumatology, Systemic Connective Tissue Diseases and Immunotherapy of Rheumatic Diseases, J. Strus Municipal Hospital, 61-285 Poznan, Poland
- Department of Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Barbara Jóźwiak
- Department of Rheumatology, Systemic Connective Tissue Diseases and Immunotherapy of Rheumatic Diseases, J. Strus Municipal Hospital, 61-285 Poznan, Poland
| | - Piotr Leszczyński
- Department of Rheumatology, Systemic Connective Tissue Diseases and Immunotherapy of Rheumatic Diseases, J. Strus Municipal Hospital, 61-285 Poznan, Poland
- Department of Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
11
|
A Rare Single Case of COVID-19-Induced Acute Myocarditis and Encephalopathy Presenting Simultaneously. Vaccines (Basel) 2023; 11:vaccines11030541. [PMID: 36992125 DOI: 10.3390/vaccines11030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic may result in cardiovascular complications such as myocarditis, while encephalitis is a potentially life-threatening COVID-19-associated central nervous system complication. This case illustrates the possibility of developing severe multisystem symptoms from a COVID-19 infection, despite having received the COVID-19 vaccine within the year. Delay in treatment for myocarditis and encephalopathy can lead to permanent and possibly fatal damage. Our patient, a middle-aged female with a complicated medical history, initially came in without characteristic manifestations of myocarditis such as shortness of breath, chest pain, or arrhythmia, but with an altered mental status. Through further laboratory tests, the patient was diagnosed with myocarditis and encephalopathy, which were resolved within weeks through medical management and physical/occupational therapy. This case presentation describes the first reported case of concomitant COVID-19 myocarditis and encephalitis after receiving a booster dose within the year.
Collapse
|
12
|
Dimitriadis K, Schmidbauer M, Bösel J. [Neurointensive care medicine and COVID-19]. DER NERVENARZT 2023; 94:84-92. [PMID: 36520214 PMCID: PMC9751507 DOI: 10.1007/s00115-022-01417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/16/2022]
Abstract
This review article summarizes important findings on the interfaces between the coronavirus disease 2019 (COVID-19) pandemic and neurology with an emphasis of the implications for neurointensive care medicine. More specifically, the prevalence, pathomechanisms and impact of neurological manifestations are reported. The most common neurological manifestations of critically ill COVID-19 patients are cerebrovascular complications, encephalopathies and intensive care unit-acquired weakness (ICUAW). A relevant direct pathophysiological effect by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) itself has not yet been established with certainty. In fact, indirect systemic inflammatory processes triggered by the viral infection and side effects of intensive care treatment are much more likely to cause the reported sequelae. The impact of the pandemic on patients with neurological disorders and neurointensive care medicine is far-reaching but not yet sufficiently studied.
Collapse
Affiliation(s)
- Konstantinos Dimitriadis
- Neurologische Klinik, Universitätsklinikum LMU München, München, Deutschland.
- Institut für Schlaganfall- und Demenzforschung (ISD), LMU München, Feodor-Lynen-Str. 17, 81377, München, Deutschland.
| | - Moritz Schmidbauer
- Neurologische Klinik, Universitätsklinikum LMU München, München, Deutschland
| | - Julian Bösel
- Neurologische Klinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
13
|
Wood GK, Thakur KT, Bharambe V, Chomba M, García-Azorín D, Prasad K, Souza MNP, Chou SHY, Giraldo JDR, Fink E, Hoo FK, Siddiqi OK, Solomon T, Winkler AS, Michael BD. The global brain health clinical exchange platform: Translating concepts to collaborations. J Neurol Sci 2022; 442:120447. [PMID: 36257124 DOI: 10.1016/j.jns.2022.120447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Greta K Wood
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary, and Ecological Science, University of Liverpool, UK
| | - Kiran T Thakur
- Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital, NY, New York, USA
| | - Viraj Bharambe
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Mashina Chomba
- University Teaching Hospital - Adult Hospital, Lusaka, Zambia
| | - David García-Azorín
- Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Kameshwar Prasad
- Rajendra Institute of Medical Sciences, Ranchi 834009, Jharkhand, India
| | | | - Sherry Hsiang-Yi Chou
- Department of Neurology, Northwestern Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, IL 60611, United States
| | - Juan David Roa Giraldo
- Universidad Nacional de Colombia - La Fundación, Universitaria de Ciencias de la Salud, Bogotá, Colombia
| | - Ericka Fink
- Critical Care Medicine and Paediatrics, Dept of Critical Medicine, University of Pittsburgh, USA
| | - Fan Kee Hoo
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Omar K Siddiqi
- Global Neurology Program, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tom Solomon
- The Pandemic Institute and NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, UK
| | - Andrea S Winkler
- Department of Neurology, Center for Global Health, Technical University of Munich, Germany
| | - Benedict D Michael
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, UK.
| |
Collapse
|