1
|
Wang L, Liu HR, Liu HQ, Li XS, Tang TT, Wang KJ, Wei GR, Tian J, Zhang YY, Luo XJ. SETD1B promotes brain cell ferroptosis in ischemic stroke mice via increasing H3K4me3 enrichment on the Tfrc promoter. Life Sci 2025; 372:123625. [PMID: 40228655 DOI: 10.1016/j.lfs.2025.123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
AIMS This study investigates the role of SET domain containing 1B (SETD1B), a histone lysine methyltransferase, in promoting ferroptosis induced by ischemic stroke through the upregulation of transferrin receptor 1 (TfR1). MATERIALS AND METHODS An ischemic stroke model was established in C57BL/6J mice by subjecting them to 1 h of ischemia followed by 24 h of reperfusion. Brain damage was assessed by neurological impairment and infarct volume. Levels of SETD1B, TfR1, total iron, Fe2+, lipid peroxidation (LPO), ferritin (FPN), and GPX4 were measured. In vitro, HT22 cells were subjected to 14 h of oxygen-glucose deprivation (OGD) followed by 24 h of reoxygenation. SETD1B knockdown was performed to assess its impact on ferroptosis. KEY FINDINGS In the ischemic stroke mice, SETD1B expression was elevated, accompanied by increased ferroptosis markers, including higher levels of TfR1, total iron, Fe2+, and LPO, as well as reduced levels of FPN and GPX4. These phenomena were observed in cultured HT22 cells under OGD/R conditions. SETD1B knockdown effectively reversed these effects, decreasing ferroptosis markers and reducing Tfrc expression via preventing H3K4me3 enrichment at the Tfrc promoter. SIGNIFICANCE These findings suggest that SETD1B enhances ferroptosis in stroke brain cells by a mechanism involving boosting H3K4me3 enrichment at the Tfrc promoter and subsequent upregulation of the expression of Tfrc. Targeting SETD1B may provide a therapeutic strategy for mitigating ferroptosis in stroke.
Collapse
Affiliation(s)
- Li Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hong-Rui Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hui-Qi Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Ting-Ting Tang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Kai-Jia Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Guang-Rong Wei
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jing Tian
- Department of Clinical Pharmacy, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Yi-Yue Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
2
|
Hu M, Fan Z. Role and mechanisms of histone methylation in osteogenic/odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci 2025; 17:24. [PMID: 40133254 PMCID: PMC11937254 DOI: 10.1038/s41368-025-00353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/01/2025] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are pivotal for tooth development and periodontal tissue health and play an important role in tissue engineering and regenerative medicine because of their multidirectional differentiation potential and self-renewal ability. The cellular microenvironment regulates the fate of stem cells and can be modified using various optimization techniques. These methods can influence the cellular microenvironment, activate disparate signaling pathways, and induce different biological effects. "Epigenetic regulation" refers to the process of influencing gene expression and regulating cell fate without altering DNA sequences, such as histone methylation. Histone methylation modifications regulate pivotal transcription factors governing DMSCs differentiation into osteo-/odontogenic lineages. The most important sites of histone methylation in tooth organization were found to be H3K4, H3K9, and H3K27. Histone methylation affects gene expression and regulates stem cell differentiation by maintaining a delicate balance between major trimethylation sites, generating distinct chromatin structures associated with specific downstream transcriptional states. Several crucial signaling pathways associated with osteogenic differentiation are susceptible to modulation via histone methylation modifications. A deeper understanding of the regulatory mechanisms governing histone methylation modifications in osteo-/odontogenic differentiation and immune-inflammatory responses of DMSCs will facilitate further investigation of the epigenetic regulation of histone methylation in DMSC-mediated tissue regeneration and inflammation. Here is a concise overview of the pivotal functions of epigenetic histone methylation at H3K4, H3K9, and H3K27 in the regulation of osteo-/odontogenic differentiation and renewal of DMSCs in both non-inflammatory and inflammatory microenvironments. This review summarizes the current research on these processes in the context of tissue regeneration and therapeutic interventions.
Collapse
Affiliation(s)
- Meijun Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Liu J, Tian H, Ju J, Nie F, Yin Q, Zhao J, Wang S, Guo H, Yang P. Porphyromonas gingivalis-Lipopolysaccharide Induced Gingival Fibroblasts Trained Immunity Sustains Inflammation in Periodontitis. J Periodontal Res 2024. [PMID: 39665166 DOI: 10.1111/jre.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024]
Abstract
AIM To investigate whether trained immunity occurs in gingival fibroblasts (GFs) and its relationship to the persistence of inflammation in periodontitis. METHODS Periodontally healthy and inflammatory gingival fibroblasts (HGFs and IGFs) were cultured through continuous adherence subculture of tissue blocks. Trained immunity in HGFs was evaluated via a classic in vitro model, with relevant markers assessed via enzyme-linked immunosorbent assay, lactate content assay, glycolytic rate assay, and chromatin immunoprecipitation. A histone methyltransferase blocker and a PI3K inhibitor were added to investigate the mechanisms underlying trained immunity. The relationship between trained immunity and periodontitis was further examined via immunofluorescence staining and chromatin immunoprecipitation on IGFs. RESULTS Compared with untrained cells, GFs trained with Porphyromonas gingivalis-lipopolysaccharide (P. gingivalis-LPS) exhibited a significant increase in IL-6 and TNF-α secretion, enhanced glycolytic metabolism, and enriched mono-methylation of lysine 4 on histone H3 (H3K4me1) at the enhancer regions of TNF-α and IL-6. The addition of a histone methyltransferase blocker and a PI3K inhibitor greatly reduced trained immunity. Additionally, the response of IGFs to P. gingivalis-LPS stimulation and their epigenetic modifications were similar to those observed in trained HGFs. CONCLUSION This study novelly discovered that both P. gingivalis-LPS-stimulated HGFs and IGFs in periodontitis acquired trained immunity. Following P. gingivalis-LPS stimulation, HGFs underwent metabolic and epigenetic changes via the PI3K/AKT pathway, with these epigenetic changes also observed in IGFs. This finding suggests that trained immunity in GFs may be a key mechanism underlying the recurrence and persistence of periodontitis.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Haoyang Tian
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Jinhong Ju
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Fujiao Nie
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Qiuyue Yin
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Jingjing Zhao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Suli Wang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Hongmei Guo
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Ustianowska K, Ustianowski Ł, Bakinowska E, Kiełbowski K, Szostak J, Murawka M, Szostak B, Pawlik A. The Genetic Aspects of Periodontitis Pathogenesis and the Regenerative Properties of Stem Cells. Cells 2024; 13:117. [PMID: 38247810 PMCID: PMC10814055 DOI: 10.3390/cells13020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Periodontitis (PD) is a prevalent and chronic inflammatory disease with a complex pathogenesis, and it is associated with the presence of specific pathogens, such as Porphyromonas gingivalis. Dysbiosis and dysregulated immune responses ultimately lead to chronic inflammation as well as tooth and alveolar bone loss. Multiple studies have demonstrated that genetic polymorphisms may increase the susceptibility to PD. Furthermore, gene expression is modulated by various epigenetic mechanisms, such as DNA methylation, histone modifications, or the activity of non-coding RNA. These processes can also be induced by PD-associated pathogens. In this review, we try to summarize the genetic processes that are implicated in the pathogenesis of PD. Furthermore, we discuss the use of these mechanisms in diagnosis and therapeutic purposes. Importantly, novel treatment methods that could promote tissue regeneration are greatly needed in PD. In this paper, we also demonstrate current evidence on the potential use of stem cells and extracellular vesicles to stimulate tissue regeneration and suppress inflammation. The understanding of the molecular mechanisms involved in the pathogenesis of PD, as well as the impact of PD-associated bacteria and stem cells in these processes, may enhance future research and ultimately improve long-term treatment outcomes.
Collapse
Affiliation(s)
- Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Martyna Murawka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| |
Collapse
|
5
|
Zou X, Liu C, Wu X, Yuan Z, Yan F. Changes in N6-methyladenosine RNA methylomes of human periodontal ligament cells in response to inflammatory conditions. J Periodontal Res 2023; 58:444-455. [PMID: 36733232 DOI: 10.1111/jre.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the changes in the m6A methylation modification profile of human periodontal ligament cells (hPDLCs) in response to inflammatory conditions. BACKGROUND Periodontitis is an infectious disease of the periodontal support tissue that leads to the loss of alveolar bone. HPDLCs are primary cells that can repair periodontal tissue defects caused by periodontitis. However, the inflammatory conditions induce inflammatory damage and decrease ossification of hPDLCs. This inflammatory response depends on genetic and epigenetic mechanisms, including m6A methylation. METHODS HPDLCs were cultured with osteogenic induction medium (NC group), while TNF-α (10 ng/mL) and IL-1β (5 ng/mL) were added to simulate inflammatory conditions (Inflam group). Then RNA-seq and MeRIP-seq analyses were performed to identify m6A methylation modification in the transcriptome range of hPDLCs. RESULTS The results showed that the osteogenic differentiation of hPDLCs was inhibited under inflammatory conditions. RNA-seq analysis also revealed that the decreased genes in response to inflammatory conditions were primarily annotated in processes associated with ossification. Compared with the NC group, differentially m6A-methylated genes were primarily enriched in histone modification processes. Among 145 histone modification genes, 25 genes have been reported to be involved in the regulation of osteogenic differentiation, and they include KAT6B, EP300, BMI1, and KDMs (KDM1A, KDM2A, KDM3A, KDM4B, and KDM5A). CONCLUSION This study demonstrated that the m6A landscape of hPDLCs was changed in response to inflammation. M6A methylation differences among histone modification genes may act on the osteogenic differentiation of hPDLCs.
Collapse
Affiliation(s)
- Xihong Zou
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chaoyi Liu
- Hangzhou Stomatological Hospital, Hangzhou, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhiyao Yuan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Chen L, Dai M, Zuo W, Dai Y, Yang Q, Yu S, Huang M, Liu H. NF-κB p65 and SETDB1 expedite lipopolysaccharide-induced intestinal inflammation in mice by inducing IRF7/NLR-dependent macrophage M1 polarization. Int Immunopharmacol 2023; 115:109554. [PMID: 36580757 DOI: 10.1016/j.intimp.2022.109554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 12/28/2022]
Abstract
Macrophages exhibit distinct phenotypes that are pro-inflammatory (M1) or anti-inflammatory (M2) in response to inflammation. In this study, we tried to identify the roles and mechanisms of interferon regulatory factor 7 (IRF7) in modulating the phenotypes of macrophages in lipopolysaccharide (LPS)-induced intestinal inflammation. The mouse model of intestinal inflammation was induced by lipopolysaccharide (LPS), and mouse bone marrow-derived macrophages (BMDMs) and mouse intestinal epithelial cells were selected for experimental verification in vitro. Results demonstrated that IRF7 was highly expressed in the mouse model of intestinal inflammation, while IRF7 deficiency repressed macrophage M1 polarization and attenuated intestinal inflammation in mice. p65 and SET domain bifurcated 1 (SETDB1) synergistically promoted histone 3 lysine 4 trimethylation (H3K4me3) methylation to elevate IRF7 expression, which activated the Nod-like receptor (NLR) pathway to induce macrophage M1 polarization. Through this mechanism, IRF7 in BMDMs functioned to accelerate intestinal epithelial cell apoptosis and their release of pro-inflammatory proteins. Furthermore, the promoting effect of p65 and SETDB1 on LPS-induced intestinal inflammation was validated in vivo. To sum up, NF-κB p65 and SETDB1 facilitated IRF7-mediated macrophage M1 polarization, thereby aggravating the LPS-induced intestinal inflammation. Hence, this study highlights the appealing value of these factors as anti-inflammatory targets.
Collapse
Affiliation(s)
- Li Chen
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Maolin Dai
- Department of Anesthesia, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Wei Zuo
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Yongyu Dai
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Qiqi Yang
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Shuangjiang Yu
- Department of Neurosurgery, The First Hospital Affiliated to Army Military Medical University (Southwest Hospital), Chongqing 400038, PR China
| | - Min Huang
- Department of Digestion, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Hao Liu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China.
| |
Collapse
|
7
|
Ma XX, Meng XQ, Wang YL, Liu Y, Shi XR, Shao S, Duan SZ, Lu HX. Ncor1 Deficiency Promotes Osteoclastogenesis and Exacerbates Periodontitis. J Dent Res 2023; 102:72-81. [PMID: 35983582 DOI: 10.1177/00220345221116927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nuclear receptor corepressor 1 (Ncor1) has been reported to regulate different transcription factors in different biological processes, including metabolism, inflammation, and circadian rhythms. However, the role of Ncor1 in periodontitis has not been elucidated. The aims of the present study were to investigate the role of Ncor1 in experimental periodontitis and to explore the underlying mechanisms through an experimental periodontitis model in myeloid cell-specific Ncor1-deficient mice. Myeloid cell-specific Ncor1 knockout (MNKO) mice were generated, and experimental periodontitis induced by ligation using 5-0 silk sutures was established. Ncor1 flox/flox mice were used as littermate controls (LC). Histological staining and micro-computed tomography scanning were used to evaluate osteoclastogenesis and alveolar bone resorption. Flow cytometry was conducted to observe the effect of Ncor1 on myeloid cells. RNA sequencing was used to explore the differentially targeted genes in osteoclastogenesis in the absence of Ncor1. Coimmunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP) experiments, and dual luciferase assays were performed to explore the relationship between NCoR1 and the targeted gene. Alveolar bone resorption in the MNKO mice was significantly greater than that in the LC mice after periodontitis induction and osteoclastogenesis in vitro. The percentage of CD11b+ cells, particularly CD11b+ Ly6G+ neutrophils, was substantially higher in gingival tissues in the MNKO mice than in the LC mice. Results of RNA sequencing demonstrated that CCAAT enhancer binding protein α (Cebpα) was one of the most differentially expressed genes between the MNKO and LC groups. Mechanistically, Co-IP assays, ChIP experiments, and dual luciferase assays revealed that NCOR1 interacted with peroxisome proliferator-activated receptor gamma (PPARγ) and cooperated with HDAC3 to control the transcription of Cebpα. In conclusion, Ncor1 deficiency promoted osteoclast and neutrophil formation in mice with experimental periodontitis. It regulated the transcription of Cebpα via PPARγ to promote osteoclast differentiation.
Collapse
Affiliation(s)
- X X Ma
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, 639 Zhizaoju Road, Shanghai, China
| | - X Q Meng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - Y L Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - Y Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - X R Shi
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - S Shao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Z Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, China
| | - H X Lu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, 639 Zhizaoju Road, Shanghai, China
| |
Collapse
|
8
|
Lyu H, Zhou X, Qian Y, Liu X, Gopinathan G, Pandya M, Qin C, Luan X, Diekwisch TGH. Long-acting PFI-2 small molecule release and multilayer scaffold design achieve extensive new formation of complex periodontal tissues with unprecedented fidelity. Biomaterials 2022; 290:121819. [PMID: 36209579 DOI: 10.1016/j.biomaterials.2022.121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/20/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
The faithful engineering of complex human tissues such as the bone/soft tissue/mineralized tissue interface in periodontal tissues requires innovative molecular cues in conjunction with tailored scaffolds. To address the loss of periodontal bone and connective tissues following periodontal disease, we have generated a polydopamine and collagen coated electrospun PLGA-PCL (PP) scaffold enriched with the small molecule mediator PFI-2 (PP-PFI-pDA-COL-PFI). In vitro 3D studies using PDL progenitors revealed that the PP-PFI-pDA-COL-PFI scaffold substantially enhanced Alizarin Red staining, increased Ca/P ratios 4-fold, and stimulated cell proliferation more than 12-fold compared to PP-controls, suggestive of its potential for mineralized tissue engineering. When applied in our experimental periodontitis model, the PP-PFI-pDA-COL-PFI scaffold resulted in a substantial 34% reduction in alveolar bone defect height, a 25% root-length gain in periodontal attachment, and the formation of highly ordered regenerated acellular cementum twice as thick as in controls. Explaining the mechanism of PFI-2 mineralized tissue regeneration in periodontal tissues, PFI-2 inhibited SETD7-mediated β-Catenin protein methylation and increased β-Catenin nuclear localization. Together, dual-level PFI-2 incorporation into a degradable, dopamine/collagen coated PLGA/PCL scaffold backbone resulted in the regeneration of the tripartite periodontal complex with unprecedented fidelity, including periodontal attachment and new formation of mineralized tissues in inflamed periodontal environments.
Collapse
Affiliation(s)
- Huling Lyu
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Xuefeng Zhou
- UIC College of Dentistry, Department of Oral Biology, Chicago, IL, USA; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunzhu Qian
- UIC College of Dentistry, Department of Oral Biology, Chicago, IL, USA; Center for Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Gokul Gopinathan
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Mirali Pandya
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Xianghong Luan
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA; UIC College of Dentistry, Department of Oral Biology, Chicago, IL, USA
| | - Thomas G H Diekwisch
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA; UIC College of Dentistry, Department of Oral Biology, Chicago, IL, USA.
| |
Collapse
|
9
|
Epigenetic Regulation of Methylation in Determining the Fate of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:5015856. [PMID: 36187229 PMCID: PMC9522499 DOI: 10.1155/2022/5015856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are crucial in tooth development and periodontal health, and their multipotential differentiation and self-renewal ability play a critical role in tissue engineering and regenerative medicine. Methylation modifications could promote the appropriate biological behavior by postsynthetic modification of DNA or protein and make the organism adapt to developmental and environmental prompts by regulating gene expression without changing the DNA sequence. Methylation modifications involved in DMSC fate include DNA methylation, RNA methylation, and histone modifications, which have been proven to exert a significant effect on the regulation of the fate of DMSCs, such as proliferation, self-renewal, and differentiation potential. Understanding the regulation of methylation modifications on the behavior and the immunoinflammatory responses involved in DMSCs contributes to further study of the mechanism of methylation on tissue regeneration and inflammation. In this review, we briefly summarize the key functions of histone methylation, RNA methylation, and DNA methylation in the differentiation potential and self-renewal of DMSCs as well as the opportunities and challenges for their application in tissue regeneration and disease therapy.
Collapse
|
10
|
Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules 2022; 27:molecules27175481. [PMID: 36080253 PMCID: PMC9457753 DOI: 10.3390/molecules27175481] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Despite advances in antimicrobial and anti-inflammatory therapies, inflammation and its consequences still remain a significant problem in medicine. Acute inflammatory responses are responsible for directly life-threating conditions such as septic shock; on the other hand, chronic inflammation can cause degeneration of body tissues leading to severe impairment of their function. Neuroinflammation is defined as an inflammatory response in the central nervous system involving microglia, astrocytes, and cytokines including chemokines. It is considered an important cause of neurodegerative diseases, such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Lipopolysaccharide (LPS) is a strong immunogenic particle present in the outer membrane of Gram-negative bacteria. It is a major triggering factor for the inflammatory cascade in response to a Gram-negative bacteria infection. The use of LPS as a strong pro-inflammatory agent is a well-known model of inflammation applied in both in vivo and in vitro studies. This review offers a summary of the pathogenesis associated with LPS exposure, especially in the field of neuroinflammation. Moreover, we analyzed different in vivo LPS models utilized in the area of neuroscience. This paper presents recent knowledge and is focused on new insights in the LPS experimental model.
Collapse
|
11
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
12
|
Huang J, Zhou Y. Emerging role of epigenetic regulations in periodontitis: a literature review. Am J Transl Res 2022; 14:2162-2183. [PMID: 35559409 PMCID: PMC9091094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Periodontitis is mainly initiated by periodontal pathogens including Porphyromonas gingivalis, and bad living habits such as smoking aggravate its incidence and severity. The development of periodontitis is closely related to the host's immune responses and the secretion of various cytokine networks. Moreover, periodontitis has an important connection with the development of systemic diseases. Recently, epigenetics which is a fast-developing hot research area has provided new insights into the research of various diseases including periodontitis. Epigenetics is an important supplement to the regulation of gene expression. The study of epigenetics is about causing heritable gene expression or cell phenotype changes through certain mechanisms without changing the DNA sequence. It mainly includes histone modification, DNA methylation, non-coding RNA and the latest research hotspot m6A RNA methylation. In the review, we comprehensively summarize the latest literature on the potential epigenetic regulations in various aspects of periodontitis.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
- Department of Prosthodontics, Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| |
Collapse
|
13
|
Starzyńska A, Wychowański P, Nowak M, Sobocki BK, Jereczek-Fossa BA, Słupecka-Ziemilska M. Association between Maternal Periodontitis and Development of Systematic Diseases in Offspring. Int J Mol Sci 2022; 23:2473. [PMID: 35269617 PMCID: PMC8910384 DOI: 10.3390/ijms23052473] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontal disease (PD) is one of the most common oral conditions affecting both youths and adults. There are some research works suggesting a high incidence of PD in pregnant women. As an inflammatory disease of bacterial origin, PD may result in the activation of the pathways affecting the course and the pregnancy outcome. The authors, based on the literature review, try to answer the PICO question: Does maternal periodontitis (exposure) influence the incidence of complications rates in pregnancy and the development of systemic diseases in childhood and adult offspring (outcome) in the humans of any race (population) compared to the offspring of mothers with healthy periodontium (comparison)? The authors try to describe the molecular pathways and mechanisms of these interdependencies. There is some evidence that maternal periodontitis may affect the pregnancy course and outcome, resulting in preeclampsia, preterm delivery, vulvovaginitis and low birth weight. It can be suggested that maternal periodontitis may affect offspring epigenome and result in some health consequences in their adult life.
Collapse
Affiliation(s)
- Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Piotr Wychowański
- Department of Oral Surgery, Medical University of Warsaw, 6 Binieckiego Street, 02-097 Warsaw, Poland;
- Specialized Private Implantology Clinic Wychowanski Stomatologia, 9/33 Rakowiecka Street, 02-517 Warsaw, Poland
| | - Maciej Nowak
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 6 Binieckiego Street, 02-097 Warsaw, Poland;
| | - Bartosz Kamil Sobocki
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20-112 Milan, Italy;
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20-141 Milan, Italy
| | - Monika Słupecka-Ziemilska
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| |
Collapse
|
14
|
Guan X, He Y, Li Y, Shi C, Wei Z, Zhao R, Han Y, Pan L, Yang J, Hou TZ. Gremlin aggravates periodontitis via activating the NF-κB signaling pathway. J Periodontol 2022; 93:1589-1602. [PMID: 34993960 DOI: 10.1002/jper.21-0474] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gremlin has been reported to regulate inflammation and osteogenesis. Periodontitis is a destructive disease degenerating periodontal tissues, therefore leads to alveolar bone resorption and tooth loss. Based on the importance of Gremlin's bio-activity, the aim of this study is to, in vivo and in vitro, unveil the function of Gremlin in regulating the development of periodontitis and its consequent effects on alveolar bone loss. METHODS Clinical specimens were used to determine the expression of Gremlin in periodontal tissues by immunohistochemical staining and western blot. Then utilizing the rat periodontitis model to investigate the function of gremlin-regulated nuclear factor-kappa B (NF-κB) pathway during the development of periodontal inflammation and the alveolar bone loss. Lastly, the regulation of the osteogenesis of human periodontal ligament stem cells (hPDLSCs) by Gremlin under inflamed condition was analyzed by alkaline phosphatase (ALP) and alizarin red staining (ARS). RESULTS We found clinically and experimentally that the expression of Gremlin is markedly increased in periodontitis tissues. Interestingly, we revealed that Gremlin regulated the progress of periodontitis via regulating the activities of NF-κB pathway and interleukin-1β (IL-1β). Notably, we observed that Gremlin influenced the osteogenesis of hPDLSCs. Thus, our present study identified Gremlin as a new key regulator for development of periodontitis. CONCLUSIONS Our current study illustrated that Gremlin acts as a crucial mediator and possibly serves as a potential diagnostic marker for periodontitis. Discovery of new factors involved in the pathophysiology of periodontitis could contribute to the development of novel therapeutic treatment for the disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaoyue Guan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yani He
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yingxue Li
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Chen Shi
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zhichen Wei
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Rui Zhao
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yue Han
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Lifei Pan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jianmin Yang
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tie Zhou Hou
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
15
|
Ma W, Lyu H, Pandya M, Gopinathan G, Luan X, Diekwisch TGH. Successful Application of a Galanin-Coated Scaffold for Periodontal Regeneration. J Dent Res 2021; 100:1144-1152. [PMID: 34328037 DOI: 10.1177/00220345211028852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The nervous system exerts finely tuned control over all aspects of the life of an organism, including pain, sensation, growth, and development. Recent developments in tissue regeneration research have increasingly turned to small molecule peptides to tailor and augment the biological response following tissue loss or injury. In the present study, we have introduced the small molecule peptide galanin (GAL) as a novel scaffold-coating agent for the healing and regeneration of craniofacial tissues. Using immunohistochemistry, we detected GAL and GAL receptors in healthy periodontal tissues and in the proximity of blood vessels, while exposure to our periodontal disease regimen resulted in a downregulation of GAL. In a 3-dimensional bioreactor culture, GAL coating of collagen scaffolds promoted cell proliferation and matrix synthesis. Following subcutaneous implantation, GAL-coated scaffolds were associated with mineralized bone-like tissue deposits, which reacted positively for alizarin red and von Kossa, and demonstrated increased expression and protein levels of RUNX2, OCN, OSX, and iBSP. In contrast, the GAL receptor antagonist galantide blocked the effect of GAL on Runx2 expression and inhibited mineralization in our subcutaneous implantation model. Moreover, GAL coating promoted periodontal regeneration and a rescue of the periodontal defect generated in our periodontitis model mice. Together, these data demonstrate the efficacy of the neuropeptide GAL as a coating material for tissue regeneration. They are also suggestive of a novel role for neurogenic signaling pathways in craniofacial and periodontal regeneration.
Collapse
Affiliation(s)
- W Ma
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA.,Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - H Lyu
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - M Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA
| | - G Gopinathan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA
| | - X Luan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA
| | - T G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA
| |
Collapse
|
16
|
CTHRC1 Knockdown Promotes Inflammatory Responses Partially by p38 MAPK Activation in Human Periodontal Ligament Cells. Inflammation 2021; 44:1831-1842. [PMID: 33846931 DOI: 10.1007/s10753-021-01461-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Collagen triple helix repeat containing 1 (CTHRC1), a secreted glycoprotein, is widely expressed in many tissues. It has been recently defined as a novel marker for rheumatoid arthritis (RA), a systemic inflammatory disorder. However, the precise role of CTHRC1 in other chronic inflammatory diseases, like periodontal disease, remains unclear. This research aimed to explore the presence of CTHRC1 in periodontal inflammation, determine the precise role in inflammatory response modulation in periodontal ligament cells (PDLCs), and explore its underlying mechanisms. In vivo gingival crevicular fluid (GCF) and gingivae were obtained from healthy people and chronic periodontitis patients. Maxillary tissues of mice with or without ligature-induced periodontitis were immunostained for CTHRC1. In vitro human PDLCs were treated with tumor necrosis factor alpha (TNF-α) to mimic the inflammatory environment. Small interfering RNA (siRNA) was used to silence CTHRC1. SB203580 was used to inhibit the p38 mitogen-activated protein kinase (MAPK) pathway. CTHRC1 was highly expressed in GCF and gingival tissues of periodontitis patients. Animal models also revealed the same tendency. CTHRC1 knockdown promoted inflammatory cytokine production and activated the p38 MAPK signaling pathway in PDLCs. Inhibiting the p38 MAPK signaling pathway partially attenuated the inflammatory responses. This study revealed that CTHRC1 was highly expressed in periodontitis and suggested that CTHRC1 might play an important role in modulating periodontal inflammation.
Collapse
|
17
|
Regulation of Transcription Factor NF-κB in Its Natural Habitat: The Nucleus. Cells 2021; 10:cells10040753. [PMID: 33805563 PMCID: PMC8066257 DOI: 10.3390/cells10040753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 01/11/2023] Open
Abstract
Activation of the transcription factor NF-κB elicits an individually tailored transcriptional response in order to meet the particular requirements of specific cell types, tissues, or organs. Control of the induction kinetics, amplitude, and termination of gene expression involves multiple layers of NF-κB regulation in the nucleus. Here we discuss some recent advances in our understanding of the mutual relations between NF-κB and chromatin regulators also in the context of different levels of genome organization. Changes in the 3D folding of the genome, as they occur during senescence or in cancer cells, can causally contribute to sustained increases in NF-κB activity. We also highlight the participation of NF-κB in the formation of hierarchically organized super enhancers, which enable the coordinated expression of co-regulated sets of NF-κB target genes. The identification of mechanisms allowing the specific regulation of NF-κB target gene clusters could potentially enable targeted therapeutic interventions, allowing selective interference with subsets of the NF-κB response without a complete inactivation of this key signaling system.
Collapse
|
18
|
Pathak JL, Fang Y, Chen Y, Ye Z, Guo X, Yan Y, Zha J, Liang D, Ke X, Yang L, Zhong W, Wang L, Wang L. Downregulation of Macrophage-Specific Act-1 Intensifies Periodontitis and Alveolar Bone Loss Possibly via TNF/NF-κB Signaling. Front Cell Dev Biol 2021; 9:628139. [PMID: 33748112 PMCID: PMC7969798 DOI: 10.3389/fcell.2021.628139] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Periodontitis is a chronic inflammatory oral disease that affects almost half of the adult population. NF-κB activator 1 (Act1) is mainly expressed in immune cells, including macrophages, and modulates immune cells' function to regulate inflammation in inflammatory diseases. Macrophages play a vital role in the pathophysiology of periodontitis. However, the effect of macrophage-specific Act1 on periodontitis has not been investigated yet. This study aims to unravel the role of macrophage-specific Act1 on the pathophysiology of periodontitis. The expression of Act1 in healthy and periodontitis periodontal tissue was confirmed by immunohistochemistry. Macrophage-specific Act1 expression downregulated (anti-Act1) mice were developed by inserting anti-Act1 antisense oligonucleotides after the CD68 promoter of C57BL/6 mice. Ligature-induced periodontitis (LIP) was induced in anti-Act1 mice and wildtype mice. Micro-CT, histology, and TRAP staining analyzed the periodontal tissue status, alveolar bone loss, and osteoclast numbers. Immunohistochemistry, RT-qPCR, and ELISA analyzed the inflammatory cells infiltration, expression of inflammatory cytokines, and M1/M2 macrophage polarization. mRNA sequencing of in vitro bacterial lipopolysaccharide (LPS)-treated peritoneal macrophages analyzed the differentially expressed genes in anti-Act1 mice during inflammation. Anti-Act1 mice showed aggravated periodontitis and alveolar bone loss compared to wildtype. Periodontitis-affected periodontal tissue (PAPT) of anti-Act1 mice showed a higher degree of macrophage infiltration, and M1 macrophage polarization compared to wildtype. Levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα), and macrophage activity-related factors (CCL2, CCL3, and CCL4) were robustly high in PAPT of anti-Act1 mice compared to wildtype. mRNA sequencing and KEGG analysis showed activated TNF/NF-κB signaling in LPS-treated macrophages from anti-Act1 mice. In vitro studies on LPS-treated peritoneal macrophages from anti-act1 mice showed a higher degree of cell migration and expression of inflammatory cytokines, macrophage activity-related factors, M1 macrophage-related factors, and TNF/NF-κB signaling related P-p65 protein. In conclusion, downregulation of macrophage-specific Act1 aggravated periodontitis, alveolar bone loss, macrophage infiltration, inflammation, and M1 macrophage polarization. Furthermore, LPS-treated macrophages from anti-Act1 mice activated TNF/NF-κB signaling. These results indicate the distinct role of macrophage-specific Act1 on the pathophysiology of periodontitis possibly via TNF/NF-κB signaling.
Collapse
Affiliation(s)
- Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Fang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunxin Chen
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhitong Ye
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xueqi Guo
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongyong Yan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Zha
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongliang Liang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuxian Ke
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luxi Yang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenchao Zhong
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Jurdziński KT, Potempa J, Grabiec AM. Epigenetic regulation of inflammation in periodontitis: cellular mechanisms and therapeutic potential. Clin Epigenetics 2020; 12:186. [PMID: 33256844 PMCID: PMC7706209 DOI: 10.1186/s13148-020-00982-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epigenetic mechanisms, namely DNA and histone modifications, are critical regulators of immunity and inflammation which have emerged as potential targets for immunomodulating therapies. The prevalence and significant morbidity of periodontitis, in combination with accumulating evidence that genetic, environmental and lifestyle factors cannot fully explain the susceptibility of individuals to disease development, have driven interest in epigenetic regulation as an important factor in periodontitis pathogenesis. Aberrant promoter methylation profiles of genes involved in inflammatory activation, including TLR2, PTGS2, IFNG, IL6, IL8, and TNF, have been observed in the gingival tissue, peripheral blood or buccal mucosa from patients with periodontitis, correlating with changes in expression and disease severity. The expression of enzymes that regulate histone acetylation, in particular histone deacetylases (HDACs), is also dysregulated in periodontitis-affected gingival tissue. Infection of gingival epithelial cells, gingival fibroblasts and periodontal ligament cells with the oral pathogens Porphyromonas gingivalis or Treponema denticola induces alterations in expression and activity of chromatin-modifying enzymes, as well as site-specific and global changes in DNA methylation profiles and in histone acetylation and methylation marks. These epigenetic changes are associated with excessive production of inflammatory cytokines, chemokines, and matrix-degrading enzymes that can be suppressed by small molecule inhibitors of HDACs (HDACi) or DNA methyltransferases. HDACi and inhibitors of bromodomain-containing BET proteins ameliorate inflammation, osteoclastogenesis, and alveolar bone resorption in animal models of periodontitis, suggesting their clinical potential as host modulation therapeutic agents. However, broader application of epigenomic methods will be required to create a comprehensive map of epigenetic changes in periodontitis. The integration of functional studies with global analyses of the epigenetic landscape will provide critical information on the therapeutic and diagnostic potential of epigenetics in periodontal disease.
Collapse
Affiliation(s)
- Krzysztof T Jurdziński
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|