1
|
Ma L, Li M, Xuan G, Dai Y. METTL14-mediated m6A RNA methylation promotes the osteogenic differentiation of pPDLSCs by regulating WNT3A. Odontology 2025:10.1007/s10266-025-01097-2. [PMID: 40249476 DOI: 10.1007/s10266-025-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Periodontitis is a chronic inflammatory disease that leads to the loss of periodontal supporting tissue. Furthermore, human periodontal ligament stem cells (hPDLSCs) are identified as candidate cells for the regeneration of periodontal and alveolar bone tissues. N6-Methyladenosine (m6A) performs a vital role in osteoporosis and bone metabolism. However, the role and mechanism of Methyltransferase-like 14 (METTL14) in the osteogenic differentiation of PDLSCs from periodontitis sufferers (pPDLSCs) is unclear. In this research, GSE223924 database analyzed the expression of METTL14 and Wnt Family Member 3A (WNT3A) in gingival tissue samples of 10 healthy subjects, 10 patients with periodontitis and peri-implantitis. RT-qPCR and western blot detected METTL14, COL1A1, Runx2, ALP, and WNT3A mRNA level and protein level. Osteogenic differentiation was evaluated by Alizarin Red S staining and ALP activity. MeRIP and dual-luciferase reporter assays verified interaction between METTL14 and WNT3A. GSE223924 database showed METTL14 was differentially expressed in patients with periodontitis and peri-implantitis. Furthermore, our data verified that METTL14 and WNT3A expression were decreased in pPDLSCs and were upregulated by osteogenic induction. METTL14 promoted osteogenic differentiation of pPDLSCs. METTL14 regulated WNT3A mRNA expression via m6A methylation. METTL14 facilitates osteogenic differentiation of pPDLSCs via modulating WNT3A, providing a possible target for improving alveolar bone regeneration outcomes.Highlights 1. METTL14 expression was decreased in pPDLSCs 2. METTL14 knockdown negatively regulated the osteogenic differentiation of pPDLSCs 3. WNT3A mRNA was a m6A-methylated target by METTL14.
Collapse
Affiliation(s)
- Lan Ma
- Department of Stomatology, Shaoxing People's Hospital, Zhongxing North Road NO.568, Shaoxing, 312000, China
| | - Min Li
- Department of Stomatology, Shaoxing People's Hospital, Zhongxing North Road NO.568, Shaoxing, 312000, China
| | - Guihong Xuan
- Department of Stomatology, Shaoxing People's Hospital, Zhongxing North Road NO.568, Shaoxing, 312000, China
| | - Ying Dai
- Department of Stomatology, Shaoxing People's Hospital, Zhongxing North Road NO.568, Shaoxing, 312000, China.
| |
Collapse
|
2
|
Mekhemar M, Terheyden I, Dörfer C, Fawzy El-Sayed K. Inflammatory Modulation of Toll-like Receptors in Periodontal Ligament Stem Cells: Implications for Periodontal Therapy. Cells 2025; 14:432. [PMID: 40136681 PMCID: PMC11941712 DOI: 10.3390/cells14060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate immune response, mediating cellular interactions with the microenvironment and influencing periodontal disease progression. This in vitro study aimed to comprehensively characterize the TLR expression profile of periodontal ligament mesenchymal stem/progenitor cells (PDLSCs) and investigate its modulation by inflammatory stimuli associated with periodontal disease. PDLSCs (n = 6) were isolated, selected using anti-STRO-1 antibodies, and cultured to evaluate their colony-forming abilities and stem/progenitor characteristics. Baseline and inflammation-induced TLR expressions were evaluated using RT-PCR and protein analyses following cytokine-mediated stimulation. PDLSCs exhibited the expected stem cell characteristics and expressed multiple TLRs under both conditions. Notably, inflammatory stimulation significantly upregulated TLR1 and TLR2 while downregulating TLR10 (p < 0.05). These findings provide a comprehensive characterization of TLR expression in PDLSCs and demonstrate how inflammation modulates their innate immune profile. The observed shifts in TLR expression may influence PDLSC responses to microbial pathogens and impact their immunomodulatory and regenerative properties in periodontal tissues. Understanding these interactions could contribute to developing targeted strategies for improving PDLSC-based therapies in periodontal disease.
Collapse
Affiliation(s)
- Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (I.T.); (C.D.)
| | - Immo Terheyden
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (I.T.); (C.D.)
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (I.T.); (C.D.)
| | - Karim Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (I.T.); (C.D.)
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Giza 12613, Egypt
- Stem Cells and Tissue Engineering Unit, Faculty of Oral and Dental Medicine, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Rovai EDS, Polassi M, da Silveira MI, Araújo SL, Dyke TV, dos Santos NCC. Impact of Specialized Pro-Resolving Lipid Mediators on Craniofacial and Alveolar Bone Regeneration: Scoping Review. Braz Dent J 2024; 35:e246133. [PMID: 39476116 PMCID: PMC11506308 DOI: 10.1590/0103-6440202406133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 11/03/2024] Open
Abstract
Craniofacial bone defects caused by tumors, trauma, long-term tooth loss, or periodontal disease are a major challenge in the field of tissue engineering. In periodontitis and peri-implantitis, reconstructive therapy is also a major challenge for the dental surgeon. Lipoxins, resolvins, protectins, and maresins, known as specialized pro-resolving lipid mediators (SPMs), have been widely studied in the field of dental, oral, and craniofacial research for bone regeneration for their actions in restoring tissue homeostasis and promoting tissue healing and regeneration. Therefore, this study focuses on a survey of the use of SPMs for craniofacial and alveolar bone regeneration. Thus, electronic searches of five databases were performed to identify pre-clinical studies that evaluated the actions of SMPs on craniofacial and alveolar bone regeneration. Of the 523 articles retrieved from the electronic databases, 19 were included in the analysis. Resolvin (Rv) E1 was the mostly assessed SPM (n=8), followed by maresins (Ma) R1 (n=3), lipoxins (Lx) A4 (n=3), RvD1 (n=3), RvD2 (n=1), LxB4 (n=1), and maresin (M)-CTR3 (n=1). Meta-analysis showed that SPMs increased the newly formed bone by 14.85% compared to the control group (p<0.00001), decreased the area of the remaining defect by 0.35 mm2 (p<0.00001), and decreased the linear distance between the defect to the bone crest by 0.53 mm (p<0.00001). RvE1 reduced inflammatory bone resorption in periodontal defects and calvarial osteolysis and enhanced bone regeneration when RvE1 was combined with a bovine bone graft. RvD2 induced active resolution of inflammation and tissue regeneration in periapical lesions, while RvD1 controlled the inflammatory microenvironment in calvarial defects in rats, promoting bone healing and angiogenesis. MaR1 induced the proliferation and migration of mesenchymal stem cells, osteogenesis, and angiogenesis in calvarial defects, and benzo (b)-LxA4 and LxA4 promoted bone regeneration calvarial and alveolar bone defects in rats, inducing regeneration under inflammatory conditions. In summary, SPMs have emerged as pivotal contributors to the resolution of inflammation and the facilitation of bone neoformation within craniofacial and alveolar bone defects. These results are based on pre-clinical studies, in vivo and in vitro, and provide an updated review regarding the impact of SPMs in tissue engineering.
Collapse
Affiliation(s)
- Emanuel da Silva Rovai
- Department of Diagnosis and Surgery, Institute of Science and Technology, São Paulo State University, São José dos Campos, SP, Brazil
| | - Mackeler Polassi
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Marcela Iunes da Silveira
- Department of Diagnosis and Surgery, Institute of Science and Technology, São Paulo State University, São José dos Campos, SP, Brazil
| | - Sandy Lima Araújo
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Thomas Van Dyke
- The ADA Forsyth Institute, Cambridge, MA, United States
- Harvard School of Dental Medicine, Harvard University, Boston, MA, United States
| | - Nidia C. Castro dos Santos
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- Albert Einstein School of Dental Medicine, Albert Einstein Israelite Hospital, São Paulo, SP, Brazil
- The ADA Forsyth Institute, Cambridge, MA, United States
| |
Collapse
|
4
|
Lu Y, Tian H, Peng H, Wang Q, Bunnell BA, Bazan NG, Hong S. Novel lipid mediator 7 S,14 R-docosahexaenoic acid: biogenesis and harnessing mesenchymal stem cells to ameliorate diabetic mellitus and retinal pericyte loss. Front Cell Dev Biol 2024; 12:1380059. [PMID: 38533089 PMCID: PMC10963555 DOI: 10.3389/fcell.2024.1380059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Stem cells can be used to treat diabetic mellitus and complications. ω3-docosahexaenoic acid (DHA) derived lipid mediators are inflammation-resolving and protective. This study found novel DHA-derived 7S,14R-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-docosahexaenoic acid (7S,14R-diHDHA), a maresin-1 stereoisomer biosynthesized by leukocytes and related enzymes. Moreover, 7S,14R-diHDHA can enhance mesenchymal stem cell (MSC) functions in the amelioration of diabetic mellitus and retinal pericyte loss in diabetic db/db mice. Methods: MSCs treated with 7S,14R-diHDHA were delivered into db/db mice i.v. every 5 days for 35 days. Results: Blood glucose levels in diabetic mice were lowered by 7S,14R-diHDHA-treated MSCs compared to control and untreated MSC groups, accompanied by improved glucose tolerance and higher blood insulin levels. 7S,14R-diHDHA-treated MSCs increased insulin+ β-cell ratio and decreased glucogan+ α-cell ratio in islets, as well as reduced macrophages in pancreas. 7S,14R-diHDHA induced MSC functions in promoting MIN6 β-cell viability and insulin secretion. 7S,14R-diHDHA induced MSC paracrine functions by increasing the generation of hepatocyte growth factor and vascular endothelial growth factor. Furthermore, 7S,14R-diHDHA enhanced MSC functions to ameliorate diabetes-caused pericyte loss in diabetic retinopathy by increasing their density in retina in db/db mice. Discussion: Our findings provide a novel strategy for improving therapy for diabetes and diabetic retinopathy using 7S,14R-diHDHA-primed MSCs.
Collapse
Affiliation(s)
- Yan Lu
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Haibin Tian
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji University, Shanghai, China
| | - Hongying Peng
- Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Quansheng Wang
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bruce A. Bunnell
- Tulane University School of Medicine, Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA, United States
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| |
Collapse
|
5
|
Yuan W, Huang M, Wu Y, Liu J, Zhou X, Wang J, Liu J. Agaricus blazei Murrill Polysaccharide Attenuates Periodontitis via H 2 S/NRF2 Axis-Boosted Appropriate Level of Autophagy in PDLCs. Mol Nutr Food Res 2023; 67:e2300112. [PMID: 37775336 DOI: 10.1002/mnfr.202300112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Indexed: 10/01/2023]
Abstract
SCOPE Periodontitis is one of the most prevalent chronic inflammatory diseases with impaired autophagy. Agaricus blazei Murrill polysaccharide (ABMP) shows beneficial effects in various inflammatory diseases. However, whether ABMP is involved in autophagy regulation and periodontitis attenuation remains to be elucidated. METHODS AND RESULTS This study firstly shows the dynamic changes in inflammatory and autophagy levels in silk ligature periodontitis model. Then the positive regulation effect of autophagy on inflammation and its vital role in ABMP inhibiting PDLCs inflammatory response are testified in LPS-treated PDLCs. Secondly, the Micro-CT, quantitative RT-PCR, Western Blot, TRAP, and immunofluorescence staining analysis are performed to assess the effects of ABMP on periodontitis and autophagy. The data show the augmented autophagy and alleviated gingival recession, inflammatory cell infiltration, alveolar bone resorption, and reduced osteoclasts in periodontitis by ABMP treatment. Further experiments using chemical inhibitors demonstrate the vital role of H2 S/NRF2 axis in ABMP-induced appropriate level of autophagy augmentation against periodontitis. CONCLUSIONS Collectively, the findings not only reveal the unrecognized capacity and mechanism of ABMP as an effective and potential dietary intake against periodontitis, but also suggest the possibility for ABMP to be used in the treatment of other autophagy-related diseases.
Collapse
Affiliation(s)
- Wenxiu Yuan
- Lab of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, Chengdu, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Yange Wu
- Lab of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, Chengdu, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiaqi Liu
- Lab of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, Chengdu, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xueman Zhou
- Lab of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, Chengdu, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jin Liu
- Lab of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, Chengdu, China
| |
Collapse
|
6
|
Döding A, Zimmermann S, Maghames A, Reimann M, Symmank J, Thürmer M, Gräler MH, Wolf M, Jacobs C, Koeberle A, Sigusch B, Schulze-Späte U. Immunometabolic capacities of nutritional fatty acids in regulation of inflammatory bone cell interaction and systemic impact of periodontal infection. Front Immunol 2023; 14:1213026. [PMID: 37736098 PMCID: PMC10509849 DOI: 10.3389/fimmu.2023.1213026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/04/2023] [Indexed: 09/23/2023] Open
Abstract
Introduction Novel preventive strategies in periodontal disease target the bacterial-induced inflammatory host response to reduce associated tissue destruction. Strategies focus on the modulation of tissue-destroying inflammatory host response, particularly the reduction of inflammation and promotion of resolution. Thereby, nutrition is a potent immunometabolic non-pharmacological intervention. Human studies have demonstrated the benefit of olive oil-containing Mediterranean-style diets (MDs), the main component of which being mono-unsaturated fatty acid (FA) oleic acid (OA (C18:1)). Hence, nutritional OA strengthened the microarchitecture of alveolar trabecular bone and increased circulating pro-resolving lipid mediators following bacterial inoculation with periodontal pathogen Porphyromonas gingivalis, contrary to saturated FA palmitic acid (PA (C16:0)), which is abundant in Western-style diets. Additionally, the generalized distribution of inflammatory pathway mediators can occur in response to bacterial infection and compromise systemic tissue metabolism and bone homeostasis distant from the side of infection. Whether specific FA-enriched nutrition and periodontal inoculation are factors in systemic pathology that can be immune-modulatory targeted through dietary substitution is unknown and of clinical relevance. Methods Normal-weight C57BL/6-mice received OA-or PA-enriched diets (PA-ED, OA-ED, PA/OA-ED) or a normal-standard diet (n=12/group) for 16 weeks and were orally infected with P. gingivalis/placebo to induce periodontal disease. Using histomorphometry and LC-MS/MS, systemic bone morphology, incorporated immunometabolic FA-species, serological markers of bone metabolism, and stress response were determined in addition to bone cell inflammation and interaction in vitro. Results In contrast to OA-ED, PA-ED reduced systemic bone microarchitecture paralleled by increased lipotoxic PA-containing metabolite accumulation in bone. Substitution with OA reversed the bone-destructive impact of PA, which was accompanied by reduced diacylglycerols (DAG) and saturated ceramide levels. Further, PA-associated reduction in mineralization activity and concomitant pro-inflammatory activation of primary osteoblasts were diminished in cultures where PA was replaced with OA, which impacted cellular interaction with osteoclasts. Additionally, PA-ED increased osteoclast numbers in femurs in response to oral P. gingivalis infection, whereas OA-ED reduced osteoclast occurrence, which was paralleled by serologically increased levels of the stress-reducing lipokine PI(18:1/18:1). Conclusion OA substitution reverses the bone-destructive and pro-inflammatory effects of PA and eliminates incorporated lipotoxic PA metabolites. This supports Mediterranean-style OA-based diets as a preventive intervention to target the accumulation of PA-associated lipotoxic metabolites and thereby supports systemic bone tissue resilience after oral bacterial P. gingivalis infection.
Collapse
Affiliation(s)
- Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Svenja Zimmermann
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Ahmed Maghames
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Michael Reimann
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Judit Symmank
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | - Maria Thürmer
- Chair of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Markus H. Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB) and Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Bernd Sigusch
- Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| |
Collapse
|
7
|
Lee CT, Tribble GD. Roles of specialized pro-resolving mediators and omega-3 polyunsaturated fatty acids in periodontal inflammation and impact on oral microbiota. FRONTIERS IN ORAL HEALTH 2023; 4:1217088. [PMID: 37559676 PMCID: PMC10409488 DOI: 10.3389/froh.2023.1217088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease induced by dysbiotic dental biofilms. Management of periodontitis is primarily anti-bacterial via mechanical removal of bacterial biofilm. The successful resolution requires wound healing and tissue regeneration, which are not always achieved with these traditional methods. The discovery of specialized pro-resolving mediators (SPMs), a class of lipid mediators that induce the resolution of inflammation and promote local tissue homeostasis, creates another option for the treatment of periodontitis and other diseases of chronic inflammation. In this mini-review, we discuss the host-modulatory effects of SPMs on periodontal tissues and changes in the taxonomic composition of the gut and oral microbiome in the presence of SPMs and SPM precursor lipids. Further research into the relationship between host SPM production and microbiome-SPM modification has the potential to unveil new diagnostic markers of inflammation and wound healing. Expanding this field may drive the discovery of microbial-derived bioactive therapeutics to modulate immune responses.
Collapse
Affiliation(s)
- Chun-Teh Lee
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gena D. Tribble
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
8
|
Liu WC, Yang YH, Wang YC, Chang WM, Wang CW. Maresin: Macrophage Mediator for Resolving Inflammation and Bridging Tissue Regeneration-A System-Based Preclinical Systematic Review. Int J Mol Sci 2023; 24:11012. [PMID: 37446190 DOI: 10.3390/ijms241311012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maresins are lipid mediators derived from omega-3 fatty acids with anti-inflammatory and pro-resolving properties, capable of promoting tissue regeneration and potentially serving as a therapeutic agent for chronic inflammatory diseases. The aim of this review was to systematically investigate preclinical and clinical studies on maresin to inform translational research. Two independent reviewers performed comprehensive searches with the term "Maresin (NOT) Review" on PubMed. A total of 137 studies were included and categorized into 11 human organ systems. Data pertinent to clinical translation were specifically extracted, including delivery methods, optimal dose response, and specific functional efficacy. Maresins generally exhibit efficacy in treating inflammatory diseases, attenuating inflammation, protecting organs, and promoting tissue regeneration, mostly in rodent preclinical models. The nervous system has the highest number of original studies (n = 25), followed by the cardiovascular system, digestive system, and respiratory system, each having the second highest number of studies (n = 18) in the field. Most studies considered systemic delivery with an optimal dose response for mouse animal models ranging from 4 to 25 μg/kg or 2 to 200 ng via intraperitoneal or intravenous injection respectively, whereas human in vitro studies ranged between 1 and 10 nM. Although there has been no human interventional clinical trial yet, the levels of MaR1 in human tissue fluid can potentially serve as biomarkers, including salivary samples for predicting the occurrence of cardiovascular diseases and periodontal diseases; plasma and synovial fluid levels of MaR1 can be associated with treatment response and defining pathotypes of rheumatoid arthritis. Maresins exhibit great potency in resolving disease inflammation and bridging tissue regeneration in preclinical models, and future translational development is warranted.
Collapse
Affiliation(s)
- Wen-Chun Liu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Hsin Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Chin Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Wei-Ming Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chin-Wei Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
- Division of Periodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
9
|
Serhan CN, Chiang N. Resolvins and cysteinyl-containing pro-resolving mediators activate resolution of infectious inflammation and tissue regeneration. Prostaglandins Other Lipid Mediat 2023; 166:106718. [PMID: 36813255 PMCID: PMC10175197 DOI: 10.1016/j.prostaglandins.2023.106718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
This review is a synopsis of the main points from the opening presentation by the authors in the Resolution of Inflammation session at the 8th European Workshop on Lipid Mediators held at the Karolinska Institute, Stockholm, Sweden, June 29th, 2022. Specialized pro-resolving mediators (SPM) promote tissue regeneration, control infections and resolution of inflammation. These include resolvins, protectins, maresins and the newly identified conjugates in tissue regeneration (CTRs). We reported mechanisms of CTRs in activating primordial regeneration pathways in planaria using RNA-sequencing. Also, the 4S,5S-epoxy-resolvin intermediate in the biosynthesis of resolvin D3 and resolvin D4 was prepared by total organic synthesis. Human neutrophils convert this to resolvin D3 and resolvin D4, while human M2 macrophages transformed this labile epoxide intermediate to resolvin D4 and a novel cysteinyl-resolvin that is a potent isomer of RCTR1. The novel cysteinyl-resolvin significantly accelerates tissue regeneration with planaria and inhibits human granuloma formation.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Lu Y, Zhao L, Mao J, Liu W, Ma W, Zhao B. Rab27a-mediated extracellular vesicle secretion contributes to osteogenesis in periodontal ligament-bone niche communication. Sci Rep 2023; 13:8479. [PMID: 37231020 DOI: 10.1038/s41598-023-35172-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
Periodontitis, an infectious and common disease worldwide, leads to the destruction of the periodontal ligament-alveolar bone complex. Within the bone metabolic niche, communication between periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMMSCs) has been considered a major contributor to osteogenesis. PDLSC-derived extracellular vesicles (P-EVs) have shown great potential for bone regeneration. However, the secretion and uptake mechanisms of P-EVs remain elusive. Herein, the biogenesis of extracellular vesicles (EVs) from PDLSCs was observed using scanning and transmission electron microscopy. PDLSCs were transduced with Ras-associated protein 27a (Rab27a) siRNA (PDLSCsiRab27a) to inhibit EV secretion. The effect of P-EVs on BMMSCs was evaluated using a non-contact transwell co-culture system. We observed that Rab27a knockdown decreased EV secretion, and PDLSCsiRab27a remarkably attenuated co-culture-enhanced osteogenesis of BMMSCs. Isolated PDLSC-derived EVs enhanced osteogenic differentiation of BMMSCs in vitro and induced bone regeneration in a calvarial defect model in vivo. PDLSC-derived EVs were rapidly endocytosed by BMMSCs via the lipid raft/cholesterol endocytosis pathway and triggered the phosphorylation of extracellular signal-regulated kinase 1/2. In conclusion, PDLSCs contribute to the osteogenesis of BMMSCs through Rab27a-mediated EV secretion, thereby providing a potential cell-free approach for bone regeneration.
Collapse
Affiliation(s)
- Yun Lu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Liru Zhao
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiaqi Mao
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wen Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Wensheng Ma
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China.
| |
Collapse
|