1
|
Li Y, Guo X, Yao H, Zhang Z, Zhao H. Epigenetic control of dental stem cells: progress and prospects in multidirectional differentiation. Epigenetics Chromatin 2024; 17:37. [PMID: 39623487 PMCID: PMC11613947 DOI: 10.1186/s13072-024-00563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Dental stem cells, with their exceptional proliferative capacity and multidirectional differentiation potential, hold significant promise for dental and oral tissue regeneration. Epigenetic inheritance, which involves stable and heritable changes in gene expression and function without alterations to the DNA sequence, plays a critical role in numerous biological processes. Environmental factors are particularly influential in epigenetic inheritance, as variations in exposure can lead to changes in epigenetic modifications that subsequently impact gene expression. Epigenetic mechanisms are widely involved in processes such as bone homeostasis, embryogenesis, stem cell fate determination, and disease development. Recently, the epigenetic regulation of dental stem cells has attracted considerable research attention. This paper reviews studies focused on the epigenetic mechanisms governing the multidirectional differentiation of dental stem cells.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xinwei Guo
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hua Yao
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhimin Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Hongyan Zhao
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
3
|
Kim JK, Chang I, Jung Y, Kaplan Z, Hill EE, Taichman RS, Krebsbach PH. Mycoplasma hyorhinis infection promotes TNF-α signaling and SMAC mimetic-mediated apoptosis in human prostate cancer. Heliyon 2023; 9:e20655. [PMID: 37867861 PMCID: PMC10585237 DOI: 10.1016/j.heliyon.2023.e20655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Growing evidence suggests an association between Mycoplasma infections and the development and progression of prostate cancer (PCa). In this study, we report that chronic and persistent M. hyorhinis infection induced robust TNF-α secretion from PCa cells. TNF-α secreted from M. hyorhinis-infected PCa cells subsequently led to activation of the NF-κB pathway. Chronic M. hyorhinis infection induced gene expression of pro-inflammatory cytokines and chemokines in a NF-κB-dependent manner and promoted cell proliferation, migration, and invasion in PCa cells. The elimination of M. hyorhinis in PCa cells significantly blocked TNF-α secretion, gene expression of cytokines and chemokines, migration, and invasion in PCa cells, suggesting M. hyorhinis-induced TNF-α plays an important role to promote malignant transformation of PCa. Furthermore, second mitochondria-derived activator of caspases (SMAC) mimetics potentiated caspase activation and cell death in M. hyorhinis-infected PCa by antagonizing inhibitor of apoptosis proteins (IAPs) activity. Tissue microarray analysis indicated that TNF-α is co-expressed in M. hyorhinis-infected human patient tissues. Findings from this study advance our understanding of the mycoplasma-oncogenesis process and suggest the potential for new approaches for preventions, diagnosis, and therapeutic approaches against prostate cancers.
Collapse
Affiliation(s)
- Jin Koo Kim
- Division of Oral and Systemic Health Sciences, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| | - Insoon Chang
- Section of Endodontics, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| | - Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Zach Kaplan
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Elliott E. Hill
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Russell S. Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Periodontics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul H. Krebsbach
- Division of Oral and Systemic Health Sciences, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
4
|
Arkas M, Vardavoulias M, Kythreoti G, Giannakoudakis DA. Dendritic Polymers in Tissue Engineering: Contributions of PAMAM, PPI PEG and PEI to Injury Restoration and Bioactive Scaffold Evolution. Pharmaceutics 2023; 15:524. [PMID: 36839847 PMCID: PMC9966633 DOI: 10.3390/pharmaceutics15020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The capability of radially polymerized bio-dendrimers and hyperbranched polymers for medical applications is well established. Perhaps the most important implementations are those that involve interactions with the regenerative mechanisms of cells. In general, they are non-toxic or exhibit very low toxicity. Thus, they allow unhindered and, in many cases, faster cell proliferation, a property that renders them ideal materials for tissue engineering scaffolds. Their resemblance to proteins permits the synthesis of derivatives that mimic collagen and elastin or are capable of biomimetic hydroxy apatite production. Due to their distinctive architecture (core, internal branches, terminal groups), dendritic polymers may play many roles. The internal cavities may host cell differentiation genes and antimicrobial protection drugs. Suitable terminal groups may modify the surface chemistry of cells and modulate the external membrane charge promoting cell adhesion and tissue assembly. They may also induce polymer cross-linking for healing implementation in the eyes, skin, and internal organ wounds. The review highlights all the different categories of hard and soft tissues that may be remediated with their contribution. The reader will also be exposed to the incorporation of methods for establishment of biomaterials, functionalization strategies, and the synthetic paths for organizing assemblies from biocompatible building blocks and natural metabolites.
Collapse
Affiliation(s)
- Michael Arkas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece
| | | | - Georgia Kythreoti
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece
| | | |
Collapse
|
5
|
Nanomaterials in Dentistry: Current Applications and Future Scope. NANOMATERIALS 2022; 12:nano12101676. [PMID: 35630898 PMCID: PMC9144694 DOI: 10.3390/nano12101676] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Nanotechnology utilizes the mechanics to control the size and morphology of the particles in the required nano range for accomplishing the intended purposes. There was a time when it was predominantly applied only to the fields of matter physics or chemical engineering, but with time, biological scientists recognized its vast benefits and explored the advantages in their respective fields. This extension of nanotechnology in the field of dentistry is termed ‘Nanodentistry.’ It is revolutionizing every aspect of dentistry. It consists of therapeutic and diagnostic tools and supportive aids to maintain oral hygiene with the help of nanomaterials. Research in nanodentistry is evolving holistically but slowly with the advanced finding of symbiotic use of novel polymers, natural polymers, metals, minerals, and drugs. These materials, in association with nanotechnology, further assist in exploring the usage of nano dental adducts in prosthodontic, regeneration, orthodontic, etc. Moreover, drug release cargo abilities of the nano dental adduct provide an extra edge to dentistry over their conventional counterparts. Nano dentistry has expanded to every single branch of dentistry. In the present review, we will present a holistic view of the recent advances in the field of nanodentistry. The later part of the review compiled the ethical and regulatory challenges in the commercialization of the nanodentistry. This review tracks the advancement in nano dentistry in different but important domains of dentistry.
Collapse
|
6
|
Wang MC, Tu HF, Chang KW, Lin SC, Yeh LY, Hung PS. The molecular functions of Biodentine and mineral trioxide aggregate in lipopolysaccharide-induced inflamed dental pulp cells. Int Endod J 2021; 54:1317-1327. [PMID: 33711171 DOI: 10.1111/iej.13513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 03/08/2021] [Indexed: 11/26/2022]
Abstract
AIM To explore the proliferation, adhesion and differentiation response and the underlying mechanisms that occur in lipopolysaccharide (LPS)-induced inflamed dental pulp cells (DPCs) in contact with Biodentine and mineral trioxide aggregate (MTA). METHODOLOGY The DPCs were isolated from three healthy donors and named DPC-H1 to DPC-H3. The DPCs were pre-cultured with 2 or 5 μg mL-1 LPS for 24 h to induce inflammation. The expression of inflammation marker miR-146a was detected by q-PCR. The normal and LPS-induced DPCs were further treated with 0.14 mg mL-1 Biodentine or 0.13 mg mL-1 MTA for 24 h. MTT assay and adhesion assay were used to analyse the changes of cell phenotypes. DSPP, AKT and ERK expressions were detected by Western blotting. The data were analysed by Mann-Whitney test or two-way anova. Differences were considered statistically significant when P < 0.05. RESULTS In LPS-induced DPCs, Biodentine and MTA treatment neither induced nor aggravated LPS-induced inflammation, but their presence did increase the expression of the odontogenic differentiation marker DSPP. Under 2 or 5 μg mL-1 LPS-induced inflammation, Biodentine and MTA promoted the proliferation of DPC cells, and significantly in DPC-H2 (P < 0.0001 for both reagents). With the treatment of 2 μg mL-1 LPS, the cell adhesion of DPCs on the fibronectin-coated culture plates was increased significantly by Biodentine (P = 0.0413) and MTA (P < 0.0001). Biodentine and MTA regulated cell adhesion on the fibronectin-coated culture plates (P < 0.0001 for both reagents) and proliferation (P < 0.0001 for both reagents) via the AKT pathway. However, the AKT pathway was not involved in the expression of DSPP induced by Biodentine and MTA. CONCLUSION Biodentine and MTA enhanced the proliferation, adhesion and differentiation of LPS-induced DPCs. The proliferation and adhesion process induced by Biodentine and MTA was via the AKT pathway. However, the cellular differentiation process might not use the same pathway, and this needs to be explored in future studies.
Collapse
Affiliation(s)
- M C Wang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Dentistry, Heping Fuyou Branch, Taipei City Hospital, Taipei, Taiwan.,Taipei Municipal WanFang Hospital, Taipei, Taiwan
| | - H F Tu
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dentistry, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - K W Chang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - S C Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - L Y Yeh
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - P S Hung
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| |
Collapse
|
7
|
The potential of dendrimer in delivery of therapeutics for dentistry. Heliyon 2019; 5:e02544. [PMID: 31687479 PMCID: PMC6820096 DOI: 10.1016/j.heliyon.2019.e02544] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/25/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022] Open
Abstract
Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to be used in dental biomaterials for biomimetic remineralisation of enamel and dentin. The review highlights the therapeutic applications of dendrimers in the field of dentistry. It addresses the possible mechanisms of enhancement of mechanical properties of adhesives and resins structure. Dendrimers due to its unique construction of possessing inner hydrophobic and outer hydrophilic structure can act as drug carrier for delivery of antimicrobial drugs for treatment of periodontal diseases and at peripheral dental implant areas. Dendrimers due to its hyperbranched structures can provides a unique drug delivery vehicle for delivery of a drug at specific site for sustained release for therapeutic effects. Thus, dendrimers can be one of the most important constituents which can be incorporated in dental biomaterials for better outcomes in dentistry.
Collapse
|
8
|
Shi B, Zhao Y, Yuan X. Effects of MTA and Brazilian propolis on the biological properties of dental pulp cells. Braz Oral Res 2019; 33:e117. [DOI: 10.1590/1807-3107bor-2019.vol33.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/08/2019] [Indexed: 01/04/2023] Open
|
9
|
Novel Calcium Phosphate Cement with Metformin-Loaded Chitosan for Odontogenic Differentiation of Human Dental Pulp Cells. Stem Cells Int 2018; 2018:7173481. [PMID: 30598667 PMCID: PMC6288571 DOI: 10.1155/2018/7173481] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
Metformin is an old and widely accepted first-line drug for treating type 2 diabetes. Our previous studies demonstrate that metformin can stimulate the osteo/odontogenic differentiation of human-induced pluripotent stem cell-derived mesenchymal stem cells and human dental pulp cells (DPCs). Due to the rapid dilution of metformin from the defect area, the aim of this study was to develop a drug delivery system with controlled release of metformin to promote cell viability and odontogenic differentiation of DPCs favoring dentin regeneration. Calcium phosphate cement (CPC) containing chitosan and metformin as a scaffold was synthesized. DPCs were seeded onto the scaffold, and the viability and proliferation were evaluated at several time points. For osteogenic differentiation analysis, alkaline phosphatase (ALP) activity was tested, cells were stained with Alizarin Red, and the expression of odontogenic markers was evaluated by real-time polymerase chain reaction. DPCs remained viable and attached well to the CPC-chitosan composite scaffold. Moreover, the addition of metformin to the CPC-chitosan composite did not adversely affect cell proliferation, compared to that of CPC control. Our data further revealed that the novel CPC-chitosan-metformin composite enhanced the odontogenic differentiation of DPCs, as evidenced by higher ALP activity, elevated expression of odontoblastic markers, and strong mineral deposition. These results suggest that the new CPC-chitosan-metformin composite is a highly promising scaffold with the potential for tissue engineering applications including dentin regeneration.
Collapse
|
10
|
Kwon YS, Kim HJ, Hwang YC, Rosa V, Yu MK, Min KS. Effects of Epigallocatechin Gallate, an Antibacterial Cross-linking Agent, on Proliferation and Differentiation of Human Dental Pulp Cells Cultured in Collagen Scaffolds. J Endod 2018; 43:289-296. [PMID: 28132713 DOI: 10.1016/j.joen.2016.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 01/15/2023]
Abstract
INTRODUCTION This study aimed to evaluate the efficacy of epigallocatechin gallate (EGCG), an antibacterial cross-linking agent, on the proliferation and differentiation of human dental pulp cells (hDPCs) cultured in hydrogel collagen scaffolds. METHODS The odontogenic differentiation induced by EGCG was evaluated by alkaline phosphatase (ALP) activity and odontogenic-related gene expression using real-time polymerase chain reaction. The antibacterial effect of EGCG was investigated by a disc diffusion assay in comparison with glutaraldehyde. Proliferation was analyzed by cell number counting under both optical and confocal laser scanning microscopes. To assess the mechanical properties of collagen treated with EGCG, the setting time, surface roughness, and compressive strength were measured. RESULTS EGCG itself did not up-regulate the odontogenic-related markers (P > .05) although ALP activity was slightly increased. The proliferation and differentiation of hDPCs cultured in collagen increased significantly in the presence of EGCG (P < .05). The antibacterial activity of EGCG was similar to that of glutaraldehyde. The setting time of collagen was significantly shortened when it was treated with EGCG (P < .05). The surface roughness and compressive strength of the cross-linked collagen were higher than those of collagen without EGCG (P < .05). CONCLUSIONS Our results showed that EGCG, the antibacterial cross-linking agent, promoted the proliferation and differentiation of hDPCs cultured in collagen scaffolds. Furthermore, the enhanced mechanical properties of collagen scaffolds induced by EGCG may play important roles in cell behavior. Consequently, the application of EGCG to collagen scaffolds might be beneficial for regenerative endodontic therapy.
Collapse
Affiliation(s)
- Young-Sun Kwon
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Hee-Jin Kim
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Vinicius Rosa
- Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Mi-Kyung Yu
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea; Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Kyung-San Min
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea; Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
11
|
Qin W, Gao X, Ma T, Weir MD, Zou J, Song B, Lin Z, Schneider A, Xu HHK. Metformin Enhances the Differentiation of Dental Pulp Cells into Odontoblasts by Activating AMPK Signaling. J Endod 2018; 44:576-584. [PMID: 29306537 DOI: 10.1016/j.joen.2017.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/29/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Metformin is a first-line drug for treating type 2 diabetes that regulates the differentiation of mesenchymal stem cells. Its effects on human dental pulp cells (DPCs) remain unknown. This study aimed to investigate the effects of metformin on the proliferation and differentiation of DPCs. METHODS A live/dead viability assay kit was used to examine the effects of metformin on the cell viability of DPCs. Cell proliferation was analyzed using a cell counting kit (CCK-8; Dojindo, Tokyo, Japan). Levels of phosphorylated and unphosphorylated adenosine 5'-monophosphate-activated protein kinase (AMPK) were quantified by Western blot analysis in response to metformin and the AMPK signaling inhibitor Compound C (EMD Chemicals, San Diego, CA). The effects of Compound C on the metformin-induced odontoblast differentiation of DPCs were determined by alkaline phosphatase activity assay and von Kossa staining, and the expression of odontoblastic markers was evaluated by reverse-transcription polymerase chain reaction analysis. RESULTS DPCs exhibited mesenchymal stem cell characteristics using flow cytometry. Different doses of metformin were shown to be cytocompatible with DPCs, yielding >90% cell viability. None of the concentrations of metformin up to 50 μmol/L affected cell proliferation. The Western blot assay showed that DPCs express functional organic cation transporter 1, a transmembrane protein that mediates the intracellular uptake of metformin. Metformin significantly activated the AMPK pathway in a dose-dependent manner. In addition, it stimulated alkaline phosphatase activity; enhanced mineralized nodule formation; and increased the expression of odontoblastic markers including dentin sialophosphoprotein, dentin matrix protein 1, runt-related transcription factor 2, and osteocalcin. Moreover, pretreatment with Compound C, a specific AMPK inhibitor, markedly reversed metformin-induced odontoblastic differentiation and cell mineralization. CONCLUSIONS This study shows that metformin can induce DPC differentiation and mineralization in an AMPK-dependent manner and that this well-tolerated antidiabetic drug has potential in regenerative endodontics as well as in other regenerative applications.
Collapse
Affiliation(s)
- Wei Qin
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xianling Gao
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jing Zou
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bing Song
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zhengmei Lin
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore County, Maryland.
| |
Collapse
|
12
|
Alcohol Inhibits Odontogenic Differentiation of Human Dental Pulp Cells by Activating mTOR Signaling. Stem Cells Int 2017; 2017:8717454. [PMID: 29062364 PMCID: PMC5618757 DOI: 10.1155/2017/8717454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/05/2017] [Accepted: 07/16/2017] [Indexed: 12/19/2022] Open
Abstract
Long-term heavy alcohol consumption could result in a range of health, social, and behavioral problems. People who abuse alcohol are at high risks of seriously having osteopenia, periodontal disease, and compromised oral health. However, the role of ethanol (EtOH) in the biological functions of human dental pulp cells (DPCs) is unknown. Whether EtOH affects the odontoblastic differentiation of DPCs through the mechanistic target of rapamycin (mTOR) remains unexplored. The objective of this study was to investigate the effects of EtOH on DPC differentiation and mineralization. DPCs were isolated and purified from human dental pulps. The proliferation and odontoblastic differentiation of DPCs treated with EtOH were subsequently investigated. Different doses of EtOH were shown to be cytocompatible with DPCs. EtOH significantly activated the mTOR pathway in a dose-dependent manner. In addition, EtOH downregulated the alkaline phosphatase activity, attenuated the mineralized nodule formation, and suppressed the expression of odontoblastic markers including ALP, DSPP, DMP-1, Runx2, and OCN. Moreover, the pretreatment with rapamycin, a specific mTOR inhibitor, markedly reversed the EtOH-induced odontoblastic differentiation and cell mineralization. Our findings show for the first time that EtOH can suppress DPC differentiation and mineralization in a mTOR-dependent manner, indicating that EtOH may be involved in negatively regulating the dental pulp repair.
Collapse
|
13
|
Chen Z, Lian F, Wang X, Chen Y, Tang N. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture. Int J Nanomedicine 2016; 11:4247-59. [PMID: 27621619 PMCID: PMC5012632 DOI: 10.2147/ijn.s113407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.
Collapse
Affiliation(s)
- Zhanfei Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital
| | - Fen Lian
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital
| | - Xiaoqian Wang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital
| | - Yanling Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Nanhong Tang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
14
|
Kwon YS, Lee SH, Hwang YC, Rosa V, Lee KW, Min KS. Behaviour of human dental pulp cells cultured in a collagen hydrogel scaffold cross-linked with cinnamaldehyde. Int Endod J 2016; 50:58-66. [PMID: 26650820 DOI: 10.1111/iej.12592] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/30/2015] [Indexed: 01/03/2023]
Abstract
AIM To investigate the effects of the cross-linking agent cinnamaldehyde (CA) on differentiation of human dental pulp cells (hDPCs) cultured in a collagen hydrogel, which may be useful as a scaffold for regenerative endodontic therapy. METHODOLOGY The odontogenic potential of hDPCs exposed to CA was examined using alkaline phosphatase (ALP) activity, Alizarin red S staining and real-time polymerase chain reaction for odontogenic gene expression. The morphological features of hDPCs cultured in CA-treated collagen were evaluated by scanning electron microscopy. Determination of cell numbers for evaluating proliferation was assessed by optical and fluorescence microscopy. To assess the mechanical properties of collagen treated with CA, setting time, compressive strength and surface roughness were measured. Statistical analysis was performed using Student's t-test compared with control (P = 0.05). RESULTS CA per se did not increase ALP activity, calcium nodule formation and expression of odontogenic-related markers (P > 0.05). On the contrary, the proliferation and odontogenic differentiation of hDPCs cultured in a collagen scaffold was promoted in the presence of CA (P < 0.05). The setting time was significantly shortened, and the compressive strength and surface roughness were increased by treatment with CA (P < 0.05). CONCLUSIONS Cross-linking of collagen scaffolds by CA had beneficial effects with respect to attachment, proliferation and differentiation of hDPCs. Consequently, the application of cross-linking agents such as CA may represent a new strategy for dentine-pulp complex regeneration.
Collapse
Affiliation(s)
- Y S Kwon
- Department of Conservative Dentistry, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea
| | - S H Lee
- Department of Conservative Dentistry, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea
| | - Y C Hwang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - V Rosa
- Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - K W Lee
- Department of Conservative Dentistry, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - K S Min
- Department of Conservative Dentistry, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
15
|
Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects. Trends Biotechnol 2015; 33:621-636. [PMID: 26493710 DOI: 10.1016/j.tibtech.2015.09.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/16/2015] [Accepted: 09/08/2015] [Indexed: 01/25/2023]
Abstract
Nanotechnology is currently driving the dental materials industry to substantial growth, thus reflecting on improvements in materials available for oral prevention and treatment. The present review discusses new developments in nanotechnology applied to dentistry, focusing on the use of nanomaterials for improving the quality of oral care, the perspectives of research in this arena, and discussions on safety concerns regarding the use of dental nanomaterials. Details are provided on the cutting-edge properties (morphological, antibacterial, mechanical, fluorescence, antitumoral, and remineralization and regeneration potential) of polymeric, metallic and inorganic nano-based materials, as well as their use as nanocluster fillers, in nanocomposites, mouthwashes, medicines, and biomimetic dental materials. Nanotoxicological aspects, clinical applications, and perspectives for these nanomaterials are also discussed.
Collapse
|
16
|
Qin W, Zhu H, Chen L, Yang X, Huang Q, Lin Z. Dental pulp cells that express adeno-associated virus serotype 2-mediated BMP-7 gene enhanced odontoblastic differentiation. Dent Mater J 2014; 33:656-62. [PMID: 25273045 DOI: 10.4012/dmj.2014-109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This present study investigated the potential of adeno-associated virus serotype 2 (AAV2) mediated BMP-7 (AAV2-BMP-7) to induce odontoblastic differentiation of human dental pulp cells (DPCs) in vitro. AAV2-BMP-7 was constructed to overexpress BMP-7, and the biologic effects of BMP-7 on DPCs were investigated by the evaluation of the activity of alkaline phosphatase (ALPase), the detection of the expression of dentin sialophosphoprotein (DSPP) and osteocalcin (OCN) expression and the analysis of the proliferative ability of the cells. DPCs that were infected with AAV2-BMP-7 displayed significantly upregulated ALP activity and formed mineralized nodules. Moreover, AAV2-BMP-7 promoted the expression of mineralization-related genes, which included DSPP and OCN. In addition, there was no significant difference between the proliferative ability of AAV2-BMP-7 and the control group. In conclusion, AAV2-BMP-7 promoted the odontoblastic differentiation in DPCs, a clear indication of the therapeutic potential of AAV2-BMP-7 in dental tissue regeneration.
Collapse
Affiliation(s)
- Wei Qin
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University
| | | | | | | | | | | |
Collapse
|
17
|
Li R, Wang C, Tong J, Su Y, Lin Y, Zhou X, Ye L. WNT6 promotes the migration and differentiation of human dental pulp cells partly through c-Jun N-terminal kinase signaling pathway. J Endod 2014; 40:943-8. [PMID: 24935540 DOI: 10.1016/j.joen.2013.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 01/09/2023]
Abstract
INTRODUCTION During the dental pulp repair process, human dental pulp cells (HDPCs) migrate to injury sites where they may differentiate into odontoblastlike cells. WNT6 plays a role in dental development and can activate a noncanonical pathway including the c-Jun N-terminal kinase (JNK) pathway. The mechanism of WNT6 in dental pulp repair is still unknown. The purpose of this study was to explore the potential role of the WNT6/JNK signaling pathway in the promotion of cell migration and the differentiation of HDPCs. METHODS The third passage of HDPCs were cultured in vitro and treated with WNT6 conditioned medium with or without the pretreatment of JNK inhibitor SP600125. The activation of JNK was detected by Western blot, the expression of c-Jun was quantified by reverse-transcription polymerase chain reaction, the migration of HDPCs was determined by wound healing and transwell migration assays, and the differentiation of HDPCs was investigated using alkaline phosphatase staining and alizarin red staining. The expression of odontogenesis-related genes such as Runt-related transcription factor 2, dentin sialophosphoprotein, and dentin matrix protein 1 was quantified. RESULTS WNT6 activates the JNK pathway in HDPCs and enhances cell migration, mineralization nodule formation, and alkaline phosphatase activation. WNT6 also increases the expression of Runt-related transcription factor 2, dentin sialophosphoprotein, and dentin matrix protein messenger RNA in HDPCs. Blockage of the JNK pathway in HDPCs decreases but does not completely abolish the cell migration and differentiation capacity induced by WNT6. CONCLUSIONS WNT6 activates the JNK signaling pathway in HDPCs, leading to migration and differentiation.
Collapse
Affiliation(s)
- Ruimin Li
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Juan Tong
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Su
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Nazemi A, Gillies ER. Dendrimer Bioconjugates: Synthesis and Applications. CHEMISTRY OF BIOCONJUGATES 2014:146-183. [DOI: 10.1002/9781118775882.ch5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
19
|
The effects of an RGD-PAMAM dendrimer conjugate in 3D spheroid culture on cell proliferation, expression and aggregation. Biomaterials 2013; 34:2665-73. [PMID: 23340194 DOI: 10.1016/j.biomaterials.2013.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/01/2013] [Indexed: 12/18/2022]
|
20
|
Hargreaves KM, Diogenes A, Teixeira FB. Treatment options: biological basis of regenerative endodontic procedures. J Endod 2013; 39:S30-43. [PMID: 23439043 PMCID: PMC3589799 DOI: 10.1016/j.joen.2012.11.025] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/12/2012] [Accepted: 11/12/2012] [Indexed: 12/14/2022]
Abstract
Dental trauma occurs frequently in children and often can lead to pulpal necrosis. The occurrence of pulpal necrosis in the permanent but immature tooth represents a challenging clinical situation because the thin and often short roots increase the risk of subsequent fracture. Current approaches for treating the traumatized immature tooth with pulpal necrosis do not reliably achieve the desired clinical outcomes, consisting of healing of apical periodontitis, promotion of continued root development, and restoration of the functional competence of pulpal tissue. An optimal approach for treating the immature permanent tooth with a necrotic pulp would be to regenerate functional pulpal tissue. This review summarizes the current literature supporting a biological rationale for considering regenerative endodontic treatment procedures in treating the immature permanent tooth with pulp necrosis.
Collapse
Affiliation(s)
- Kenneth M Hargreaves
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
| | | | | |
Collapse
|
21
|
The role of bioactive nanofibers in enamel regeneration mediated through integrin signals acting upon C/EBPα and c-Jun. Biomaterials 2013; 34:3303-14. [PMID: 23398885 DOI: 10.1016/j.biomaterials.2013.01.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 12/15/2022]
Abstract
Enamel formation involves highly orchestrated intracellular and extracellular events; following development, the tissue is unable to regenerate, making it a challenging target for tissue engineering. We previously demonstrated the ability to trigger enamel differentiation and regeneration in the embryonic mouse incisor using a self-assembling matrix that displayed the integrin-binding epitope RGDS (Arg-Gly-Asp-Ser). To further elucidate the intracellular signaling pathways responsible for this phenomenon, we explore here the coupling response of integrin receptors to the biomaterial and subsequent downstream gene expression profiles. We demonstrate that the artificial matrix activates focal adhesion kinase (FAK) to increase phosphorylation of both c-Jun N-terminal kinase (JNK) and its downstream transcription factor c-Jun (c-Jun). Inhibition of FAK blocked activation of the identified matrix-mediated pathways, while independent inhibition of JNK nearly abolished phosphorylated-c-Jun (p-c-Jun) and attenuated the pathways identified to promote enamel regeneration. Cognate binding sites in the amelogenin promoter were identified to be transcriptionally up-regulated in response to p-c-Jun. Furthermore, the artificial matrix induced gene expression as evidenced by an increased abundance of amelogenin, the main protein expressed during enamel formation, and the CCAAT enhancer binding protein alpha (C/EBPα), which is the known activator of amelogenin expression. Elucidating these cues not only provides guidelines for the design of synthetic regenerative strategies and opportunities to manipulate pathways to regulate enamel regeneration, but can provide insight into the molecular mechanisms involved in tissue formation.
Collapse
|
22
|
Abstract
The search for more accessible mesenchymal stem cells than those found in bone marrow has propelled interest in dental tissues. Human dental stem/progenitor cells (collectively termed dental stem cells [DSCs]) that have been isolated and characterized include dental pulp stem cells, stem cells from exfoliated deciduous teeth, stem cells from apical papilla, periodontal ligament stem cells, and dental follicle progenitor cells. Common characteristics of these cell populations are the capacity for self-renewal and the ability to differentiate into multiple lineages. In vitro and animal studies have shown that DSCs can differentiate into osseous, odontogenic, adipose, endothelial, and neural-like tissues.
Collapse
Affiliation(s)
- Christine M Sedgley
- Department of Endodontology, School of Dentistry, Oregon Health and Science University, 611 Southwest Campus Drive, Portland, OR 97239, USA.
| | | |
Collapse
|
23
|
Liu J, Gray WD, Davis ME, Luo Y. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus 2012; 2:307-24. [PMID: 23741608 PMCID: PMC3363024 DOI: 10.1098/rsfs.2012.0009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/24/2012] [Indexed: 01/01/2023] Open
Abstract
Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure-function relationship of ligand-dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Warren D. Gray
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Room 2127, Atlanta, GA 30322-0535, USA
| | - Michael E. Davis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Room 2127, Atlanta, GA 30322-0535, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
- National Engineering Laboratory for Regenerative and Implantable Medical Devices, Room 408, Building D, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, People's Republic of China
| |
Collapse
|
24
|
Qin W, Yang F, Deng R, Li D, Song Z, Tian Y, Wang R, Ling J, Lin Z. Smad 1/5 Is Involved in Bone Morphogenetic Protein-2–induced Odontoblastic Differentiation in Human Dental Pulp Cells. J Endod 2012; 38:66-71. [DOI: 10.1016/j.joen.2011.09.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 01/09/2023]
|
25
|
The effects of hyaluronic acid, calcium hydroxide, and dentin adhesive on rat odontoblasts and fibroblasts. Arh Hig Rada Toksikol 2011; 62:155-61. [PMID: 21705303 DOI: 10.2478/10004-1254-62-2011-2076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to investigate the effects and efficiency of pulp capping preparations based on hyaluronic acid, calcium hydroxide, and dentin adhesive on the pulp tissue of Sprague-Dawley rats. The rats were killed and extracted teeth sectioned transversely through the pulp. The slices were placed in a RPMI 1640 cell culture medium supplemented with 10 % foetal calf serum. During 14 days of cultivation cultures were treated with preparations that contained hyaluronic acid (Gengigel Prof®), and calcium hydroxide (ApexCal®), or with dentin adhesive (Excite®). Cellularity and viability of fibroblasts and odontoblasts was analysed using a haemocytometer. Hyaluronic acid proved most efficient and the least toxic for direct pulp capping. Even though calcium hydroxide and dentin adhesive demonstrated a higher degree of cytotoxicity, their effects were still acceptable in terms of biocompatibility.
Collapse
|
26
|
Qin W, Lin ZM, Deng R, Li DD, Song Z, Tian YG, Wang RF, Ling JQ, Zhu XF. p38a MAPK is involved in BMP-2-induced odontoblastic differentiation of human dental pulp cells. Int Endod J 2011; 45:224-33. [DOI: 10.1111/j.1365-2591.2011.01965.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|