1
|
Lapa T, Páscoa RNMJ, Coimbra F, Medeiros L, Gomes PS. Oral squamous cell carcinoma identification by FTIR spectroscopy of oral biofluids. Oral Dis 2025; 31:729-740. [PMID: 39286967 DOI: 10.1111/odi.15128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES This case study evaluated the efficacy of mid-infrared spectroscopy on the identification of oral squamous cell carcinoma, following the assessment of unstimulated whole saliva. STUDY DESIGN AND METHODS The trial follows a matched case-control design. Saliva samples were characterized through mid-infrared spectroscopy, and chemometric tools were applied to distinguish between case and control participants, further identifying the spectral regions that played a pivotal role in the successful identification of oral squamous cell carcinoma. RESULTS Mid-infrared spectroscopy was capable to discriminate between cancer patients and matched controls with 100% of correct predictions. Additionally, the spectral regions mostly contributing to the successful prediction were identified and found to be potentially associated with significant molecular changes crucial to the carcinogenic process. CONCLUSION The application of mid-infrared spectroscopy in saliva analysis may be regarded as an innovative, noninvasive, low cost, and sensitive technique contributing to the identification of oral squamous cell carcionma.
Collapse
Affiliation(s)
- Teresa Lapa
- BoneLab - Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Ricardo N M J Páscoa
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Filipe Coimbra
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Luís Medeiros
- Department of Stomatology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Pedro S Gomes
- BoneLab - Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Beede-James KF, Gutierrez VA, Brooker SL, Martin LE, Torregrossa AM. Sex differences in diet-mediated salivary protein upregulation. Appetite 2025; 207:107888. [PMID: 39870314 DOI: 10.1016/j.appet.2025.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Our lab previously established that repeated exposure to a bitter diet can increase salivary protein (SP) expression, which corresponds to an increase in acceptance of the bitter stimulus. However, this work was exclusively in male rodents, here we examine sex differences. We found that there are no differences in SP expression (experiment 1) or quinine diet acceptance (experiment 2) across stage of estrous cycle. Yet, males and females differ in feeding behaviors, SP expression, and responses to a quinine diet (experiment 3). On a quinine diet, males accepted the diet much faster than females. Males displayed a compensatory increase in meal number as meal size and rate of feeding decreased with initial exposure to a quinine diet, whereas females decreased meal size and rate of feeding with no compensation in meal number. There were sex differences in SP expression at day 14 of quinine exposure but these were gone by day 24. Both sexes increased acceptance of quinine in a brief access taste test after the feeding trial concluded. These data suggest that males and females have different patterns of bitter diet acceptance, but extended exposure to quinine diet still results in altered bitter taste responding and changes in SP profiles in females.
Collapse
Affiliation(s)
- Kimberly F Beede-James
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | | | - Samantha L Brooker
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Laura E Martin
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Ann-Marie Torregrossa
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14260, USA; Center for Ingestive Behavior Research, State University of New York at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
3
|
Seredin P, Litvinova T, Ippolitov Y, Goloshchapov D, Peshkov Y, Kashkarov V, Ippolitov I, Chae B. A Study of the Association between Primary Oral Pathologies (Dental Caries and Periodontal Diseases) Using Synchrotron Molecular FTIR Spectroscopy in View of the Patient's Personalized Clinical Picture (Demographics and Anamnesis). Int J Mol Sci 2024; 25:6395. [PMID: 38928102 PMCID: PMC11204202 DOI: 10.3390/ijms25126395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In this exploratory study, we searched for associations between the two most common diseases of the oral cavity-dental caries and periodontal diseases-taking into account additional factors, such as personalized clinical pictures (the individual risk factors of the patient), based on the method of a multivariate data analysis of the molecular changes in the composition of human gingival crevicular fluid (GCF). For this purpose, a set of synchrotron Fourier-transform infrared spectroscopy (FTIR) spectra of gingival crevicular fluid samples from patients with different demographics, levels of dental caries development and periodontal diseases, and the presence/absence of concomitant chronic diseases were obtained and analyzed. Using a set of techniques (v-, F-, Chi-square tests; a principal component analysis (PCA); and the hierarchical clustering of principal components (HCPCs)) implemented in the R package FactoMineR allowed us to assess the relationship between the principal components (PCs) and characteristics of the respondents. By identifying the features (vibrational modes in the FTIR spectra) that contribute most to the differentiation of the spectral dataset, and by taking into account the interrelationships between the patients' characteristics, we were able to match specific biological markers (specific molecular groups) to the two factors of interest-two types of oral pathologies. The results obtained show that the observed changes in the quantitative and qualitative composition of the modes in the infrared (IR) spectra of the GCF samples from patients with different dental caries developments and periodontal diseases present confirm the difficulty of identifying patient-specific spectral information. At the same time, different periodontal pathologies are more closely associated with other characteristics of the patients than the level of their caries development. The multivariate analysis performed on the spectral dataset indicates the need to take into account not only the co-occurrence of oral diseases, but also some other factors. The lack of this consideration (typical in lots of studies in this area) may lead to misinterpretations and consequently to a loss of data when searching for biological markers of certain oral diseases.
Collapse
Affiliation(s)
- Pavel Seredin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (T.L.)
| | - Tatiana Litvinova
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (T.L.)
- Psycholinguistic Textual Modelling Lab, Voronezh State Pedagogical University, 394043 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (T.L.)
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia
| | - Dmitry Goloshchapov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (T.L.)
| | - Yaroslav Peshkov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (T.L.)
| | - Vladimir Kashkarov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (T.L.)
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia
| | - Boknam Chae
- Pohang Accelerator Laboratory, Beamline Research Division, Pohang 37673, Republic of Korea
| |
Collapse
|
4
|
Mukhlish MZB, Nazibunnesa S, Islam S, Al Mahmood AS, Uddin MT. Preparation of chemically and thermally modified water caltrop epicarp ( Trapa natans L.) adsorbent for enhanced adsorption of Ni(II) from aqueous solution. Heliyon 2023; 9:e21862. [PMID: 38027613 PMCID: PMC10661450 DOI: 10.1016/j.heliyon.2023.e21862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The present study aims to prepare waste water caltrop (Trapanatans L.) epicarp (WCS)-based adsorbents such as raw WCS (WCS-Raw), citric acid-grafted WCS (WCS-CA), acrylamide-grafted WCS (WCS-AM), and calcined WCS (WCS-Si) for Ni(II) removal from aqueous solution in batch adsorption process. The physical and chemical properties of the prepared adsorbents were investigated by different characterization techniques such as scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, nitrogen adsorption-desorption analyses, and pH at the Point of Zero Charge (pHpzc) in order to assess the suitability and effectiveness of the adsorbents for the removal of Ni(II) by understanding their surface morphology, chemical composition, porosity, and surface charge properties. The experimental Ni(II) adsorption data followed both the Langmuir isotherm and the pseudo-second-order kinetic model suggesting the adsorption process on the prepared adsorbents is well-described by these models. The modified adsorbents WCS-CA, WCS-AM, and WCS-Si exhibited a maximum adsorption capacity of 52.08, 40.32, and 158.73 mg/g, respectively, while WCS-Raw had a capacity of 29.06 mg/g. The thermodynamic study revealed that the adsorption process was feasible, spontaneous, and endothermic. The desorption study demonstrated that the adsorbents could be reused for multiple cycles with minimal loss of activity. The present work evidenced the potential practical applicability and sustainability of the WCS-based adsorbents as promising adsorbents in treating and removing Ni(II) from wastewater.
Collapse
Affiliation(s)
- Muhammad Zobayer Bin Mukhlish
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shekh Nazibunnesa
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shariful Islam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Abu Saleh Al Mahmood
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Tamez Uddin
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
5
|
Pal A, Gope A, Sengupta A. Drying of bio-colloidal sessile droplets: Advances, applications, and perspectives. Adv Colloid Interface Sci 2023; 314:102870. [PMID: 37002959 DOI: 10.1016/j.cis.2023.102870] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Drying of biologically-relevant sessile droplets, including passive systems such as DNA, proteins, plasma, and blood, as well as active microbial systems comprising bacterial and algal dispersions, has garnered considerable attention over the last decades. Distinct morphological patterns emerge when bio-colloids undergo evaporative drying, with significant potential in a wide range of biomedical applications, spanning bio-sensing, medical diagnostics, drug delivery, and antimicrobial resistance. Consequently, the prospects of novel and thrifty bio-medical toolkits based on drying bio-colloids have driven tremendous progress in the science of morphological patterns and advanced quantitative image-based analysis. This review presents a comprehensive overview of bio-colloidal droplets drying on solid substrates, focusing on the experimental progress during the last ten years. We provide a summary of the physical and material properties of relevant bio-colloids and link their native composition (constituent particles, solvent, and concentrations) to the patterns emerging due to drying. We specifically examined the drying patterns generated by passive bio-colloids (e.g., DNA, globular, fibrous, composite proteins, plasma, serum, blood, urine, tears, and saliva). This article highlights how the emerging morphological patterns are influenced by the nature of the biological entities and the solvent, micro- and global environmental conditions (temperature and relative humidity), and substrate attributes like wettability. Crucially, correlations between emergent patterns and the initial droplet compositions enable the detection of potential clinical abnormalities when compared with the patterns of drying droplets of healthy control samples, offering a blueprint for the diagnosis of the type and stage of a specific disease (or disorder). Recent experimental investigations of pattern formation in the bio-mimetic and salivary drying droplets in the context of COVID-19 are also presented. We further summarized the role of biologically active agents in the drying process, including bacteria, algae, spermatozoa, and nematodes, and discussed the coupling between self-propulsion and hydrodynamics during the drying process. We wrap up the review by highlighting the role of cross-scale in situ experimental techniques for quantifying sub-micron to micro-scale features and the critical role of cross-disciplinary approaches (e.g., experimental and image processing techniques with machine learning algorithms) to quantify and predict the drying-induced features. We conclude the review with a perspective on the next generation of research and applications based on drying droplets, ultimately enabling innovative solutions and quantitative tools to investigate this exciting interface of physics, biology, data sciences, and machine learning.
Collapse
Affiliation(s)
- Anusuya Pal
- University of Warwick, Department of Physics, Coventry CV47AL, West Midlands, UK; Worcester Polytechnic Institute, Department of Physics, Worcester 01609, MA, USA.
| | - Amalesh Gope
- Tezpur University, Department of Linguistics and Language Technology, Tezpur 784028, Assam, India
| | - Anupam Sengupta
- University of Luxembourg, Physics of Living Matter, Department of Physics and Materials Science, Luxembourg L-1511, Luxembourg
| |
Collapse
|
6
|
Campanella B, Legnaioli S, Onor M, Benedetti E, Bramanti E. The Role of the Preanalytical Step for Human Saliva Analysis via Vibrational Spectroscopy. Metabolites 2023; 13:metabo13030393. [PMID: 36984834 PMCID: PMC10055013 DOI: 10.3390/metabo13030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Saliva is an easily sampled matrix containing a variety of biochemical information, which can be correlated with the individual health status. The fast, straightforward analysis of saliva by vibrational (ATR-FTIR and Raman) spectroscopy is a good premise for large-scale preclinical studies to aid translation into clinics. In this work, the effects of saliva collection (spitting/swab) and processing (two different deproteinization procedures) were explored by principal component analysis (PCA) of ATR-FTIR and Raman data and by investigating the effects on the main saliva metabolites by reversed-phase chromatography (RPC-HPLC-DAD). Our results show that, depending on the bioanalytical information needed, special care must be taken when saliva is collected with swabs because the polymeric material significantly interacts with some saliva components. Moreover, the analysis of saliva before and after deproteinization by FTIR and Raman spectroscopy allows to obtain complementary biological information.
Collapse
Affiliation(s)
- Beatrice Campanella
- Institute of Chemistry of Organometallic Compounds (ICCOM), Consiglio Nazionale delle Ricerche(CNR), 56124 Pisa, Italy
| | - Stefano Legnaioli
- Institute of Chemistry of Organometallic Compounds (ICCOM), Consiglio Nazionale delle Ricerche(CNR), 56124 Pisa, Italy
| | - Massimo Onor
- Institute of Chemistry of Organometallic Compounds (ICCOM), Consiglio Nazionale delle Ricerche(CNR), 56124 Pisa, Italy
| | - Edoardo Benedetti
- Hematology Unit of Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy
| | - Emilia Bramanti
- Institute of Chemistry of Organometallic Compounds (ICCOM), Consiglio Nazionale delle Ricerche(CNR), 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-315-2293
| |
Collapse
|
7
|
Wang G, Wu H, Yang C, Li Z, Chen R, Liang X, Yu K, Li H, Shen C, Liu R, Wei X, Sun Q, Zhang K, Wang Z. An Emerging Strategy for Muscle Evanescent Trauma Discrimination by Spectroscopy and Chemometrics. Int J Mol Sci 2022; 23:ijms232113489. [PMID: 36362276 PMCID: PMC9658611 DOI: 10.3390/ijms232113489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Trauma is one of the most common conditions in the biomedical field. It is important to identify it quickly and accurately. However, when evanescent trauma occurs, it presents a great challenge to professionals. There are few reports on the establishment of a rapid and accurate trauma identification and prediction model. In this study, Fourier transform infrared spectroscopy (FTIR) and microscopic spectroscopy (micro-IR) combined with chemometrics were used to establish prediction models for the rapid identification of muscle trauma in humans and rats. The results of the average spectrum, principal component analysis (PCA) and loading maps showed that the differences between the rat muscle trauma group and the rat control group were mainly related to biological macromolecules, such as proteins, nucleic acids and carbohydrates. The differences between the human muscle trauma group and the human control group were mainly related to proteins, polysaccharides, phospholipids and phosphates. Then, a partial least squares discriminant analysis (PLS-DA) was used to evaluate the classification ability of the training and test datasets. The classification accuracies were 99.10% and 93.69%, respectively. Moreover, a trauma classification and recognition model of human muscle tissue was constructed, and a good classification effect was obtained. The classification accuracies were 99.52% and 91.95%. In conclusion, spectroscopy and stoichiometry have the advantages of being rapid, accurate and objective and of having high resolution and a strong recognition ability, and they are emerging strategies for the identification of evanescent trauma. In addition, the combination of spectroscopy and stoichiometry has great potential in the application of medicine and criminal law under practical conditions.
Collapse
|
8
|
Bunaciu AA, Aboul-Enein HY. DETERMINATION OF COVID-19 VIRUSES IN SALIVA USING FOURIER TRANSFORM INFRARED SPECTROSCOPY. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [PMCID: PMC9519369 DOI: 10.1016/j.cjac.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The rapid spread of severe syndrome coronavirus 2 (SARS-CoV-2) has led to the coronavirus disease 2019 (COVID-19) worldwide pandemic. Scientists and researchers all over the world studied different methods in order to accelerate the testing results. In this review, we present some of the most important papers related to the determination of COVID – 19 in saliva using the Fourier Transform Infrared Spectroscopy technique.
Collapse
|
9
|
Oral lichen planus identification by mid-infrared spectroscopy of oral biofluids: A case-control study. Clin Chim Acta 2022; 530:126-133. [PMID: 35390336 DOI: 10.1016/j.cca.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS This study aims to access the effectiveness of mid-infrared (MIR) spectroscopy on the identification of the reticular form of OLP, following the assessment of gingival crevicular fluid (GCF) and oral mucosa transudate (OMT). MATERIAL AND METHODS The trial follows a case-control design. Samples were characterized through MIR spectroscopy and chemometric tools were applied to distinguish between case and control participants, further identifying the spectral regions with the highest contribution to the developed models. RESULTS MIR spectroscopy was capable to discriminate between OLP patients and controls with 95.1% and 85.4% of correct predictions, regarding GCF and OMT samples, respectively. Additionally, the spectral regions mostly contributing to the successful prediction were identified, and possibly related with the distinctive presence of amino acids/proteins and oxidative stress mediators in oral biofluids, supporting the role of the immune-inflammatory activation on OLP etiology and disease course. CONCLUSION MIR spectroscopy analysis of GCF and OMT may be regarded as an innovative, non-invasive, low cost and sensitive technique, contributing to the identification of the reticular from of OLP.
Collapse
|
10
|
Maciejczyk M, Nesterowicz M, Szulimowska J, Zalewska A. Oxidation, Glycation, and Carbamylation of Salivary Biomolecules in Healthy Children, Adults, and the Elderly: Can Saliva Be Used in the Assessment of Aging? J Inflamm Res 2022; 15:2051-2073. [PMID: 35378954 PMCID: PMC8976116 DOI: 10.2147/jir.s356029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background Aging is inextricably linked to oxidative stress, inflammation, and posttranslational protein modifications. However, no studies evaluate oxidation, glycation, and carbamylation of salivary biomolecules as biomarkers of aging. Saliva collection is non-invasive, painless, and inexpensive, which are advantages over other biofluids. Methods The study enrolled 180 healthy subjects divided into six groups according to age: 6–13, 14–19, 20–39, 40–59, 60–79, and 80–100 years. The number of individuals was determined a priori based on our previous experiment (power of the test = 0.8; α = 0.05). Non-stimulated saliva and plasma were collected from participants, in which biomarkers of aging were determined by colorimetric, fluorometric, and ELISA methods. Results The study have demonstrated that modifications of salivary proteins increase with age, as manifested by decreased total thiol levels and increased carbonyl groups, glycation (Nε-(carboxymethyl) lysine, advanced glycation end products (AGE)) and carbamylation (carbamyl-lysine) protein products in the saliva of old individuals. Oxidative modifications of lipids (4-hydroxynonenal) and nucleic acids (8-hydroxy-2’-deoxyguanosine (8-OHdG)) also increase with age. Salivary redox biomarkers correlate poorly with their plasma levels; however, salivary AGE and 8-OHdG generally reflect their blood concentrations. In the multivariate regression model, they are a predictor of aging and, in the receiver operating characteristic (ROC) analysis, significantly differentiate children and adolescents (under 15 years old) from the working-age population (15–64 years) and the older people (65 years and older). Conclusion Salivary AGE and 8-OHdG have the most excellent diagnostic utility in assessing the aging process. Saliva can be used to evaluate the aging of the body.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
- Correspondence: Mateusz Maciejczyk, Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok, 15-233, Poland, Email
| | - Miłosz Nesterowicz
- Students Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Julita Szulimowska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
11
|
Predicting Satiety from the Analysis of Human Saliva Using Mid-Infrared Spectroscopy Combined with Chemometrics. Foods 2022; 11:foods11050711. [PMID: 35267343 PMCID: PMC8909147 DOI: 10.3390/foods11050711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to evaluate the ability of mid-infrared (MIR) spectroscopy combined with chemometrics to analyze unstimulated saliva as a method to predict satiety in healthy participants. This study also evaluated features in saliva that were related to individual perceptions of human–food interactions. The coefficient of determination (R2) and standard error in cross validation (SECV) for the prediction of satiety in all saliva samples were 0.62 and 225.7 satiety area under the curve (AUC), respectively. A correlation between saliva and satiety was found, however, the quantitative prediction of satiety using unstimulated saliva was not robust. Differences in the MIR spectra of saliva between low and high satiety groups, were observed in the following frequency ratios: 1542/2060 cm−1 (total protein), 1637/3097 cm−1 (α-amino acids), and 1637/616 (chlorides) cm−1. In addition, good to excellent models were obtained for the prediction of satiety groups defined as low or high satiety participants (R2 0.92 and SECV 0.10), demonstrating that this method could be used to identify low or high satiety perception types and to select participants for appetite studies. Although quantitative PLS calibration models were not achieved, a qualitative model for the prediction of low and high satiety perception types was obtained using PLS-DA. Furthermore, this study showed that it might be possible to evaluate human/food interactions using MIR spectroscopy as a rapid and cost-effective tool.
Collapse
|
12
|
Ni D, Smyth HE, Gidley MJ, Cozzolino D. Exploring the relationships between oral sensory physiology and oral processing with mid infrared spectra of saliva. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
|
14
|
Bel'skaya LV, Solomatin DV. Influence of surface tension on the characteristics of FTIR spectra on the example of saliva. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Bel’skaya LV, Sarf EA, Kosenok VK. Analysis of Saliva Lipids in Breast and Prostate Cancer by IR Spectroscopy. Diagnostics (Basel) 2021; 11:1325. [PMID: 34441260 PMCID: PMC8394871 DOI: 10.3390/diagnostics11081325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
We have developed a method for studying the lipid profile of saliva, combining preliminary extraction and IR spectroscopic detection. The case-control study involved patients with a histologically verified diagnosis of breast and prostate cancer and healthy volunteers. The comparison group included patients with non-malignant pathologies of the breast (fibroadenomas) and prostate gland (prostatic intraepithelial neoplasia). Saliva was used as a material for biochemical studies. It has been shown that the lipid profile of saliva depends on gender, and for males it also depends on the age group. In cancer pathologies, the lipid profile changes significantly and also depends on gender and age characteristics. The ratio of 1458/1396 cm-1 for both breast and prostate cancer has a potential diagnostic value. In both cases, this ratio decreases compared to healthy controls. For prostate cancer, the ratio of 2923/2957 cm-1 is also potentially informative, which grows against the background of prostate pathologies. It is noted that, in all cases, changes in the proposed ratios are more pronounced in the early stages of diseases, which increases the relevance of their study in biomedical applications.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Elena A. Sarf
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Victor K. Kosenok
- Department of Oncology, Omsk State Medical University, 644099 Omsk, Russia;
| |
Collapse
|
16
|
Lukose J, M. SP, N. M, Barik AK, Pai KM, Unnikrishnan VK, George SD, Kartha VB, Chidangil S. Photonics of human saliva: potential optical methods for the screening of abnormal health conditions and infections. Biophys Rev 2021; 13:359-385. [PMID: 34093888 PMCID: PMC8170462 DOI: 10.1007/s12551-021-00807-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Human saliva can be treated as a pool of biological markers able to reflect on the state of personal health. Recent years have witnessed an increase in the use of optical devices for the analysis of body fluids. Several groups have carried out studies investigating the potential of saliva as a non-invasive and reliable clinical specimen for use in medical diagnostics. This brief review aims to highlight the optical technologies, mainly surface plasmon resonance (SPR), Raman, and Fourier transform infrared (FTIR) spectroscopy, which are being used for the probing of saliva for diverse biomedical applications. Advances in bio photonics offer the promise of unambiguous, objective and fast detection of abnormal health conditions and viral infections (such as COVID-19) from the analysis of saliva.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sanoop Pavithran M.
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Mithun N.
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Keerthilatha M. Pai
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - V. K. Unnikrishnan
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sajan D. George
- Centre for Applied Nanoscience, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - V. B. Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
17
|
Ni D, Smyth HE, Gidley MJ, Cozzolino D. Towards personalised saliva spectral fingerprints: Comparison of mid infrared spectra of dried and whole saliva samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119569. [PMID: 33610099 DOI: 10.1016/j.saa.2021.119569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The aims of this study were to compare two sample presentations (dry and whole) as well as the effects of both gender and age on the mid infrared (MIR) fingerprint spectra of human saliva. Unstimulated saliva was collected from 52 Female (31 subjects, aged 40.9 ± 14.6 year) and Male (21 subjects, aged 34 ± 11.8 year) participants, stored frozen, and subsequently thawed and analysed by MIR spectroscopy as whole and dried saliva, respectively. Data were analysed by means of principal components analysis (PCA) and partial least squares (PLS) to interpret and compare the effects of presentation (dry vs whole), age and gender on the MIR spectra of saliva. Interpretation of the MIR spectra of both whole and dried samples revealed specific characteristic and different spectral signals when gender and age were compared in the amide I and amide II of proteins (e.g. albumin) and DNA. While whole saliva analysis might be more convenient for rapid test, dried saliva spectra were more consistent across replicates, demonstrating greater ability to distinguish individual differences. The interpretation of the PCA and PLS loadings of both whole and dried saliva samples allowed identification of specific MIR regions associated with age and gender of participants between 1000 cm-1 and 1800 cm-1. In particular, the MIR regions associated with the absorption of polysaccharides, glycosylated proteins, and nucleic acid phosphate groups present in saliva were the most dominant. This paper demonstrates that MIR spectroscopy can be used to measure saliva samples and to interpret individual differences in participants due to age in either dry or whole samples. No clear trends were observed in the MIR spectra of the samples associated with gender when all samples were analysed together. However, PLS regression models were able to predict gender in a subset of samples having similar age. The approach described in this study shows promise for potentially using saliva as a tool in food studies (e.g. saliva interactions between food and consumers).
Collapse
Affiliation(s)
- Dongdong Ni
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Heather E Smyth
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Queensland, Australia.
| |
Collapse
|
18
|
Tripodi D, Cosi A, Fulco D, D’Ercole S. The Impact of Sport Training on Oral Health in Athletes. Dent J (Basel) 2021; 9:51. [PMID: 34063591 PMCID: PMC8147607 DOI: 10.3390/dj9050051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
Athletes' oral health appears to be poor in numerous sport activities and different diseases can limit athletic skills, both during training and during competitions. Sport activities can be considered a risk factor, among athletes from different sports, for the onset of oral diseases, such as caries with an incidence between 15% and 70%, dental trauma 14-70%, dental erosion 36%, pericoronitis 5-39% and periodontal disease up to 15%. The numerous diseases are related to the variations that involve the ecological factors of the oral cavity such as salivary pH, flow rate, buffering capability, total bacterial count, cariogenic bacterial load and values of secretory Immunoglobulin A. The decrease in the production of S-IgA and the association with an important intraoral growth of pathogenic bacteria leads us to consider the training an "open window" for exposure to oral cavity diseases. Sports dentistry focuses attention on the prevention and treatment of oral pathologies and injuries. Oral health promotion strategies are needed in the sports environment. To prevent the onset of oral diseases, the sports dentist can recommend the use of a custom-made mouthguard, an oral device with a triple function that improves the health and performance of athletes. During training, the sports dentist must monitor the athletes and the sports examination protocol must be implemented with the inclusion of the clinical examination, quantitative and qualitative analysis of saliva and instructions on the use, cleansing and storage of the mouthguard.
Collapse
Affiliation(s)
| | | | | | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. D’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (D.T.); (A.C.); (D.F.)
| |
Collapse
|