1
|
Chen Q, Gong L, Song Y, Zhang J, Han X, Zhou Y, Li L, Jiang X, Hao Y, Zhou H, Lou X, Wang X. Associations between multiple sleep dimensions and suicide and non-suicidal self-injury: a cross-sectional study of 3828 Chinese young people. Soc Psychiatry Psychiatr Epidemiol 2025; 60:657-671. [PMID: 38780778 DOI: 10.1007/s00127-024-02689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Suicide and non-suicidal self-injury (NSSI) are preventable concerns in young people. Suicidal ideation (SI), suicidal plans (SP) and suicidal attempt (SA) are closely related to death. Sleep problems are known risk factors for suicide and NSSI. This study aimed to explore the relationship between sleep, suicidality and NSSI. METHODS Participants were 3,828 middle school and college students aged 11-23 years from urban and rural areas of Henan Province. Sleep, suicidal phenomena and NSSI were assessed by applying self-reported questionnaires. Chi-squared tests were utilized to demonstrate the demographic data and sleep variables. The correlation between sleep, suicidality and NSSI were explored by using binary logistic regression, while adjusting socio-demographic characteristics with multivariate models. RESULTS Sleep variables except mid-sleep time were related to suicidal phenomena (P < 0.05). Greater social jet lag (SJL) [≥ 2 h (h)] was associated with increased risk of SI [Odds ratios (OR) = 1.72, 95% confidence intervals (CI):1.40-2.11], SP (OR = 2.10, 95%CI:1.59-2.79) and SA (OR = 1.50, 95%CI:1.00-2.26). Non-only child participants with SJL (≥ 2 h) had significantly increased odds of SI (OR = 1.75, 95%CI: 1.41-2.18) and SP (OR = 2.25, 95%CI: 1.66-3.05). Eveningness chronotype had the strongest correlation with SI (OR = 3.87, 95%CI:2.78-5.38), SP (OR = 4.72, 95%CI:2.97-7.50), SA (OR = 6.69, 95%CI:3.08-14.52) and NSSI (OR = 1.39, 95%CI:1.02-1.90). CONCLUSION Overlong or short sleep duration, SJL, eveningness chronotype and other sleep abnormalities (e.g., daytime dysfunction, low sleep efficiency) were associated with a higher prevalence of SI, SP and SA. Additionally, eveningness was significantly correlated with NSSI among young people. These findings suggested the importance of assessing and intervening in sleep habits to prevent suicide and NSSI in young people.
Collapse
Affiliation(s)
- Qiuyuan Chen
- College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Lu Gong
- College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yalin Song
- College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Jiangtao Zhang
- College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xinke Han
- College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yuhang Zhou
- College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Lijie Li
- College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xili Jiang
- College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yudan Hao
- College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Huijun Zhou
- College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaomin Lou
- College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xian Wang
- College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
2
|
Xu YX, Shen YT, Li J, Ding WQ, Wan YH, Su PY, Tao FB, Sun Y. Real-ambient bedroom light at night increases systemic inflammation and disrupts circadian rhythm of inflammatory markers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116590. [PMID: 38905938 DOI: 10.1016/j.ecoenv.2024.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Exposure to light at night (LAN) has been associated with multiple adverse health outcomes. However, evidence is limited regarding the impacts of LAN exposure on human inflammation. OBJECTIVES To examine the association between real-ambient bedroom LAN exposure with systemic inflammation and circadian rhythm of inflammatory markers. METHODS Using data from a prospective cohort study of Chinese young adults. At baseline, bedroom LAN exposure was measured with a portable illuminance meter; fasting blood sample for high-sensitivity C-reactive protein (hs-CRP) assay was collected. At 3-year follow-up, 20 healthy young adults (10 LANavg < 5 lx, 10 LANavg ≥ 5 lx) were recruited from the same cohort; time-series venous blood samples were sampled every 4 h over a 24 h-cycle for the detection of 8 inflammatory markers. Circadian rhythm of inflammatory markers was assessed using cosinor analysis. RESULTS At baseline, the average age of the 276 participants was 18.7 years, and 33.3 % were male. Higher levels of bedroom LAN exposure were significantly associated with increased hs-CRP levels. The association between bedroom LAN exposure and systemic inflammation was only significant in the inactive group (MVPA < 2 h/d) but not in the physically active group (MVPA ≥ 2 h/d). In addition, exposure to higher levels of nighttime light (LANavg ≥ 5 lx) disrupted circadian rhythms (including rhythmic expression, circadian amplitude and circadian phase) of some inflammatory cytokines and inflammatory balance indicators. CONCLUSION Exposure to bedroom nighttime light increases systemic inflammation and disrupts circadian rhythm of inflammatory markers. Keep bedroom darkness at night may represent important strategies for the prevention of chronic inflammation. Additionally, for people living a community with higher nighttime light pollution, regular physical activity may be a viable option to counteract the negative impacts of LAN exposure on chronic inflammation.
Collapse
Affiliation(s)
- Yu-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Yu-Ting Shen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Jing Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Wen-Qin Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Yu-Hui Wan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Pu-Yu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Anhui, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Anhui, China.
| |
Collapse
|
3
|
Mead MP, Reid KJ, Knutson KL. Night-to-night associations between light exposure and sleep health. J Sleep Res 2023; 32:e13620. [PMID: 35599235 PMCID: PMC9679040 DOI: 10.1111/jsr.13620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
Previous research has demonstrated that exposure to light preceding and during sleep is associated with poor sleep, but most research to date has utilized either experimental or cross-sectional designs. The current study expands upon prior studies by using a microlongitudinal design that examines the night-to-night associations between light and sleep health in a diverse sample of adults (pre-registered at osf.io/k5zgv). US adults aged 18-87 years from two parent studies (N = 124) wore an actiwatch for up to 10 nights. Light variables estimated from actigraphy include both average exposure and time above light threshold of 10 (TALT10 ) and 40 (TALT40 ) lux both during sleep and for the 1-hr preceding sleep. Actigraphy-based sleep variables included sleep offset, duration, percentage and fragmentation index. Higher average light exposure during sleep was associated with a later sleep-offset time, lower sleep percentage and higher fragmentation index (all p < 0.01). More minutes of TALT10 during sleep was associated with later sleep timing, lower sleep percentage and higher fragmentation index (all p < 0.01), and greater TALT40 during sleep was associated with lower sleep percentage. Light exposure was not related to sleep duration. In summary, greater light exposure during sleep was related to poorer sleep continuity and later wake time. The lack of association between light and sleep duration may be the result of compensating for sleep disruption by delaying wake time. Multi-level interventions to consistently reduce light levels during sleep should be considered.
Collapse
Affiliation(s)
- Michael P Mead
- Center for Circadian & Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kathryn J Reid
- Center for Circadian & Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kristen L Knutson
- Center for Circadian & Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Esaki Y, Obayashi K, Saeki K, Fujita K, Iwata N, Kitajima T. Habitual light exposure and circadian activity rhythms in bipolar disorder: A cross-sectional analysis of the APPLE cohort. J Affect Disord 2023; 323:762-769. [PMID: 36538951 DOI: 10.1016/j.jad.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/04/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Circadian activity rhythm disruption is a core feature in bipolar disorder. We investigated whether light exposure in daily life is associated with circadian activity rhythms in patients with bipolar disorder. METHODS In a cross-sectional study, we enrolled 194 outpatients with bipolar disorder who were participants of the Association between Pathology of Bipolar Disorder and Light Exposure in Daily Life (APPLE) cohort study. The participants' physical activity and daytime illuminance were measured using an actigraph over 7 consecutive days. Nighttime illuminance in the bedroom was measured using a portable photometer. Circadian activity rhythm parameters were calculated using cosinor analysis and a nonparametric circadian rhythm analysis. RESULTS The median daytime illuminance and nighttime illuminance were 224.5 lx (interquartile range, 154.5-307.5 lx) and 2.3 lx (0.3-9.4 lx), respectively. Multivariable linear regression analysis, adjusted for potential confounding factors, showed that higher daytime illuminance was significantly associated with higher amplitude and most active continuous 10-hour period, advanced acrophase, higher interdaily stability, and lower intradaily variability. Higher nighttime illuminance was significantly associated with lower relative amplitude, delayed onset of the least active continuous 5-hour period, and higher intradaily variability. LIMITATIONS As this was a cross-sectional study, the results do not necessarily imply that light exposure alters circadian activity rhythms. CONCLUSIONS Daytime light exposure was associated with a positive effect and nighttime light exposure with a negative effect on circadian activity rhythms in bipolar disorder.
Collapse
Affiliation(s)
- Yuichi Esaki
- Department of Psychiatry, Okehazama Hospital, Aichi, Japan; Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan.
| | - Kenji Obayashi
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Kiyoshi Fujita
- Department of Psychiatry, Okehazama Hospital, Aichi, Japan; The Neuroscience Research Center, Aichi, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Tsuyoshi Kitajima
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
5
|
Xu YX, Huang Y, Zhou Y, Yu Y, Wan YH, Tao FB, Sun Y. Association between bedroom light exposure at night and allostatic load among Chinese young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119671. [PMID: 35752397 DOI: 10.1016/j.envpol.2022.119671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Light at night (LAN) has received increasing attention for its potential health hazards to human and animals. However, to our knowledge, no study has explored the specific effects of bedroom nighttime light exposure on allostatic load (AL). To investigate the association between bedroom individual-level LAN exposure and AL among young adults, an integrative index manifests multiple system dysregulation. Using data from a cohort of 484 Chinese young adults aged 16-22 years. Bedroom light was objectively recorded at 1-min intervals for two nights using a portable illuminance meter. Fasting blood samples were collected at one-year follow-up for the detection of AL parameters. AL score was derived as sum of the top quartile of twelve physiological biomarkers in four systems: metabolic system (BMI, WC, TC, HDL, LDL, TG, HbA1c, INS, GLU); cardiovascular system (SBP, DBP); immune and inflammatory systems (hs-CRP), with HDL was lowest quartile. Univariate and multivariate linear regression models were used to evaluate the association between LAN intensity with AL score and separate AL parameters. The average age of subjects was 18.7 years, 64.3% were female. The mean AL score of LAN group (average LAN intensity ≥ 3lx) was significantly higher than Dim group (3.6 ± 2.6 vs. 2.7 ± 2.1; P = 0.007). For each 1 lx increase of LAN intensity was associated with 0.15-unit increase in AL score (95% CI: 0.06, 0.24; P = 0.001). Moreover, LAN group was associated with increased 1.01-unit in AL score (95% CI: 0.36-1.66; P = 0.003) compared to Dim group. Significant associations between bedroom LAN exposure with allostatic load and separate AL biomarkers were observed in our study. Keeping bedroom darkness at night may be a practicable option to reduce the wear of multiple body systems and improve human cardiometabolic health from early in life.
Collapse
Affiliation(s)
- Yu-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yi Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yang Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Hui Wan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Esaki Y, Obayashi K, Saeki K, Fujita K, Iwata N, Kitajima T. Effect of nighttime bedroom light exposure on mood episode relapses in bipolar disorder. Acta Psychiatr Scand 2022; 146:64-73. [PMID: 35253206 DOI: 10.1111/acps.13422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 12/26/2022]
Abstract
OBJECTIVE A previous cross-sectional study reported that nighttime light is associated with increased occurrence of manic symptoms in bipolar disorder; however, the longitudinal association between nighttime light and subsequent mood episode relapses remains unclear. We determined whether bedroom nighttime light was associated with mood episode relapses in patients with bipolar disorder. METHODS This prospective cohort study included 172 outpatients with bipolar disorder who participated in an Association between the Pathology of Bipolar Disorder and Light Exposure in Daily Life (APPLE) cohort study. A portable photometer was used to measure illuminance in the bedroom from bedtime to rising time during 7 consecutive nights for baseline assessment. Then, the participants were assessed at a 2-year follow-up for mood episode relapses. RESULTS Of the 172 participants, 157 (91%) completed the 2-year follow-up, and 39 (22%) experienced manic or hypomanic episodes (with or without mixed features), during that time. In the Cox proportional-hazards model, the hazard ratio (HR) for manic/hypomanic episode relapses was significantly higher when the average nighttime illuminance was ≥3 lux (n = 71) than when it was <3 lux (n = 101; HR, 2.54; 95% confidence interval (CI), 1.33-4.84). In the multivariable model adjusted for a propensity score in relation to nighttime light, the relationship remained significant (HR, 2.17; 95% CI, 1.04-4.52). The association between nighttime light and depressive episode relapses was not significantly different. CONCLUSIONS Keeping the bedroom dark at night may prevent hypomanic and manic episodes.
Collapse
Affiliation(s)
- Yuichi Esaki
- Department of Psychiatry, Okehazama Hospital, Aichi, Japan.,Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Kenji Obayashi
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Kiyoshi Fujita
- Department of Psychiatry, Okehazama Hospital, Aichi, Japan.,The Neuroscience Research Center, Aichi, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Tsuyoshi Kitajima
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
7
|
Mendoza J. Nighttime Light Hurts Mammalian Physiology: What Diurnal Rodent Models Are Telling Us. Clocks Sleep 2021; 3:236-250. [PMID: 33915800 PMCID: PMC8167723 DOI: 10.3390/clockssleep3020014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Natural sunlight permits organisms to synchronize their physiology to the external world. However, in current times, natural sunlight has been replaced by artificial light in both day and nighttime. While in the daytime, indoor artificial light is of lower intensity than natural sunlight, leading to a weak entrainment signal for our internal biological clock, at night the exposure to artificial light perturbs the body clock and sleep. Although electric light at night allows us "to live in darkness", our current lifestyle facilitates nighttime exposure to light by the use, or abuse, of electronic devices (e.g., smartphones). The chronic exposure to light at nighttime has been correlated to mood alterations, metabolic dysfunctions, and poor cognition. To decipher the brain mechanisms underlying these alterations, fundamental research has been conducted using animal models, principally of nocturnal nature (e.g., mice). Nevertheless, because of the diurnal nature of human physiology, it is also important to find and propose diurnal animal models for the study of the light effects in circadian biology. The present review provides an overview of the effects of light at nighttime on physiology and behavior in diurnal mammals, including humans. Knowing how the brain reacts to artificial light exposure, using diurnal rodent models, is fundamental for the development of new strategies in human health based in circadian biology.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neuroscience CNRS UPR3212, University of Strasburg, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| |
Collapse
|