1
|
Ma SZ, Wang XK, Yang C, Dong WQ, Chen DD, Song C, Zhang QR, Zang YF, Yuan LX. Robust Autism Spectrum Disorder-Related Spatial Covariance Gray Matter Pattern Revealed With a Large-Scale Multi-Center Dataset. Autism Res 2025; 18:312-324. [PMID: 39737534 DOI: 10.1002/aur.3303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder and its underlying neuroanatomical mechanisms still remain unclear. The scaled subprofile model of principal component analysis (SSM-PCA) is a data-driven multivariate technique for capturing stable disease-related spatial covariance pattern. Here, SSM-PCA is innovatively applied to obtain robust ASD-related gray matter volume pattern associated with clinical symptoms. We utilized T1-weighted structural MRI images (sMRI) of 576 subjects (288 ASDs and 288 typically developing (TD) controls) aged 7-29 years from the Autism Brain Imaging Data Exchange II (ABIDE II) dataset. These images were analyzed with SSM-PCA to identify the ASD-related spatial covariance pattern. Subsequently, we investigated the relationship between the pattern and clinical symptoms and verified its robustness. Then, the applicability of the pattern under different age stages were further explored. The results revealed that the ASD-related pattern primarily involves the thalamus, putamen, parahippocampus, orbitofrontal cortex, and cerebellum. The expression of this pattern correlated with Social Response Scale and Social Communication Questionnaire scores. Moreover, the ASD-related pattern was robust for the ABIDE I dataset. Regarding the applicability of the pattern for different age stages, the effect sizes of its expression in ASD were medium in the children and adults, while small in adolescents. This study identified a robust ASD-related pattern based on gray matter volume that is associated with social deficits. Our findings provide new insights into the neuroanatomical mechanisms of ASD and may facilitate its future intervention.
Collapse
Affiliation(s)
- Sheng-Zhi Ma
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Xing-Ke Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Chen Yang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wen-Qiang Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Dan-Dan Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Song
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiu-Rong Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Li-Xia Yuan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
2
|
Zovetti N, Meller T, Evermann U, Pfarr JK, Hoffmann J, Federspiel A, Walther S, Grezellschak S, Jansen A, Abu-Akel A, Nenadić I. Multimodal imaging of the amygdala in non-clinical subjects with high vs. low autistic-like social skills traits. Psychiatry Res Neuroimaging 2025; 346:111910. [PMID: 39477779 DOI: 10.1016/j.pscychresns.2024.111910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 12/16/2024]
Abstract
Recent clinical and theoretical frameworks suggest that social skills and theory of mind impairments characteristic of autism spectrum disorder (ASD) are distributed in the general population on a continuum between healthy individuals and patients. The present multimodal study aimed at investigating the amygdala's function, perfusion, and volume in 56 non-clinical subjects from the general population with high (n = 28 High-SOC) or low (n = 28 Low-SOC) autistic-like social skills traits. Participants underwent magnetic resonance imaging to evaluate the amygdala's functional connectivity at rest, blood perfusion by means of arterial spin labelling, its activation during a face evaluation task and lastly grey matter volumes. The High-SOC group was characterised by higher blood perfusion in both amygdalae, lower volume of the left amygdala and higher activations of the right amygdala during processing of human faces with fearful value. Resting state analyses did not reveal any significant difference between the two groups. Overall, our results highlight the presence of overlapping morpho-functional alterations of the amygdala between healthy individuals and ASD patients confirming the importance of the amygdala in this disorder and in social and emotional processing. Our findings may help disentangle the neurobiological facets of ASD elucidating aetiology and the relationship between clinical symptomatology and neurobiology.
Collapse
Affiliation(s)
- Niccolò Zovetti
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany; Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Ulrika Evermann
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Jonas Hoffmann
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sarah Grezellschak
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany; BrainImaging Core Facility, Philipps Universität Marburg, Marburg, Germany
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Haifa Brain and Behavior Hub (HBBH), University of Haifa, Haifa, Israel
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany.
| |
Collapse
|
3
|
Liloia D, Zamfira DA, Tanaka M, Manuello J, Crocetta A, Keller R, Cozzolino M, Duca S, Cauda F, Costa T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev 2024; 164:105791. [PMID: 38960075 DOI: 10.1016/j.neubiorev.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Mauro Cozzolino
- Department of Humanities, Philosophical and Educational Sciences, University of Salerno, Fisciano, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
4
|
Mohammad S, Gentreau M, Dubol M, Rukh G, Mwinyi J, Schiöth HB. Association of polygenic scores for autism with volumetric MRI phenotypes in cerebellum and brainstem in adults. Mol Autism 2024; 15:34. [PMID: 39113134 PMCID: PMC11304666 DOI: 10.1186/s13229-024-00611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Previous research on autism spectrum disorders (ASD) have showed important volumetric alterations in the cerebellum and brainstem. Most of these studies are however limited to case-control studies with small clinical samples and including mainly children or adolescents. Herein, we aimed to explore the association between the cumulative genetic load (polygenic risk score, PRS) for ASD and volumetric alterations in the cerebellum and brainstem, as well as global brain tissue volumes of the brain among adults at the population level. We utilized the latest genome-wide association study of ASD by the Psychiatric Genetics Consortium (18,381 cases, 27,969 controls) and constructed the ASD PRS in an independent cohort, the UK Biobank. Regression analyses controlled for multiple comparisons with the false-discovery rate (FDR) at 5% were performed to investigate the association between ASD PRS and forty-four brain magnetic resonance imaging (MRI) phenotypes among ~ 31,000 participants. Primary analyses included sixteen MRI phenotypes: total volumes of the brain, cerebrospinal fluid (CSF), grey matter (GM), white matter (WM), GM of whole cerebellum, brainstem, and ten regions of the cerebellum (I_IV, V, VI, VIIb, VIIIa, VIIIb, IX, X, CrusI and CrusII). Secondary analyses included twenty-eight MRI phenotypes: the sub-regional volumes of cerebellum including the GM of the vermis and both left and right lobules of each cerebellar region. ASD PRS were significantly associated with the volumes of seven brain areas, whereby higher PRS were associated to reduced volumes of the whole brain, WM, brainstem, and cerebellar regions I-IV, IX, and X, and an increased volume of the CSF. Three sub-regional volumes including the left cerebellar lobule I-IV, cerebellar vermes VIIIb, and X were significantly and negatively associated with ASD PRS. The study highlights a substantial connection between susceptibility to ASD, its underlying genetic etiology, and neuroanatomical alterations of the adult brain.
Collapse
Affiliation(s)
- Salahuddin Mohammad
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mélissa Gentreau
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Manon Dubol
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Thomson AR, Pasanta D, Arichi T, Puts NA. Neurometabolite differences in Autism as assessed with Magnetic Resonance Spectroscopy: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 162:105728. [PMID: 38796123 PMCID: PMC11602446 DOI: 10.1016/j.neubiorev.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
1H-Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique that can be used to quantify the concentrations of metabolites in the brain in vivo. MRS findings in the context of autism are inconsistent and conflicting. We performed a systematic review and meta-analysis of MRS studies measuring glutamate and gamma-aminobutyric acid (GABA), as well as brain metabolites involved in energy metabolism (glutamine, creatine), neural and glial integrity (e.g. n-acetyl aspartate (NAA), choline, myo-inositol) and oxidative stress (glutathione) in autism cohorts. Data were extracted and grouped by metabolite, brain region and several other factors before calculation of standardised effect sizes. Overall, we find significantly lower concentrations of GABA and NAA in autism, indicative of disruptions to the balance between excitation/inhibition within brain circuits, as well as neural integrity. Further analysis found these alterations are most pronounced in autistic children and in limbic brain regions relevant to autism phenotypes. Additionally, we show how study outcome varies due to demographic and methodological factors , emphasising the importance of conforming with standardised consensus study designs and transparent reporting.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK.
| |
Collapse
|
6
|
Weerasekera A, Ion-Mărgineanu A, Nolan GP, Mody M. Subcortical-cortical white matter connectivity in adults with autism spectrum disorder and schizophrenia patients. Psychiatry Res Neuroimaging 2024; 340:111806. [PMID: 38508025 DOI: 10.1016/j.pscychresns.2024.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Autism spectrum disorder (ASD) and schizophrenia (SZ) are neuropsychiatric disorders that overlap in symptoms associated with social-cognitive impairment. Alterations of the cingulate cortex, subcortical, medial-temporal, and orbitofrontal structures are frequently reported in both disorders. In this study, we examined white-matter connectivity between these structures in adults with ASD and SZ patients compared with their respective neurotypical controls and indirectly with each other, using probabilistic and local DTI tractography. This exploratory study utilized publicly available neuroimaging databases, of adults with ASD (ABIDE II; n = 28) and SZ (COBRE; n = 38), age-gender matched neurotypicals (NT) and associated phenotypic data. Tractography was performed using Freesurfer and MRtrix software, and diffusion metrics of white-matter tracts between cingulate-, orbitofrontal- cortices, subcortical structures, parahippocampal, entorhinal cortex were assessed. In ASD, atypical diffusivity parameters were found in the isthmus cingulate and parahippocampal connectivity to subcortical and rostral-anterior cingulate, which were also associated with IQ and social skills (SRS). In contrast, atypical diffusivity parameters were observed between the medial-orbitofrontal cortex and subcortical structures in SZ, and were associated with executive function (i.e., IQ, processing speed) and emotional regulation. Overall, the results suggest that defects in the isthmus cingulate, medial-orbitofrontal, and striato-limbic white matter connectivity may help unravel the neural underpinnings of executive and social-emotional dysfunction at the core of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Akila Weerasekera
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Adrian Ion-Mărgineanu
- ESAT - STADIUS, KU Leuven, Leuven. Belgium; Biomed Artificial Intelligence LLC, Bucharest, Romania
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University School of Medicine, United States
| | - Maria Mody
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Gong X, Hu B, Liao S, Qi B, Wang L, He Q, Xia LX. Neural correlates of aggression outcome expectation and their association with aggression: A voxel-based morphometry study. Neurosci Lett 2024; 829:137768. [PMID: 38604300 DOI: 10.1016/j.neulet.2024.137768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Aggression outcome expectation is an important cognitive factor of aggression. Discovering the neural mechanism of aggression outcome expectation is conducive to developing aggression research. However, the neural correlates underlying aggression outcome expectation and its effect remain elusive. METHODS We utilized voxel-based morphometry (VBM) to unravel the neural architecture of aggression outcome expectation measured by the Social Emotional Information Processing Assessment for Adults and its relationship with aggression measured by the Buss Perry Aggression Questionnaire in a sample of 185 university students (114 female; mean age = 19.94 ± 1.62 years; age range: 17-32 years). RESULTS We found a significantly positive correlation between aggression outcome expectation and the regional gray matter volume (GMV) in the right middle temporal gyrus (MTG) (x = 55.5, y = -58.5, z = 1.5; t = 3.35; cluster sizes = 352, p < 0.05, GRF corrected). Moreover, aggression outcome expectation acted as a mediator underlying the association between the right MTG volume and aggression. CONCLUSIONS These results revealed the neural correlates of aggression outcome expectation and its effect on aggression for the first time, which may contribute to our understanding of the cognitive neural mechanism of aggression and potentially identifying neurobiological markers for aggression.
Collapse
Affiliation(s)
- Xinyu Gong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Bohua Hu
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Senrong Liao
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Bingxin Qi
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Liang Wang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China.
| | - Ling-Xiang Xia
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Shen L, Zhang J, Fan S, Ping L, Yu H, Xu F, Cheng Y, Xu X, Yang C, Zhou C. Cortical thickness abnormalities in autism spectrum disorder. Eur Child Adolesc Psychiatry 2024; 33:65-77. [PMID: 36542200 DOI: 10.1007/s00787-022-02133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The pathological mechanism of autism spectrum disorder (ASD) remains unclear. Nowadays, surface-based morphometry (SBM) based on structural magnetic resonance imaging (sMRI) techniques have reported cortical thickness (CT) variations in ASD. However, the findings were inconsistent and heterogeneous. This current meta-analysis conducted a whole-brain vertex-wise coordinate-based meta-analysis (CBMA) on CT studies to explore the most noticeable and robust CT changes in ASD individuals by applying the seed-based d mapping (SDM) program. A total of 26 investigations comprised 27 datasets were included, containing 1,635 subjects with ASD and 1470 HC, along with 94 coordinates. Individuals with ASD exhibited significantly altered CT in several regions compared to HC, including four clusters with thicker CT in the right superior temporal gyrus (STG.R), the left middle temporal gyrus (MTG.L), the left anterior cingulate/paracingulate gyri, the right superior frontal gyrus (SFG.R, medial orbital parts), as well as three clusters with cortical thinning including the left parahippocampal gyrus (PHG.L), the right precentral gyrus (PCG.R) and the left middle frontal gyrus (MFG.L). Adults with ASD only demonstrated CT thinning in the right parahippocampal gyrus (PHG.R), revealed by subgroup meta-analyses. Meta-regression analyses found that CT in STG.R was positively correlated with age. Meanwhile, CT in MFG.L and PHG.L had negative correlations with the age of ASD individuals. These results suggested a complicated and atypical cortical development trajectory in ASD, and would provide a deeper understanding of the neural mechanism underlying the cortical morphology in ASD.
Collapse
Affiliation(s)
- Liancheng Shen
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Junqing Zhang
- Department of Pharmacy, Shandong Daizhuang Hospital, Jining, China
| | - Shiran Fan
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Fangfang Xu
- School of Mental Health, Jining Medical University, Jining, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunyan Yang
- School of Rehabilitation Medicine, Jining Medical University, Jining, China.
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China.
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
9
|
Liu J, Liu QR, Wu ZM, Chen QR, Chen J, Wang Y, Cao XL, Dai MX, Dong C, Liu Q, Zhu J, Zhang LL, Li Y, Wang YF, Liu L, Yang BR. Specific brain imaging alterations underlying autistic traits in children with attention-deficit/hyperactivity disorder. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:20. [PMID: 37986005 PMCID: PMC10658985 DOI: 10.1186/s12993-023-00222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Autistic traits (ATs) are frequently reported in children with Attention-Deficit/Hyperactivity Disorder (ADHD). This study aimed to examine ATs in children with ADHD from both behavioral and neuroimaging perspectives. METHODS We used the Autism Spectrum Screening Questionnaire (ASSQ) to assess and define subjects with and without ATs. For behavioral analyses, 67 children with ADHD and ATs (ADHD + ATs), 105 children with ADHD but without ATs (ADHD - ATs), and 44 typically developing healthy controls without ATs (HC - ATs) were recruited. We collected resting-state functional magnetic resonance imaging (rs-fMRI) data and analyzed the mean amplitude of low-frequency fluctuation (mALFF) values (an approach used to depict different spontaneous brain activities) in a sub-sample. The imaging features that were shared between ATs and ADHD symptoms or that were unique to one or the other set of symptoms were illustrated as a way to explore the "brain-behavior" relationship. RESULTS Compared to ADHD-ATs, the ADHD + ATs group showed more global impairment in all aspects of autistic symptoms and higher hyperactivity/impulsivity (HI). Partial-correlation analysis indicated that HI was significantly positively correlated with all aspects of ATs in ADHD. Imaging analyses indicated that mALFF values in the left middle occipital gyrus (MOG), left parietal lobe (PL)/precuneus, and left middle temporal gyrus (MTG) might be specifically related to ADHD, while those in the right MTG might be more closely associated with ATs. Furthermore, altered mALFF in the right PL/precuneus correlated with both ADHD and ATs, albeit in diverse directions. CONCLUSIONS The co-occurrence of ATs in children with ADHD manifested as different behavioral characteristics and specific brain functional alterations. Assessing ATs in children with ADHD could help us understand the heterogeneity of ADHD, further explore its pathogenesis, and promote clinical interventions.
Collapse
Affiliation(s)
- Juan Liu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qian-Rong Liu
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhao-Min Wu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qiao-Ru Chen
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jing Chen
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yuan Wang
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Xiao-Lan Cao
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Mei-Xia Dai
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Chao Dong
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qiao Liu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jun Zhu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Lin-Lin Zhang
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Ying Li
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yu-Feng Wang
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Bin-Rang Yang
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
10
|
Xu MX, Ju XD. Abnormal Brain Structure Is Associated with Social and Communication Deficits in Children with Autism Spectrum Disorder: A Voxel-Based Morphometry Analysis. Brain Sci 2023; 13:brainsci13050779. [PMID: 37239251 DOI: 10.3390/brainsci13050779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Structural magnetic resonance imaging (sMRI) studies have shown abnormalities in the brain structure of ASD patients, but the relationship between structural changes and social communication problems is still unclear. This study aims to explore the structural mechanisms of clinical dysfunction in the brain of ASD children through voxel-based morphometry (VBM). After screening T1 structural images from the Autism Brain Imaging Data Exchange (ABIDE) database, 98 children aged 8-12 years old with ASD were matched with 105 children aged 8-12 years old with typical development (TD). Firstly, this study compared the differences in gray matter volume (GMV) between the two groups. Then, this study evaluated the relationship between GMV and the subtotal score of communications and social interaction on the Autism Diagnostic Observation Schedule (ADOS) in ASD children. Research has found that abnormal brain structures in ASD include the midbrain, pontine, bilateral hippocampus, left parahippocampal gyrus, left superior temporal gyrus, left temporal pole, left middle temporal gyrus and left superior occipital gyrus. In addition, in ASD children, the subtotal score of communications and social interaction on the ADOS were only significantly positively correlated with GMV in the left hippocampus, left superior temporal gyrus and left middle temporal gyrus. In summary, the gray matter structure of ASD children is abnormal, and different clinical dysfunction in ASD children is related to structural abnormalities in specific regions.
Collapse
Affiliation(s)
- Ming-Xiang Xu
- School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Xing-Da Ju
- School of Psychology, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun 130024, China
| |
Collapse
|
11
|
Sun F, Chen Y, Huang Y, Yan J, Chen Y. Relationship between gray matter structure and age in children and adolescents with high-functioning autism spectrum disorder. Front Hum Neurosci 2023; 16:1039590. [PMID: 36684838 PMCID: PMC9853167 DOI: 10.3389/fnhum.2022.1039590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023] Open
Abstract
Objective The present study used magnetic resonance imaging to investigate the difference in the relationship between gray matter structure and age in children and adolescents with autism spectrum disorder (ASD) and typically developing (TD) subjects. Methods After screening T1 structural images from the Autism Brain Imaging Data Exchange (ABIDE) database, 111 children and adolescents (7-18 years old) with high-functioning ASD and 151 TD subjects matched for age, sex and full IQ were included in the current study. By using the voxel-based morphological analysis method, gray matter volume/density (GMV/GMD) maps were obtained for each participant. Then, a multiple regression analysis was performed for ASD and TD groups, respectively to estimate the relationship between GMV/GMD and age with gender, education, site, and IQ scores as covariates. Furthermore, a z-test was used to compare such relationship difference between the groups. Results Results showed that compared with TD, the GMD of ASD showed stronger positive correlations with age in the prefrontal cortex, and a stronger negative correlation in the left inferior parietal lobule, and a weaker positive correlation in the right inferior parietal lobule. The GMV of ASD displayed stronger positive correlations with age in the prefrontal cortex and cerebellum. Conclusion These findings may provide evidence to support that the brain structure abnormalities underlying ASD during childhood and adolescence may differ from each other.
Collapse
Affiliation(s)
- Fenfen Sun
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Yue Chen
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Yingwen Huang
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Jing Yan
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Yihong Chen
- Department of Otorhinolaryngology, The First People’s Hospital of Xiaoshan, Hangzhou, China
| |
Collapse
|
12
|
Chien YL, Chen YJ, Tseng WL, Hsu YC, Wu CS, Tseng WYI, Gau SSF. Differences in white matter segments in autistic males, non-autistic siblings, and non-autistic participants: An intermediate phenotype approach. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 27:1036-1052. [PMID: 36254873 DOI: 10.1177/13623613221125620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LAY ABSTRACT White matter is the neural pathway that connects neurons in different brain regions. Although research has shown white matter differences between autistic and non-autistic people, little is known about the properties of white matter in non-autistic siblings. In addition, past studies often focused on the whole neural tracts; it is unclear where differences exist in specific segments of the tracts. This study identified neural segments that differed between autistic people, their non-autistic siblings, and the age- and non-autistic people. We found altered segments within the tracts connected to anterior brain regions corresponding to several higher cognitive functions (e.g. executive functions) in autistic people and non-autistic siblings. Segments connecting to regions for social cognition and Theory of Mind were altered only in autistic people, explaining a large portion of autistic traits and may serve as neuroimaging markers. Segments within the tracts associated with fewer autistic traits or connecting brain regions for diverse highly integrated functions showed compensatory increases in the microstructural properties in non-autistic siblings. Our findings suggest that differential white matter segments that are shared between autistic people and non-autistic siblings may serve as potential "intermediate phenotypes"-biological or neuropsychological characteristics in the causal link between genetics and symptoms-of autism. These findings shed light on a promising neuroimaging model to refine the intermediate phenotype of autism which may facilitate further identification of the genetic and biological bases of autism. Future research exploring links between compensatory segments and neurocognitive strengths in non-autistic siblings may help understand brain adaptation to autism.
Collapse
Affiliation(s)
- Yi-Ling Chien
- National Taiwan University Hospital and College of Medicine, Taiwan.,National Taiwan University, Taiwan
| | | | | | | | - Chi-Shin Wu
- National Taiwan University Hospital and College of Medicine, Taiwan
| | | | - Susan Shur-Fen Gau
- National Taiwan University Hospital and College of Medicine, Taiwan.,National Taiwan University, Taiwan
| |
Collapse
|
13
|
Del Casale A, Ferracuti S, Alcibiade A, Simone S, Modesti MN, Pompili M. Neuroanatomical correlates of autism spectrum disorders: A meta-analysis of structural magnetic resonance imaging (MRI) studies. Psychiatry Res Neuroimaging 2022; 325:111516. [PMID: 35882091 DOI: 10.1016/j.pscychresns.2022.111516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders correlated to various neuroanatomical modifications. We aimed to identify neuroanatomical changes assessed in magnetic resonance imaging (MRI) studies of autism spectrum disorder (ASD) through Activation Likelihood Estimate (ALE) meta-analysis. We included 19 peer-reviewed magnetic resonance imaging (MRI) studies that analyzed cortical volume in patients with ASD compared to healthy control subjects (HCs). The between-group analyses comparing subjects with ASD to HCs showed a volumetric reduction of a large cluster in the right brain, including the uncus/amygdala, parahippocampal gyrus, and entorhinal cortex, and putamen. The anomalies are primarily found in the right hemisphere, involved in social cognitive function, particularly impaired in ASD. These results correlate with several clinical aspects of ASD. These volumetric alterations can be considered a major correlate of disease in the context of multifactorial etiology. Further studies on brain lateralization in ASD are needed, considering the clinical phenotype variability of these disorders.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology, and Health Studies; Faculty of Medicine and Psychology; Sapienza University of Rome, Italy.
| | - Stefano Ferracuti
- Department of Human Neuroscience; Faculty of Medicine and Dentistry; Sapienza University of Rome, Italy
| | | | - Sara Simone
- Faculty of Medicine and Psychology; Sapienza University of Rome, Italy
| | | | - Maurizio Pompili
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS); Faculty of Medicine and Psychology; Sapienza University of Rome, Italy
| |
Collapse
|
14
|
Durkut M, Blok E, Suleri A, White T. The longitudinal bidirectional relationship between autistic traits and brain morphology from childhood to adolescence: a population-based cohort study. Mol Autism 2022; 13:31. [PMID: 35790991 PMCID: PMC9258195 DOI: 10.1186/s13229-022-00504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Autistic traits are associated with alterations in brain morphology. However, the anatomic location of these differences and their developmental trajectories are unclear. The primary objective of this longitudinal study was to explore the bidirectional relationship between autistic traits and brain morphology from childhood to adolescence. Method Participants were drawn from a population-based cohort. Cross-sectional and longitudinal analyses included 1950 (mean age 13.5) and 304 participants (mean ages 6.2 and 13.5), respectively. Autistic traits were measured with the Social Responsiveness Scale. Global brain measures and surface-based measures of gyrification, cortical thickness and surface area were obtained from T1-weighted MRI scans. Cross-sectional associations were assessed using linear regression analyses. Cross-lagged panel models were used to determine the longitudinal bidirectional relationship between autistic traits and brain morphology. Results Cross-sectionally, higher levels of autistic traits in adolescents are associated with lower gyrification in the pars opercularis, insula and superior temporal cortex; smaller surface area in the middle temporal and postcentral cortex; larger cortical thickness in the superior frontal cortex; and smaller cerebellum cortex volume. Longitudinally, both autistic traits and brain measures were quite stable, with neither brain measures predicting changes in autistic traits, nor vice-versa. Limitations Autistic traits were assessed at only two time points, and thus we could not distinguish within- versus between-person effects. Furthermore, two different MRI scanners were used between baseline and follow-up for imaging data acquisition. Conclusions Our findings point to early changes in brain morphology in children with autistic symptoms that remain quite stable over time. The observed relationship did not change substantially after excluding children with high levels of autistic traits, bolstering the evidence for the extension of the neurobiology of autistic traits to the general population. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00504-7.
Collapse
|
15
|
Sader M, Williams JHG, Waiter GD. A meta-analytic investigation of grey matter differences in anorexia nervosa and autism spectrum disorder. EUROPEAN EATING DISORDERS REVIEW 2022; 30:560-579. [PMID: 35526083 PMCID: PMC9543727 DOI: 10.1002/erv.2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Recent research reports Anorexia Nervosa (AN) to be highly dependent upon neurobiological function. Some behaviours, particularly concerning food selectivity are found in populations with both Autism Spectrum Disorder (ASD) and AN, and there is a proportionally elevated number of anorexic patients exhibiting symptoms of ASD. We performed a systematic review of structural MRI literature with the aim of identifying common structural neural correlates common to both AN and ASD. Across 46 ASD publications, a meta‐analysis of volumetric differences between ASD and healthy controls revealed no consistently affected brain regions. Meta‐analysis of 23 AN publications revealed increased volume within the orbitofrontal cortex and medial temporal lobe, and adult‐only AN literature revealed differences within the genu of the anterior cingulate cortex. The changes are consistent with alterations in flexible reward‐related learning and episodic memory reported in neuropsychological studies. There was no structural overlap between ASD and AN. Findings suggest no consistent neuroanatomical abnormality associated with ASD, and evidence is lacking to suggest that reported behavioural similarities between those with AN and ASD are due to neuroanatomical structural similarities. Findings related to neuroanatomical structure in AN/ASD demonstrate overlap and require revisiting. Meta‐analytic findings show structural increase/decrease versus healthy controls (LPFC/MTL/OFC) in AN, but no clusters found in ASD. The neuroanatomy associated with ASD is inconsistent, but findings in AN reflect condition‐related impairment in executive function and sociocognitive behaviours.
Collapse
Affiliation(s)
- Michelle Sader
- Translational Neuroscience, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Justin H G Williams
- Translational Neuroscience, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Gordon D Waiter
- Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
16
|
Wang H, Ma ZH, Xu LZ, Yang L, Ji ZZ, Tang XZ, Liu JR, Li X, Cao QJ, Liu J. Developmental brain structural atypicalities in autism: a voxel-based morphometry analysis. Child Adolesc Psychiatry Ment Health 2022; 16:7. [PMID: 35101065 PMCID: PMC8805267 DOI: 10.1186/s13034-022-00443-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/20/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Structural magnetic resonance imaging (sMRI) studies have shown atypicalities in structural brain changes in individuals with autism spectrum disorder (ASD), while a noticeable discrepancy in their results indicates the necessity of conducting further researches. METHODS The current study investigated the atypical structural brain features of autistic individuals who aged 6-30 years old. A total of 52 autistic individuals and 50 age-, gender-, and intelligence quotient (IQ)-matched typically developing (TD) individuals were included in this study, and were assigned into three based cohorts: childhood (6-12 years old), adolescence (13-18 years old), and adulthood (19-30 years old). Analyses of whole-brain volume and voxel-based morphometry (VBM) on the sMRI data were conducted. RESULTS No significant difference was found in the volumes of whole-brain, gray matter, and white matter between the autism and TD groups in the three age-based cohorts. For VBM analyses, the volumes of gray matter in the right superior temporal gyrus and right inferior parietal lobule in the autism group (6-12 years old) were smaller than those in the TD group; the gray matter volume in the left inferior parietal lobule in the autism group (13-18 years old) was larger than that in the TD group; the gray matter volume in the right middle occipital gyrus in the autism group (19-30 years old) was larger than that in the TD group, and the gray matter volume in the left posterior cingulate gyrus in the autism group was smaller than that in the TD group. CONCLUSION Autistic individuals showed different atypical regional gray matter volumetric changes in childhood, adolescence, and adulthood compared to their TD peers, indicating that it is essential to consider developmental stages of the brain when exploring brain structural atypicalities in autism.
Collapse
Affiliation(s)
- Hui Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China
| | - Zeng-Hui Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China
| | - Ling-Zi Xu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China
| | - Liu Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China
| | - Zhao-Zheng Ji
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China
| | - Xin-Zhou Tang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China
| | - Jing-Ran Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China
| | - Xue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China.
| | - Qing-Jiu Cao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China.
| | - Jing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
17
|
The structural neural correlates of atypical facial expression recognition in autism spectrum disorder. Brain Imaging Behav 2022; 16:1428-1440. [PMID: 35048265 DOI: 10.1007/s11682-021-00626-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/02/2022]
Abstract
Previous studies have demonstrated that individuals with autism spectrum disorder (ASD) are worse at recognizing facial expressions than are typically developing (TD) individuals. The present study investigated the differences in structural neural correlates of emotion recognition between individuals with and without ASD using voxel-based morphometry (VBM). We acquired structural MRI data from 27 high-functioning adults with ASD and 27 age- and sex-matched TD individuals. The ability to recognize facial expressions was measured using a label-matching paradigm featuring six basic emotions (anger, disgust, fear, happiness, sadness, and surprise). The behavioural task did not find deficits of emotion recognition in ASD after controlling for intellectual ability. However, the VBM analysis for the region of interest showed a positive correlation between the averaged percent accuracy across six basic emotions and the grey matter volume of the right inferior frontal gyrus in TD individuals, but not in individuals with ASD. The VBM for the whole brain region under each emotion condition revealed a positive correlation between the percent accuracy for disgusted faces and the grey matter volume of the left dorsomedial prefrontal cortex in individuals with ASD, but not in TD individuals. The different pattern of correlations suggests that individuals with and without ASD use different processing mechanisms for recognizing others' facial expressions.
Collapse
|
18
|
Zhang A, Liu L, Chang S, Shi L, Li P, Shi J, Lu L, Bao Y, Liu J. Connectivity-Based Brain Network Supports Restricted and Repetitive Behaviors in Autism Spectrum Disorder Across Development. Front Psychiatry 2022; 13:874090. [PMID: 35401246 PMCID: PMC8989843 DOI: 10.3389/fpsyt.2022.874090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a lifelong condition. Autistic symptoms can persist into adulthood. Studies have reported that autistic symptoms generally improved in adulthood, especially restricted and repetitive behaviors and interests (RRBIs). We explored brain networks that are related to differences in RRBIs in individuals with ASDs among different ages. METHODS We enrolled 147 ASD patients from the Autism Brain Imaging Data Exchange II (ABIDEII) database. The participants were divided into four age groups: children (6-9 years old), younger adolescents (10-14 years old), older adolescents (15-19 years old), and adults (≥20 years old). RRBIs were evaluated using the Repetitive Behaviors Scale-Revised 6. We first explored differences in RRBIs between age groups using the Kruskal-Wallis test. Associations between improvements in RRBIs and age were analyzed using a general linear model. We then analyzed RRBIs associated functional connectivity (FC) links using the network-based statistic method by adjusting covariates. The association of the identified FC with age group, and mediation function of the FC on the association of age-group and RRBI were further analyzed. RESULTS Most subtypes of RRBIs improved with age, especially stereotyped behaviors, ritualistic behaviors, and restricted behaviors (p = 0.012, 0.014, and 0.012, respectively). Results showed that 12 FC links were closely related to overall RRBIs, 17 FC links were related to stereotyped behaviors. Among the identified 29 FC links, 15 were negatively related to age-groups. The mostly reported core brain regions included superior occipital gyrus, insula, rolandic operculum, angular, caudate, and cingulum. The decrease in FC between the left superior occipital lobe and right angular (effect = -0.125 and -0.693, respectively) and between the left insula and left caudate (effect = -0.116 and -0.664, respectively) might contribute to improvements in multiple RRBIs with age. CONCLUSION We identified improvements in RRBIs with age in ASD patients, especially stereotyped behaviors, ritualistic behaviors, and restricted behaviors. The decrease in FC between left superior occipital lobe and right angular and between left insula and left caudate might contribute to these improvements. Our findings improve our understanding of the pathogenesis of RRBIs and suggest potential intervention targets to improve prognosis in adulthood.
Collapse
Affiliation(s)
- Anyi Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Lin Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China.,National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China.,Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China.,School of Public Health, Peking University, Beijing, China
| | - Jiajia Liu
- School of Nursing, Peking University, Beijing, China
| |
Collapse
|
19
|
Chen B. A Preliminary Study of Abnormal Centrality of Cortical Regions and Subsystems in Whole Brain Functional Connectivity of Autism Spectrum Disorder Boys. Clin EEG Neurosci 2022; 53:3-11. [PMID: 34152841 DOI: 10.1177/15500594211026282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The abnormal cortices of autism spectrum disorder (ASD) brains are uncertain. However, the pathological alterations of ASD brains are distributed throughout interconnected cortical systems. Functional connections (FCs) methodology identifies cooperation and separation characteristics of information process in macroscopic cortical activity patterns under the context of network neuroscience. Embracing the graph theory concepts, this paper introduces eigenvector centrality index (EC score) ground on the FCs, and further develops a new framework for researching the dysfunctional cortex of ASD in holism significance. The important process is to uncover noticeable regions and subsystems endowed with antagonistic stance in EC-scores of 26 ASD boys and 28 matched healthy controls (HCs). For whole brain regional EC scores of ASD boys, orbitofrontal superior medial cortex, insula R, posterior cingulate gyrus L, and cerebellum 9 L are endowed with different EC scores significantly. In the brain subsystems level, EC scores of DMN, prefrontal lobe, and cerebellum are aberrant in the ASD boys. Generally, the EC scores display widespread distribution of diseased regions in ASD brains. Meanwhile, the discovered regions and subsystems, such as MPFC, AMYG, INS, prefrontal lobe, and DMN, are engaged in social processing. Meanwhile, the CBCL externalizing problem scores are associated with EC scores.
Collapse
Affiliation(s)
- Bo Chen
- 12626Hangzhou Dianzi University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
20
|
McPartland JC, Lerner MD, Bhat A, Clarkson T, Jack A, Koohsari S, Matuskey D, McQuaid GA, Su WC, Trevisan DA. Looking Back at the Next 40 Years of ASD Neuroscience Research. J Autism Dev Disord 2021; 51:4333-4353. [PMID: 34043128 PMCID: PMC8542594 DOI: 10.1007/s10803-021-05095-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
During the last 40 years, neuroscience has become one of the most central and most productive approaches to investigating autism. In this commentary, we assemble a group of established investigators and trainees to review key advances and anticipated developments in neuroscience research across five modalities most commonly employed in autism research: magnetic resonance imaging, functional near infrared spectroscopy, positron emission tomography, electroencephalography, and transcranial magnetic stimulation. Broadly, neuroscience research has provided important insights into brain systems involved in autism but not yet mechanistic understanding. Methodological advancements are expected to proffer deeper understanding of neural circuitry associated with function and dysfunction during the next 40 years.
Collapse
Affiliation(s)
| | - Matthew D Lerner
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - Tessa Clarkson
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Allison Jack
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Goldie A McQuaid
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | | |
Collapse
|
21
|
Lidstone DE, Mostofsky SH. Moving Toward Understanding Autism: Visual-Motor Integration, Imitation, and Social Skill Development. Pediatr Neurol 2021; 122:98-105. [PMID: 34330613 PMCID: PMC8372541 DOI: 10.1016/j.pediatrneurol.2021.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a behavioral phenotype characterized by impaired development of social-communicative skills and excessive repetitive and stereotyped behaviors. Despite high phenotypic heterogeneity in ASD, a meaningful subpopulation of children with ASD (∼90%) show significant general motor impairment. More focused studies on the nature of motor impairment in ASD reveal that children with ASD are particularly impaired on tasks such as ball catching and motor imitation that require efficient visual-motor integration (VMI). Motor computational approaches also provide evidence for VMI impairment showing that children with ASD form internal sensorimotor representations that bias proprioceptive over visual feedback. Impaired integration of visual information to form internal representations of others' and the external world may explain observed impairments on VMI tasks and motor imitation of others. Motor imitation is crucial for acquiring both social and motor skills, and impaired imitation skill may contribute to the observed core behavioral phenotype of ASD. The current review examines evidence supporting VMI impairment as a core feature of ASD that may contribute to both impaired motor imitation and social-communicative skill development. We propose that understanding the neurobiological mechanisms underlying VMI impairment in ASD may be key to discovery of therapeutics to address disability in children and adults with ASD.
Collapse
Affiliation(s)
- Daniel E Lidstone
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
22
|
Prillinger K, Radev ST, Amador de Lara G, Klöbl M, Lanzenberger R, Plener PL, Poustka L, Konicar L. Repeated Sessions of Transcranial Direct Current Stimulation on Adolescents With Autism Spectrum Disorder: Study Protocol for a Randomized, Double-Blind, and Sham-Controlled Clinical Trial. Front Psychiatry 2021; 12:680525. [PMID: 34526918 PMCID: PMC8435587 DOI: 10.3389/fpsyt.2021.680525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Social-emotional difficulties are a core symptom of autism spectrum disorder (ASD). Accordingly, individuals with ASD have problems with social cognition such as recognizing emotions from other peoples' faces. Various results from functional magnetic resonance imaging and electroencephalography studies as well as eye-tracking data reveal a neurophysiological basis of these deficits by linking them to abnormal brain activity. Thus, an intervention targeting the neural origin of ASD impairments seems warranted. A safe method able to influence neural activity is transcranial direct current stimulation (tDCS). This non-invasive brain stimulation method has already demonstrated promising results in several neuropsychiatric disorders in adults and children. The aim of this project is to investigate the effects of tDCS on ASD symptoms and their neural correlates in children and adolescents with ASD. Method: This study is designed as a double-blind, randomized, and sham-controlled trial with a target sample size of 20 male participants (aged 12-17 years) diagnosed with ASD. Before randomization, the participants will be stratified into comorbid depression, comorbid ADHS/conduct disorder, or no-comorbidity groups. The intervention phase comprises 10 sessions of anodal or sham tDCS applied over the left prefrontal cortex within 2 consecutive weeks. To engage the targeted brain regions, participants will perform a social cognition training during the stimulation. TDCS-induced effects on ASD symptoms and involved neural circuits will be investigated through psychological, neurophysiological, imaging, and behavioral data at pre- and post-measurements. Tolerability will be evaluated using a standardized questionnaire. Follow-up assessments 1 and 6 months after the intervention will examine long-lasting effects. Discussion: The results of this study will provide insights into the changeability of social impairments in ASD by investigating social and emotional abilities on different modalities following repeated sessions of anodal tDCS with an intra-simulation training. Furthermore, this trial will elucidate the tolerability and the potential of tDCS as a new treatment approach for ASD in adolescents. Clinical Trial Registration: The study is ongoing and has been registered in the German Registry of Clinical Trials (DRKS00017505) on 02/07/2019.
Collapse
Affiliation(s)
- Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Stefan T. Radev
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Institute of Psychology, University of Heidelberg, Heidelberg, Germany
| | - Gabriel Amador de Lara
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Paul L. Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Ulm, Ulm, Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Kovacevic M, Macuzic IZ, Milosavljevic J, Lukovic T, Aleksic D, Gavrilovic J, Milosavljevic M, Jankovic S, Pejcic A. Amygdala Volumes in Autism Spectrum Disorders: Meta-analysis of Magnetic Resonance Imaging Studies. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2021. [DOI: 10.1007/s40489-021-00281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Chien YL, Chen YC, Gau SSF. Altered cingulate structures and the associations with social awareness deficits and CNTNAP2 gene in autism spectrum disorder. NEUROIMAGE-CLINICAL 2021; 31:102729. [PMID: 34271514 PMCID: PMC8280509 DOI: 10.1016/j.nicl.2021.102729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/23/2023]
Abstract
ASD individuals showed thinner cortical thickness in bilateral cingulate subregions. The right anterior cingulate WM volume was correlated with social awareness deficit. The CNTNAP2 variant might be associated with the right middle cingulate WM volume. The CNTNAP2 might interact with ASD diagnosis and age on the cortical thickness.
Backgrounds Although evidence suggests that the activity of the anterior cingulate cortex involves social cognition, there are inconsistent findings regarding the aberrant cingulate gray matter (GM) and scanty evidence about altered cortical thickness and white matter (WM) of cingulate in individuals with autism spectrum disorder (ASD). Evidence supports the association between the genetic variants of CNTNAP2 and altered brain connectivity. This study investigated the cingulate substructure and its association with social awareness deficits and the CNTNAP2 variants in individuals with ASD and typically-developing controls (TDC). Methods We assessed 118 individuals with ASD and 122 TDC with MRI and clinical evaluation. The GM, WM volumes and cortical thickness of the cingulate gyrus were compared between ASD and TDC based on fine parcellation. Five SNPs of the CNTNAP2 linked to ASD and brain structural abnormality were genotyped, and rs2710102, rs2538991, rs2710126 passed quality control filters. Results ASD individuals showed thinner cortical thickness in bilateral cingulate subregions than TDC without significant group differences in GM and WM volumes. The WM volume of the right anterior cingulate gyrus was correlated with social awareness deficits in ASD. The CNTNAP2 variant demonstrated a main effect on the WM volumes of the right middle cingulate gyrus. Besides, the CNTNAP2 variants interacted with ASD diagnosis and age on the cortical thickness of the left anterior middle cingulate cortex. Conclusions Our findings suggest that aberrant cingulate structure in ASD might be associated with the social awareness deficits and genetic variants of the CNTNAP2. These novel findings need validation.
Collapse
Affiliation(s)
- Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Chieh Chen
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
25
|
An KM, Ikeda T, Hirosawa T, Yaoi K, Yoshimura Y, Hasegawa C, Tanaka S, Saito DN, Kikuchi M. Decreased grey matter volumes in unaffected mothers of individuals with autism spectrum disorder reflect the broader autism endophenotype. Sci Rep 2021; 11:10001. [PMID: 33976262 PMCID: PMC8113597 DOI: 10.1038/s41598-021-89393-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an early onset and a strong genetic origin. Unaffected relatives may present similar but subthreshold characteristics of ASD. This broader autism phenotype is especially prevalent in the parents of individuals with ASD, suggesting that it has heritable factors. Although previous studies have demonstrated brain morphometry differences in ASD, they are poorly understood in parents of individuals with ASD. Here, we estimated grey matter volume in 45 mothers of children with ASD (mASD) and 46 age-, sex-, and handedness-matched controls using whole-brain voxel-based morphometry analysis. The mASD group had smaller grey matter volume in the right middle temporal gyrus, temporoparietal junction, cerebellum, and parahippocampal gyrus compared with the control group. Furthermore, we analysed the correlations of these brain volumes with ASD behavioural characteristics using autism spectrum quotient (AQ) and systemizing quotient (SQ) scores, which measure general autistic traits and the drive to systemize. Smaller volumes in the middle temporal gyrus and temporoparietal junction correlated with higher SQ scores, and smaller volumes in the cerebellum and parahippocampal gyrus correlated with higher AQ scores. Our findings suggest that atypical grey matter volumes in mASD may represent one of the neurostructural endophenotypes of ASD.
Collapse
Affiliation(s)
- Kyung-Min An
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan.
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Tetsu Hirosawa
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Ken Yaoi
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan.
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Department of Psychiatry and Behavioral Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
26
|
Schröder Y, Hohmann DM, Meller T, Evermann U, Pfarr JK, Jansen A, Kamp-Becker I, Grezellschak S, Nenadić I. Associations of subclinical autistic-like traits with brain structural variation using diffusion tensor imaging and voxel-based morphometry. Eur Psychiatry 2021; 64:e27. [PMID: 33653433 PMCID: PMC8080214 DOI: 10.1192/j.eurpsy.2021.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Previous case–control studies of autistic spectrum disorder (ASD) have identified altered brain structure such as altered frontal and temporal cortex volumes, or decreased fractional anisotropy (FA) within the inferior fronto-occipital fasciculus in patients. It remains unclear whether subclinical autistic-like traits might also be related to variation in these brain structures. Methods In this study, we analyzed magnetic resonance imaging (MRI) data of 250 psychiatrically healthy subjects phenotyped for subclinical autistic-like traits using the Autism Spectrum Quotient (AQ). For data analysis, we used voxel-based morphometry of T1-MRIs (Computational Anatomy Toolbox) and tract-based spatial statistics for diffusion tensor imaging data. Results AQ attention switching subscale correlated negatively with FA values in the bilateral uncinate fasciculus as well as the bilateral inferior fronto-occipital fasciculus. Higher AQ attention switching subscale scores were associated with increased mean diffusivity and radial diffusivity values in the uncinate fasciculus, while axial diffusivity values within this tract show a negative correlation. AQ attention to detail subscale correlated positively with gray matter volume in the right pre- and postcentral gyrus. Conclusions We demonstrate that individuals with higher levels of autism-spectrum-like features show decreased white matter integrity in tracts associated with higher-level visual processing and increased cortical volume in areas linked to movement sequencing and working memory. Our results resemble regional brain structure alterations found in individuals with ASD. This offers opportunities to further understand the etiology and pathogenesis of the disorder and shows a subclinical continuum perspective.
Collapse
Affiliation(s)
- Yvonne Schröder
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-University Marburg/Marburg University Hospital-UKGM, Marburg, Germany
| | - Daniela Michelle Hohmann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-University Marburg/Marburg University Hospital-UKGM, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Tina Meller
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-University Marburg/Marburg University Hospital-UKGM, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Ulrika Evermann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-University Marburg/Marburg University Hospital-UKGM, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Julia-Katharina Pfarr
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-University Marburg/Marburg University Hospital-UKGM, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Andreas Jansen
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-University Marburg/Marburg University Hospital-UKGM, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany.,Core-Facility BrainImaging, School of Medicine, Philipps University Marburg, Marburg, Germany
| | - Inge Kamp-Becker
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps-University Marburg/Marburg University Hospital-UKGM, Marburg, Germany
| | - Sarah Grezellschak
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-University Marburg/Marburg University Hospital-UKGM, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Igor Nenadić
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-University Marburg/Marburg University Hospital-UKGM, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| |
Collapse
|
27
|
Lidstone DE, Rochowiak R, Mostofsky SH, Nebel MB. A Data Driven Approach Reveals That Anomalous Motor System Connectivity is Associated With the Severity of Core Autism Symptoms. Autism Res 2021:10.1002/aur.2476. [PMID: 33484109 PMCID: PMC8931705 DOI: 10.1002/aur.2476] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/11/2022]
Abstract
This study examined whether disruptions in connectivity involving regions critical for learning, planning, and executing movements are relevant to core autism symptoms. Spatially constrained ICA was performed using resting-state fMRI from 419 children (autism spectrum disorder (ASD) = 105; typically developing (TD) = 314) to identify functional motor subdivisions. Comparing the spatial organization of each subdivision between groups, we found voxels that contributed significantly less to the right posterior cerebellar component in children with ASD versus TD (P <0.001). Next, we examined the effect of diagnosis on right posterior cerebellar connectivity with all other motor subdivisions. The model was significant (P = 0.014) revealing that right posterior cerebellar connectivity with bilateral dorsomedial primary motor cortex was, on average, stronger in children with ASD, while right posterior cerebellar connectivity with left-inferior parietal lobule (IPL), bilateral dorsolateral premotor cortex, and supplementary motor area was stronger in TD children (all P ≤0.02). We observed a diagnosis-by-connectivity interaction such that for children with ASD, elevated social-communicative and excessive repetitive-behavior symptom severity were both associated with right posterior cerebellar-left-IPL hypoconnectivity (P ≤0.001). Right posterior cerebellar and left-IPL are strongly implicated in visuomotor processing with dysfunction in this circuit possibly leading to anomalous development of skills, such as motor imitation, that are crucial for effective social-communication. LAY SUMMARY: This study examines whether communication between various brain regions involved in the control of movement are disrupted in children with autism spectrum disorder (ASD). We show communication between the right posterior cerebellum and left IPL, a circuit important for efficient visual-motor integration, is disrupted in children with ASD and associated with the severity of ASD symptoms. These results may explain observations of visual-motor integration impairments in children with ASD that are associated with ASD symptom severity.
Collapse
Affiliation(s)
- Daniel E. Lidstone
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Rochowiak
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stewart H. Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Yankowitz LD, Yerys BE, Herrington JD, Pandey J, Schultz RT. Dissociating regional gray matter density and gray matter volume in autism spectrum condition. NEUROIMAGE: CLINICAL 2021; 32:102888. [PMID: 34911194 PMCID: PMC8633367 DOI: 10.1016/j.nicl.2021.102888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Local gray matter structure can be separated into density and volume. Gray matter density increased and volume decreased with age in adolescence. Increased gray matter density but reduced volume in girls relative to boys. Autism is associated with increased gray matter volume, but not density. Regions with increased volume align with prior studies in autistic youth.
Background Despite decades of research, there is continued uncertainty regarding whether autism is associated with a specific profile of gray matter (GM) structure. This inconsistency may stem from the widespread use of voxel-based morphometry (VBM) methods that combine indices of GM density and GM volume. If GM density or volume, but not both, prove different in autism, the traditional VBM approach of combining the two indices may obscure the difference. The present study measures GM density and volume separately to examine whether autism is associated with alterations in GM volume, density, or both. Methods Differences in MRI-based GM density and volume were examined in 6–25 year-olds with a diagnosis of autism spectrum disorder (n = 213, 80.8% male, IQ 47–154) and a typically developing (TD) sample (n = 190, 71.6% male, IQ 67–155). High-resolution T1-weighted anatomical images were collected on a single MRI scanner. Regional density and volume were estimated via whole-brain parcellation comprised of 1625 parcels. Parcel-wise analyses were conducted using generalized additive models while controlling the false discovery rate (FDR, q < 0.05). Volume differences in the 68-region Desikan-Killiany atlas derived from Freesurfer were also examined, to establish the generalizability of findings across methods. Results No density differences were observed between the autistic and TD groups, either in individual parcels or whole brain mean density. Increased volume was observed in autism compared to the TD group when controlling for Age, Sex, and IQ, both at the level of the whole brain (total volume) and in 45 parcels (2.8% of total parcels). Parcels with greater volume included inferior, middle, and superior temporal gyrus, inferior and superior frontal gyrus, precuneus, and fusiform gyrus. Converging evidence from a standard Freesurfer pipeline also identified greater volume in a number of overlapping regions. Limitations The method for determining “density” is not a direct measure of neuronal density, and this study cannot reveal underlying cellular differences. While this study represents possibly the largest single-site sample of its kind, it is underpowered to detect very small differences. Conclusions These results provide compelling evidence that autism is associated with regional GM volumetric differences, which are more prominent than density differences. This underscores the importance of examining volume and density separately, and suggests that direct measures of volume (e.g. region-of-interest or tensor-based morphometry approaches) may be more sensitive to autism-relevant differences in neuroanatomy than concentration/density-based approaches.
Collapse
|
29
|
Chen B. A preliminary study of atypical cortical change ability of dynamic whole-brain functional connectivity in autism spectrum disorder. Int J Neurosci 2020; 132:213-225. [PMID: 32762276 DOI: 10.1080/00207454.2020.1806837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Designing new objectively diagnostic methods of autism spectrum disorder (ASD) are burning questions. Dynamic functional connectivity (DFC) methodology based on fMRI data are an effective lever to investigate changeability evolution of signal synchronization in macroscopic neural activity patterns. METHODS Embracing the network dynamics concepts, this paper introduces changeability index (C-score)which is focused on time-varying aspects of FCs, and develops a new framework for researching the roots of ASD brains at resting states in holism significance. The important process is to uncover noticeable regions and subsystems endowed with antagonistic stance in C-scores of between atypical and typical DFCs of 30 healthy controls (HCs) and 48 ASD patients. RESULTS The abnormities of edge C-scores are found across widespread brain cortex in ASD brains. For whole brain regional C-scores of ASD patients, orbitofrontal middle cortex L, inferior triangular frontal gyrus L, middle occipital gyrus L, postcentral gyrus L, supramarginal L, supramarginal R, cerebellum 8 L, and cerebellum 10 Rare endowed with significantly different C-scores.At brain subsystems level, C-scores in left hemisphere, right hemisphere, top hemisphere, bottom hemisphere, frontal lobe, parietal lobe, occipital lobe, cerebellum sub systems are abnormal in ASD patients. CONCLUSIONS The ASD brains have whole-brain abnormity on widespread regions. Through the strict evidence-based study, it was found that the changeability index (C-score) is a meaningful biological marker to explore cortical activity in ASD.
Collapse
Affiliation(s)
- Bo Chen
- School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
30
|
Williams CM, Peyre H, Toro R, Beggiato A, Ramus F. Adjusting for allometric scaling in ABIDE I challenges subcortical volume differences in autism spectrum disorder. Hum Brain Mapp 2020; 41:4610-4629. [PMID: 32729664 PMCID: PMC7555078 DOI: 10.1002/hbm.25145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Inconsistencies across studies investigating subcortical correlates of autism spectrum disorder (ASD) may stem from small sample size, sample heterogeneity, and omitting or linearly adjusting for total brain volume (TBV). To properly adjust for TBV, brain allometry—the nonlinear scaling relationship between regional volumes and TBV—was considered when examining subcortical volumetric differences between typically developing (TD) and ASD individuals. Autism Brain Imaging Data Exchange I (ABIDE I; N = 654) data was analyzed with two methodological approaches: univariate linear mixed effects models and multivariate multiple group confirmatory factor analyses. Analyses were conducted on the entire sample and in subsamples based on age, sex, and full scale intelligence quotient (FSIQ). A similar ABIDE I study was replicated and the impact of different TBV adjustments on neuroanatomical group differences was investigated. No robust subcortical allometric or volumetric group differences were observed in the entire sample across methods. Exploratory analyses suggested that allometric scaling and volume group differences may exist in certain subgroups defined by age, sex, and/or FSIQ. The type of TBV adjustment influenced some reported volumetric and scaling group differences. This study supports the absence of robust volumetric differences between ASD and TD individuals in the investigated volumes when adjusting for brain allometry, expands the literature by finding no group difference in allometric scaling, and further suggests that differing TBV adjustments contribute to the variability of reported neuroanatomical differences in ASD.
Collapse
Affiliation(s)
- Camille Michèle Williams
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| | - Hugo Peyre
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France.,INSERM UMR 1141, Paris Diderot University, Paris, France.,Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Roberto Toro
- U1284, Center for Research and Interdisciplinarity (CRI), INSERM, Paris, France.,Unité Mixte de Recherche 3571, Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Anita Beggiato
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Unité Mixte de Recherche 3571, Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| |
Collapse
|
31
|
Yaxu Y, Ren Z, Ward J, Jiang Q. Atypical Brain Structures as a Function of Gray Matter Volume (GMV) and Gray Matter Density (GMD) in Young Adults Relating to Autism Spectrum Traits. Front Psychol 2020; 11:523. [PMID: 32322224 PMCID: PMC7158890 DOI: 10.3389/fpsyg.2020.00523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/05/2020] [Indexed: 12/03/2022] Open
Abstract
Individuals with autistic traits are those who present in the normal population with characteristics of social, communication, personality, and cognitive impairments but do not meet the clinical threshold for autism spectrum disorder (ASD). Most studies have focused on the abnormalities in ASD patients rather than on individuals with autistic traits. In this study, we focused on the behaviors of a large sample (N = 401) of Chinese individuals with different levels of autistic traits, measured using the Autism Spectrum Quotient, and applied voxel-based morphometry (VBM) to determine their association to differences in brain structure. The results mainly showed that the correlation between gray matter volume (GMV) and gray matter density of the brain and the Autism Spectrum Quotient was significant in these regions: the right middle frontal gyrus, which are involved in social processing and social reasoning; the left parahippocampal gyrus, which is involved in socioemotional behaviors and unconscious relational memory encoding; and the right superior parietal lobule, which are involved in cognitive control and the ability to show attention to detail. These findings reveal that people with autistic traits in the normal population have atypical development in GMV and gray matter density, which may affect their social functioning and communication ability.
Collapse
Affiliation(s)
- Yu Yaxu
- School of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Zhiting Ren
- School of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton, United Kingdom
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
| | - Qiu Jiang
- School of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| |
Collapse
|
32
|
Mohajer B, Masoudi M, Ashrafi A, Mohammadi E, Bayani Ershadi AS, Aarabi MH, Uban KA. Structural white matter alterations in male adults with high functioning autism spectrum disorder and concurrent depressive symptoms; a diffusion tensor imaging study. J Affect Disord 2019; 259:40-46. [PMID: 31437700 DOI: 10.1016/j.jad.2019.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD), a prevalent developmental condition, is associated with comorbid mood disorders, most importantly depression. Here, we explored the underlying association between brain white matter microstructural integrity, assessed by diffusion tensor imaging (DTI), and depressive symptoms, in male adults with high-functioning ASD. METHOD To assess our main purpose, Autism Brain Imaging Data Exchange II dataset was used to acquire brain diffusion imaging from 26 adult male patients with ASD ranging from 18 to 62 years of age, and 26 age and gender-matched typically developed control subjects. Participants were evaluated for depressive symptoms manifestation by the Beck Depression Index (BDI). DWI images were preprocessed and analyzed for DTI scalers in the "ExploreDTI" toolbox. Adjusted linear regression models were used. Association between normalized BDI score and its interaction with diagnosis, as predictors, and measures of fractional anisotropy (FA) and mean diffusivity (MD) of regions of interest according to Mori atlas was assessed. RESULT Significant lower microstructural integrity of white matter was found in association with higher BDI scores in ASD group, mainly in regions of anterior limb of internal capsule (ALIC) and corona radiata. Also, a statistically significant positive interaction between BDI and ASD was seen in FA of left ALIC. DISCUSSION Considering similar regional brain white matter involvement with the imaging studies of depression in the typically developed population, we propose that these alterations of white matter tracts in depressive symptoms of adult ASD subjects might be, at least, similar to depression in typically developed population.
Collapse
Affiliation(s)
- Bahram Mohajer
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Masoudi
- Faculty of medicine, Tehran university of medical science, Tehran, Iran
| | - Agaah Ashrafi
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mohammadi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Sasan Bayani Ershadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Kristina A Uban
- Program in Public Health, University of California Irvine, Irvine, USA
| |
Collapse
|
33
|
Górriz JM, Ramírez J, Segovia F, Martínez FJ, Lai MC, Lombardo MV, Baron-Cohen S, Suckling J. A Machine Learning Approach to Reveal the NeuroPhenotypes of Autisms. Int J Neural Syst 2019; 29:1850058. [DOI: 10.1142/s0129065718500582] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although much research has been undertaken, the spatial patterns, developmental course, and sexual dimorphism of brain structure associated with autism remains enigmatic. One of the difficulties in investigating differences between the sexes in autism is the small sample sizes of available imaging datasets with mixed sex. Thus, the majority of the investigations have involved male samples, with females somewhat overlooked. This paper deploys machine learning on partial least squares feature extraction to reveal differences in regional brain structure between individuals with autism and typically developing participants. A four-class classification problem (sex and condition) is specified, with theoretical restrictions based on the evaluation of a novel upper bound in the resubstitution estimate. These conditions were imposed on the classifier complexity and feature space dimension to assure generalizable results from the training set to test samples. Accuracies above [Formula: see text] on gray and white matter tissues estimated from voxel-based morphometry (VBM) features are obtained in a sample of equal-sized high-functioning male and female adults with and without autism ([Formula: see text], [Formula: see text]/group). The proposed learning machine revealed how autism is modulated by biological sex using a low-dimensional feature space extracted from VBM. In addition, a spatial overlap analysis on reference maps partially corroborated predictions of the “extreme male brain” theory of autism, in sexual dimorphic areas.
Collapse
Affiliation(s)
- Juan M. Górriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Javier Ramírez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - F. Segovia
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Francisco J. Martínez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Meng-Chuan Lai
- Centre for Addiction and Mental Health and The Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M6J 1H4, Canada
| | - Michael V. Lombardo
- Department of Psychology, University of Cyprus, 2109 Aglantzia, Nicosia, Cyprus
| | - Simon Baron-Cohen
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | | |
Collapse
|
34
|
Plastic Adaptation to Pathology in Psychiatry: Are Patients with Psychiatric Disorders Pathological Experts? Neuroscientist 2019; 26:208-223. [DOI: 10.1177/1073858419867083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Psychiatric disorders share the same pattern of longitudinal evolution and have courses that tend to be chronic and recurrent. These aspects of chronicity and longitudinal evolution are currently studied under the deficit-oriented neuroprogression framework. Interestingly, considering the plasticity of the brain, it is also necessary to emphasize the bidirectional nature of neuroprogression. We review evidence highlighting alterations of the brain associated with the longitudinal evolution of psychiatric disorders from the framework of neuroplastic adaptation to pathology. This new framework highlights that substantial plasticity and remodeling may occur beyond the classic deficit-oriented neuroprogressive framework, which has been associated with progressive loss of gray matter thickness, decreased brain connectivity, and chronic inflammation. We also integrate the brain economy concept in the neuroplastic adaptation to pathology framework, emphasizing that to preserve its economy, i.e. function, the brain learns how to cope with the disease by adapting its architecture. Neuroplastic adaptation to pathology is a proposition for a paradigm shift to overcome the shortcomings of traditional psychiatric diagnostic boundaries; this approach can disentangle both the specific pathophysiology of psychiatric symptoms and the adaptation to pathology, thus offering a new framework for both diagnosis and treatment.
Collapse
|
35
|
d'Albis MA, Guevara P, Guevara M, Laidi C, Boisgontier J, Sarrazin S, Duclap D, Delorme R, Bolognani F, Czech C, Bouquet C, Ly-Le Moal M, Holiga S, Amestoy A, Scheid I, Gaman A, Leboyer M, Poupon C, Mangin JF, Houenou J. Local structural connectivity is associated with social cognition in autism spectrum disorder. Brain 2019; 141:3472-3481. [PMID: 30423029 DOI: 10.1093/brain/awy275] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
The current theory implying local, short-range overconnectivity in autism spectrum disorder, contrasting with long-range underconnectivity, is based on heterogeneous results, on limited data involving functional connectivity studies, on heterogeneous paediatric populations and non-specific methodologies. In this work, we studied short-distance structural connectivity in a homogeneous population of males with high-functioning autism spectrum disorder and used a novel methodology specifically suited for assessing U-shaped short-distance tracts, including a recently developed tractography-based atlas of the superficial white matter fibres. We acquired diffusion-weighted MRI for 58 males (27 subjects with high-functioning autism spectrum disorder and 31 control subjects) and extracted the mean generalized fractional anisotropy of 63 short-distance tracts. Neuropsychological evaluation included Wechsler Adult Intelligence Scale IV (WAIS-IV), Communication Checklist-Adult, Empathy Quotient, Social Responsiveness Scale and Behaviour Rating Inventory of Executive Function-Adult (BRIEF-A). In contradiction with the models of short-range over-connectivity in autism spectrum disorder, we found that patients with autism spectrum disorder had a significantly decreased anatomical connectivity in a component comprising 13 short tracts compared to controls. Specific short-tract atypicalities in temporal lobe and insula were significantly associated with clinical manifestations of autism spectrum disorder such as social awareness, language structure, pragmatic skills and empathy, emphasizing their importance in social dysfunction. Short-range decreased anatomical connectivity may thus be an important substrate of social deficits in autism spectrum disorder, in contrast with current models.
Collapse
Affiliation(s)
- Marc-Antoine d'Albis
- UNIACT, Psychiatry Team, Neurospin, Atomic Energy Commission, Gif-Sur-Yvette, France.,INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France
| | - Pamela Guevara
- Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Miguel Guevara
- Faculty of Engineering, Universidad de Concepción, Concepción, Chile.,Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| | - Charles Laidi
- UNIACT, Psychiatry Team, Neurospin, Atomic Energy Commission, Gif-Sur-Yvette, France.,INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France
| | - Jennifer Boisgontier
- UNIACT, Psychiatry Team, Neurospin, Atomic Energy Commission, Gif-Sur-Yvette, France.,INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France
| | - Samuel Sarrazin
- UNIACT, Psychiatry Team, Neurospin, Atomic Energy Commission, Gif-Sur-Yvette, France.,INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France
| | - Delphine Duclap
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| | - Richard Delorme
- Fondation Fondamental, Créteil, France.,Service de psychiatrie de l'enfant et de l'adolescent, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France.,Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
| | - Federico Bolognani
- Neuroscience, Ophtalmology, and Rare Disease (NORD), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F.Hoffman-La Roche Ltd. Basel, Switzerland
| | - Christian Czech
- Neuroscience, Ophtalmology, and Rare Disease (NORD), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F.Hoffman-La Roche Ltd. Basel, Switzerland
| | - Céline Bouquet
- Neuroscience, Ophtalmology, and Rare Disease (NORD), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F.Hoffman-La Roche Ltd. Basel, Switzerland
| | | | - Stefan Holiga
- Neuroscience, Ophtalmology, and Rare Disease (NORD), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F.Hoffman-La Roche Ltd. Basel, Switzerland
| | - Anouck Amestoy
- Charles Perrens Hospital, Autism Expert Center, Bordeaux, France
| | - Isabelle Scheid
- INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France
| | - Alexandru Gaman
- INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France
| | - Marion Leboyer
- INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France.,Faculté de Médecine, Université Paris Est Créteil, Créteil, France
| | - Cyril Poupon
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, France
| | | | - Josselin Houenou
- UNIACT, Psychiatry Team, Neurospin, Atomic Energy Commission, Gif-Sur-Yvette, France.,INSERM, U955, Translational Psychiatry Team, Créteil, France.,Fondation Fondamental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Psychiatry, Mondor University Hospital, DHU PePsy, Créteil, France.,Faculté de Médecine, Université Paris Est Créteil, Créteil, France
| |
Collapse
|
36
|
Decreased Cortical Thickness in the Anterior Cingulate Cortex in Adults with Autism. J Autism Dev Disord 2018; 49:1402-1409. [DOI: 10.1007/s10803-018-3807-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Wang W, Liu J, Shi S, Liu T, Ma L, Ma X, Tian J, Gong Q, Wang M. Altered Resting-State Functional Activity in Patients With Autism Spectrum Disorder: A Quantitative Meta-Analysis. Front Neurol 2018; 9:556. [PMID: 30087648 PMCID: PMC6066523 DOI: 10.3389/fneur.2018.00556] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2018] [Indexed: 02/05/2023] Open
Abstract
Background: There is accumulating evidence showing that patients with autism spectrum disorder (ASD) have obvious changes in resting-state functional brain activity. So far, there have been no meta-analyses of the resting-state brain activity alterations in patients with ASD. We attempted to explore the resting-state functional activity changes in patients with ASD, possibly providing a new perspective for investigating the pathophysiology of patients with ASD. Methods: We screened relevant studies published before August 2017 in PubMed, Ovid, Web of Science, China National Knowledge Infrastructure (CNKI), and the Wan-fang database. Fifteen resting-state functional neural activity datasets (including 382 patients and 348 healthy controls) were included. Through the use of the effect-size signed differential mapping (ES-SDM) method, we carried out a meta-analysis of resting-state functional activity studies of patients with ASD. Results: Compared with healthy controls, patients with ASD showed hyperactivity in the right supplementary motor area, middle frontal gyrus, inferior frontal gyrus, the left precentral gyrus, and the bilateral cerebellum hemispheric lobule (VIII/IX), and hypoactivity in the right middle temporal gyrus, superior temporal gyrus, and the left precuneus, posterior cingulate cortex, median cingulate cortex, and bilateral cerebellum (crus I). Conclusion: This meta-analysis indicates that patients with ASD have significant and robust resting-state brain activity alterations in the language comprehension network, inferior-posterior cerebellum, default mode network (DMN), and cerebellar crus I. These brain regions may serve as specific regions of interest for further studies of ASD, which will allow us to further clarify the neurobiological mechanisms in patients with ASD.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Jia Liu
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojie Shi
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Taiyuan Liu
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Lun Ma
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoyue Ma
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an, China.,Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Meiyun Wang
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
38
|
Mitelman SA, Bralet MC, Haznedar MM, Hollander E, Shihabuddin L, Hazlett EA, Buchsbaum MS. Diametrical relationship between gray and white matter volumes in autism spectrum disorder and schizophrenia. Brain Imaging Behav 2018; 11:1823-1835. [PMID: 27882449 DOI: 10.1007/s11682-016-9648-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders and schizophrenia have been variously characterized as separate nosological entities with overlapping deficits in social cognition or diametrical extremes of a phenotypic continuum. This study aimed to determine how these models apply to comparative morphometric data. MRI scans of the brain were obtained in 49 subjects with schizophrenia, 20 subjects with autism and 39 healthy controls. Images were parcellated into 40 Brodmann areas and entered into repeated-measures ANOVA for between-group comparison of global and localized gray and white matter volumes. A pattern of lower gray mater volumes and greater white matter volumes was found in subjects with schizophrenia in comparison to subjects with autism. For both gray and white matter, this pattern was most pronounced in regions associated with motor-premotor and anterior frontal cortex, anterior cingulate, fusiform, superior and middle temporal gyri. Patient groups tended to diverge from healthy controls in opposite directions, with greater-than-normal gray matter volumes and lower-than-normal white matter volumes in subjects with autism and reversed patterns in subjects with schizophrenia. White matter reductions in subjects with autism were seen in posterior frontal lobe and along the cingulate arch. Normal hemispheric asymmetry in the temporal lobe was effaced in subjects with autism and schizophrenia, especially in the latter. Nearly identical distribution of changes and diametrically divergent volumetry suggest that autism and schizophrenia may occupy opposite extremes of the same cognitive continuum.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY, 11373, USA.
| | - Marie-Cecile Bralet
- Crisalid Unit (FJ5), CHI Clermont de l'Oise, 2 rue des finets, 60607, Clermont, France.,Inserm Unit U669, Maison de Solenn, Universities Paris 5-11, 75014, Paris, France.,GDR 3557 Recherche Psychiatrie, Paris, France
| | - M Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Outpatient Psychiatry Care Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Eric Hollander
- Autism and Obsessive-Compulsive Spectrum Program, Anxiety and Depression Program, Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10467, USA
| | - Lina Shihabuddin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Erin A Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Research and Development and VISN 3 Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, San Diego School of Medicine, NeuroPET Center, University of California, 11388 Sorrento Valley Road, Suite #100, San Diego, CA, 92121, USA
| |
Collapse
|
39
|
Zhang W, Groen W, Mennes M, Greven C, Buitelaar J, Rommelse N. Revisiting subcortical brain volume correlates of autism in the ABIDE dataset: effects of age and sex. Psychol Med 2018; 48:654-668. [PMID: 28745267 DOI: 10.1017/s003329171700201x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are characterized by substantial clinical, etiological and neurobiological heterogeneity. Despite this heterogeneity, previous imaging studies have highlighted the role of specific cortical and subcortical structures in ASD and have forwarded the notion of an ASD specific neuroanatomy in which abnormalities in brain structures are present that can be used for diagnostic classification approaches. METHOD A large (N = 859, 6-27 years, IQ 70-130) multi-center structural magnetic resonance imaging dataset was examined to specifically test ASD diagnostic effects regarding (sub)cortical volumes. RESULTS Despite the large sample size, we found virtually no main effects of ASD diagnosis. Yet, several significant two- and three-way interaction effects of diagnosis by age by gender were found. CONCLUSION The neuroanatomy of ASD does not exist, but is highly age and gender dependent. Implications for approaches of stratification of ASD into more homogeneous subtypes are discussed.
Collapse
Affiliation(s)
- W Zhang
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University,Nijmegen,The Netherlands
| | - W Groen
- Karakter, Child and Adolescent Psychiatry University Center,Nijmegen,The Netherlands
| | - M Mennes
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University,Nijmegen,The Netherlands
| | - C Greven
- Karakter, Child and Adolescent Psychiatry University Center,Nijmegen,The Netherlands
| | - J Buitelaar
- Karakter, Child and Adolescent Psychiatry University Center,Nijmegen,The Netherlands
| | - N Rommelse
- Karakter, Child and Adolescent Psychiatry University Center,Nijmegen,The Netherlands
| |
Collapse
|
40
|
Pan P, Liu Y, Zhang Y, Zhao H, Ye X, Xu Y. Brain gray matter abnormalities in progressive supranuclear palsy revisited. Oncotarget 2017; 8:80941-80955. [PMID: 29113357 PMCID: PMC5655252 DOI: 10.18632/oncotarget.20895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/26/2017] [Indexed: 12/11/2022] Open
Abstract
Whole-brain voxel-based morphometry (VBM) studies of progressive supranuclear palsy (PSP) have demonstrated heterogeneous findings regarding gray matter (GM) abnormalities. Here, we used Seed-based d Mapping, a coordinate-based meta-analytic approach to identify consistent regions of GM anomalies across studies of PSP. Totally, 18 original VBM studies, comprising 284 patients with PSP and 367 healthy controls were included. As compared to healthy controls, patients with PSP demonstrated significant GM reductions in both cortical and subcortical regions, including the frontal motor cortices, medial (including anterior cingulate cortex) and lateral frontal cortices, insula, superior temporal gyrus, striatum (putamen and caudate nucleus), thalamus, midbrain, and anterior cerebellum. Our study further suggests that many confounding factors, such as age, male ratio, motor severity, cognitive impairment severity, and illness duration of PSP patients, and scanner field-strength, could contribute to the heterogeneity of GM alterations in PSP across studies. Our comprehensive meta-analysis demonstrates a specific neuroanatomical pattern of GM atrophy in PSP with the involvement of the cortical-subcortical circuitries that mediate vertical supranuclear gaze palsy, motor disabilities (postural instability with falls and parkinsonism), and cognitive-behavioral disturbances. Confounding factors merit attention in future studies.
Collapse
Affiliation(s)
- PingLei Pan
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China
| | - Yang Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China
| | - Hui Zhao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China
| | - Xing Ye
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China
| |
Collapse
|
41
|
Cerebellar anatomical alterations and attention to eyes in autism. Sci Rep 2017; 7:12008. [PMID: 28931838 PMCID: PMC5607223 DOI: 10.1038/s41598-017-11883-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023] Open
Abstract
The cerebellum is implicated in social cognition and is likely to be involved in the pathophysiology of autism spectrum disorder (ASD). The goal of our study was to explore cerebellar morphology in adults with ASD and its relationship to eye contact, as measured by fixation time allocated on the eye region using an eye-tracking device. Two-hundred ninety-four subjects with ASD and controls were included in our study and underwent a structural magnetic resonance imaging scan. Global segmentation and cortical parcellation of the cerebellum were performed. A sub-sample of 59 subjects underwent an eye tracking protocol in order to measure the fixation time allocated to the eye region. We did not observe any difference in global cerebellar volumes between ASD patients and controls; however, regional analyses found a decrease of the volume of the right anterior cerebellum in subjects with ASD compared to controls. There were significant correlations between fixation time on eyes and the volumes of the vermis and Crus I. Our results suggest that cerebellar morphology may be related to eye avoidance and reduced social attention. Eye tracking may be a promising neuro-anatomically based stratifying biomarker of ASD.
Collapse
|
42
|
A Meta-analysis of Voxel-based Brain Morphometry Studies in Obstructive Sleep Apnea. Sci Rep 2017; 7:10095. [PMID: 28855654 PMCID: PMC5577238 DOI: 10.1038/s41598-017-09319-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/18/2017] [Indexed: 02/05/2023] Open
Abstract
Gray matter (GM) anomalies may represent a critical pathology underlying obstructive sleep apnea (OSA). However, the evidence regarding their clinical relevance is inconsistent. We conducted a meta-analysis of voxel-based morphometry (VBM) studies of patients with OSA to identify their brain abnormalities. A systematic search was conducted based on PRISMA guidelines, and a meta-analysis was performed using the anisotropic effect-size-based algorithms (ASE-SDM) to quantitatively estimate regional GM changes in patients with OSA. Fifteen studies with 16 datasets comprising 353 untreated patients with OSA and 444 healthy controls were included. Our results revealed GM reductions in the bilateral anterior cingulate/paracingulate gyri (ACG/ApCG), left cerebellum (lobules IV/V and VIII), bilateral superior frontal gyrus (SFG, medial rostral part), right middle temporal gyrus (MTG), and right premotor cortex. Moreover, GM reductions in the bilateral ACG/ApCG were positively associated with body mass index (BMI) and age among patients with OSA, and GM reductions in the SFG (medial rostral part) were negatively associated with Epworth sleepiness scale (ESS) scores and sex (male). These abnormalities may represent structural brain underpinnings of neurocognitive abnormalities and respiratory-related abnormalities in OSA. In particular, this study adds to Psychoradiology, which is a promising subspecialty of clinical radiology mainly for psychiatric disorders.
Collapse
|
43
|
Sato W, Kochiyama T, Uono S, Yoshimura S, Kubota Y, Sawada R, Sakihama M, Toichi M. Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder. Front Hum Neurosci 2017; 11:395. [PMID: 28824399 PMCID: PMC5543091 DOI: 10.3389/fnhum.2017.00395] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral impairment in social interactions. Although theoretical and empirical evidence suggests that impairment in the social brain network could be the neural underpinnings of ASD, previous structural magnetic resonance imaging (MRI) studies in adults with ASD have not provided clear support for this, possibly due to confounding factors, such as language impairments. To further explore this issue, we acquired structural MRI data and analyzed gray matter volume in adults with ASD (n = 36) who had no language impairments (diagnosed with Asperger’s disorder or pervasive developmental disorder not otherwise specified, with symptoms milder than those of Asperger’s disorder), had no comorbidity, and were not taking medications, and in age- and sex-matched typically developing (TD) controls (n = 36). Univariate voxel-based morphometry analyses revealed that regional gray matter volume was lower in the ASD than in the control group in several brain regions, including the right inferior occipital gyrus, left fusiform gyrus, right middle temporal gyrus, bilateral amygdala, right inferior frontal gyrus, right orbitofrontal cortex, and left dorsomedial prefrontal cortex. A multivariate approach using a partial least squares (PLS) method showed that these regions constituted a network that could be used to discriminate between the ASD and TD groups. A PLS discriminant analysis using information from these regions showed high accuracy, sensitivity, specificity, and precision (>80%) in discriminating between the groups. These results suggest that reduced gray matter volume in the social brain network represents the neural underpinnings of behavioral social malfunctioning in adults with ASD.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Takanori Kochiyama
- Brain Activity Imaging Center, Advanced Telecommunications Research Institute InternationalKyoto, Japan
| | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga UniversityShiga, Japan
| | - Reiko Sawada
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | | | - Motomi Toichi
- Faculty of Human Health Science, Kyoto UniversityKyoto, Japan.,The Organization for Promoting Neurodevelopmental Disorder ResearchKyoto, Japan
| |
Collapse
|
44
|
Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping. Eur Child Adolesc Psychiatry 2017; 26:933-945. [PMID: 28233073 DOI: 10.1007/s00787-017-0964-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/17/2017] [Indexed: 02/05/2023]
Abstract
The gray matter abnormalities revealed by magnetic resonance imaging are inconsistent, especially in pediatric individuals with autism spectrum disorder (ASD) (age < 18 years old), a phenomenon possibly related to the core pathophysiology of ASD. The purpose of our meta-analysis was to identify and map the specific gray matter abnormalities in pediatric ASD individuals thereby exploring the potential effects of clinical and demographic characteristics of these gray matter changes. A systematic search was conducted to identify voxel-based morphometry studies in pediatric individuals with ASD. The effect-size signed differential mapping method was used to quantitatively estimate the regional gray matter abnormalities in pediatric ASD individuals. Meta-regression was used to examine the associations among age, gender, intelligence quotient, symptom severity and gray matter changes. Fifteen studies including 364 pediatric individuals with ASD (male = 282, age = 10.3 ± 4.4 years) and 377 healthy controls (male = 289, age = 10.5 ± 4.2 years) were included. Pediatric ASD individuals showed significant gray matter increases in the right angular gyrus, left superior and middle frontal gyrus, left precuneus, left inferior occipital gyrus and right inferior temporal gyrus, most of which involving the default mode network, and decreases in the left cerebellum and left postcentral gyrus. The meta-regression analysis showed that the repetitive behavior scores of the Autism Diagnostic Interview-Revised were positively associated with increased gray matter volumes in the right angular gyrus. Increased rather than decreased gray matter volume, especially involving the angular gyrus and prefrontal cortex may be the core pathophysiology in the early course of ASD.
Collapse
|
45
|
Elevated Levels of Atypical Handedness in Autism: Meta-Analyses. Neuropsychol Rev 2017; 27:258-283. [DOI: 10.1007/s11065-017-9354-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 06/20/2017] [Indexed: 12/22/2022]
|
46
|
Sato W, Uono S, Kochiyama T, Yoshimura S, Sawada R, Kubota Y, Sakihama M, Toichi M. Structural Correlates of Reading the Mind in the Eyes in Autism Spectrum Disorder. Front Hum Neurosci 2017; 11:361. [PMID: 28747876 PMCID: PMC5506186 DOI: 10.3389/fnhum.2017.00361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Behavioral studies have shown that individuals with autism spectrum disorder (ASD) have impaired ability to read the mind in the eyes. Although this impairment is central to their social malfunctioning, its structural neural correlates remain unclear. To investigate this issue, we assessed Reading the Mind in the Eyes Test, revised version (Eyes Test) and acquired structural magnetic resonance images in adults with high-functioning ASD (n = 19) and age-, sex- and intelligence quotient-matched typically developing (TD) controls (n = 19). On the behavioral level, the Eyes Test scores were lower in the ASD group than in the control group. On the neural level, an interaction between group and Eyes Test score was found in the left temporoparietal junction (TPJ). A positive association between the Eyes Test score and gray matter volume of this region was evident in the control group, but not in the ASD group. This finding suggests that the failure to develop appropriate structural neural representations in the TPJ may underlie the impaired ability of individuals with ASD to read the mind in the eyes. These behavioral and neural findings provide support for the theories that impairments in processing eyes and the ability to infer others' mental states are the core symptoms of ASD, and that atypical features in the social brain network underlie such impairments.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto UniversityKyoto, Japan
| | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto UniversityKyoto, Japan
| | - Takanori Kochiyama
- Brain Activity Imaging Center, Advanced Telecommunications Research Institute InternationalKyoto, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto UniversityKyoto, Japan
| | - Reiko Sawada
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto UniversityKyoto, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga UniversityHikone, Japan
| | | | - Motomi Toichi
- Faculty of Human Health Science, Kyoto UniversityKyoto, Japan.,The Organization for Promoting Neurodevelopmental Disorder ResearchKyoto, Japan
| |
Collapse
|
47
|
Jalbrzikowski M, Ahmed KH, Patel A, Jonas R, Kushan L, Chow C, Bearden CE. Categorical versus dimensional approaches to autism-associated intermediate phenotypes in 22q11.2 microdeletion syndrome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:53-65. [PMID: 28367513 PMCID: PMC5373800 DOI: 10.1016/j.bpsc.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND 22q11.2 Microdeletion syndrome (22q11DS) is associated with elevated rates of autism spectrum disorders (ASDs), although the diagnosis is controversial. In order to determine whether there is a biological substrate of ASD in 22q11DS, we examined neurocognitive and structural neuroanatomic differences between those with 22q11DS and an ASD diagnosis (22q11DS-ASD+) and those with 22q11DS without ASD (22q11DS-ASD-); we then determined whether these differences were better characterized within a categorical or dimensional framework. METHODS We collected multiple neurocognitive measures and high-resolution T1-weighted scans on 116 individuals (29 22q11DS-ASD+, 32 22q11DS-ASD-, 55 typically developing controls) between 6 and 26 years of age. Measures of subcortical volume, cortical thickness (CT), and surface area were extracted using the FreeSurfer image analysis suite. Group differences in neurocognitive and neuroanatomic measures were assessed; regression analyses were then performed to determine whether a categorical or dimensional measure of ASD was a better predictor of neurocognitive impairment and/or neuroanatomic abnormalities observed in 22q11DS-ASD+. RESULTS In comparison to 22q11DS-ASD-, 22q11DS-ASD+ participants exhibited decreased bilateral hippocampal CT and decreased right amygdala volumes. Those with 22q11DS-ASD+ also showed slowed processing speed and impairments in visuospatial and facial memory. Neurocognitive impairments fit a dimensional model of ASD, whereas reductions in parahippocampal CT were best explained by a categorical measure of ASD. CONCLUSIONS A combination of categorical and dimensional measures of ASD may provide the most comprehensive understanding of ASDs in 22q11DS.
Collapse
Affiliation(s)
| | - Khwaja Hamzah Ahmed
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
| | - Arati Patel
- University of Southern California, Keck School of Medicine
| | - Rachel Jonas
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
- University of California, Los Angeles, Interdepartmental Neuroscience Program
| | - Leila Kushan
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
| | - Carolyn Chow
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
| | - Carrie E. Bearden
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
- University of California, Los Angeles, Department of Psychology
| |
Collapse
|