1
|
Chen Cardenas SM, Santhanam P, Morris-Wiseman L, Salvatori R, Hamrahian AH. Perioperative Evaluation and Management of Patients on Glucocorticoids. J Endocr Soc 2022; 7:bvac185. [PMID: 36545644 PMCID: PMC9760550 DOI: 10.1210/jendso/bvac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 12/04/2022] Open
Abstract
Myriad questions regarding perioperative management of patients on glucocorticoids (GCs) continue to be debated including which patients are at risk for adrenal insufficiency (AI), what is the correct dose and duration of supplemental GCs, or are they necessary for everyone? These questions remain partly unanswered due to the heterogeneity and low quality of data, studies with small sample sizes, and the limited number of randomized trials. To date, we know that although all routes of GC administration can result in hypothalamic-pituitary-adrenal (HPA) axis suppression, perioperative adrenal crisis is rare. Correlation between biochemical testing for AI and clinical events is lacking. Some of the current perioperative management recommendations based on daily GC dose and duration of therapy may be difficult to follow in clinical practice. The prospective and retrospective studies consistently report that continuing the daily dose of GCs perioperatively is not associated with a higher risk for adrenal crises in patients with GC-induced AI. Considering that oral GC intake may be unreliable in the early postoperative period, providing the daily GC plus a short course of IV hydrocortisone 25 to 100 mg per day based on the degree of surgical stress seems reasonable. In patients who have stopped GC therapy before surgery, careful assessment of the HPA axis is necessary to avoid an adrenal crisis. In conclusion, our literature review indicates that lower doses and shorter duration of supplemental GCs perioperatively are sufficient to maintain homeostasis. We emphasize the need for well-designed randomized studies on this frequently encountered clinical scenario.
Collapse
Affiliation(s)
- Stanley M Chen Cardenas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Prasanna Santhanam
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lilah Morris-Wiseman
- Division of Endocrine Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Roberto Salvatori
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amir H Hamrahian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Thiebot P, Magny R, Bertolo L, Langrand J, Mimoun M, Houzé P, Labat L. Identification de corticoïdes dans un produit lipolytique vendu sur internet et promu par deux influenceuses. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Weizel A, Schlüsener MP, Dierkes G, Wick A, Ternes TA. Analysis of the aerobic biodegradation of glucocorticoids: Elucidation of the kinetics and transformation reactions. WATER RESEARCH 2020; 174:115561. [PMID: 32087415 DOI: 10.1016/j.watres.2020.115561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 05/23/2023]
Abstract
Glucocorticoids (GCs) are one of the most prescribed pharmaceutical classes worldwide. They have reached the focus as environmental pollutants in the current scientific research, due to their potential risks to aquatic organisms even in the lower ng L-1 range. The objective of this study was to determine the kinetic behavior of selected GCs and to identify their main transformation products (TPs) in lab scaled biodegradation experiments. Therefore, we analyzed the removal of 13 GCs in aerated incubation experiments with activated sludge taken from a German municipal wastewater treatment plant (WWTP) as inoculum. For all steroids, an exponential decrease of the concentrations was observed, which was modelled by pseudo-first order kinetics. Overall, the rate constants kbiol. ranged from 0.07 L gss-1 d-1 (triamcinolone acetonide) to 250 L gss-1 d-1 (prednisolone). These results emphasize the broad variation in the biodegradability and recalcitrance of certain GCs. The selection of the studied GCs enabled a deduction of microbiological stability related to functional groups. Based on the identified TPs, a variety of enzymatically mediated reactions were postulated. Moreover, the identified TPs are characterized by an intact steroid core structure. Thus residual endocrine activity cannot be ruled out. The main observed reactions were regioselective hydrogenation of carbon double-bonds, degradation of the steroid C17 side-chain, ester hydrolysis and oxidative hydroxylation. In total, 41 TPs were tentatively identified and 22 of them were unambiguously confirmed via reference standards. Additionally, 12 TPs were detected in the effluents of municipal WWTPs and, to the best of our knowledge, the occurrence of eight of these TPs has been shown for the first time. These TPs might significantly contribute to the detected residual endocrine activities in the aquatic environments. Therefore, there is a strong need for efficient removal strategies, in particular for persistent steroid hormones with elevated potencies.
Collapse
Affiliation(s)
- Alexander Weizel
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany
| | - Michael P Schlüsener
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany
| | - Georg Dierkes
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany.
| |
Collapse
|
4
|
Trace analysis of corticosteroids (CSs) in environmental waters by liquid chromatography-tandem mass spectrometry. Talanta 2018; 195:830-840. [PMID: 30625625 DOI: 10.1016/j.talanta.2018.11.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
Natural and synthetic corticosteroids (CSs) are a class of steroid hormones which could potentially disturb the corticosteroid signaling pathways in wildlife and humans. In this study, a sensitive and robust analytical method using solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous analysis of sub-ng/L concentrations of 26 CSs in highly complex natural water matrices. The method performance was validated for WWTP influent, effluent, surface water and finished drinking water. Low practical quantification levels (PQLs) were achieved as 0.008-0.16 ng/L in finished drinking water, 0.019-0.50 ng/L in surface water, 0.047-1.5 ng/L in WWTP effluent, and 0.10-3.1 ng/L in WWTP influent, respectively, with the recoveries ranging from 70% to 130%. The cleanup performance and matrix interferences were also evaluated. This method was then applied to the analysis of target CSs in WWTP influent and effluent samples collected from a local WWTP, as well as surface water downstream of the WWTP outfall, detecting an average summed CS concentration of 744 ng/L in influent, 23.4 ng/L in effluent and 10.9 ng/L in surface water. Four synthetic CSs (triamcinolone acetonide, fluocinolone acetonide, clobetasol propionate, and fluticasone propionate) were found poorly removed in the WWTP. The developed method provides a tool to obtain occurrence data of corticosteroids in environmental waters, which will permit assessing their risk to environmental organisms.
Collapse
|
5
|
Collomp K, Arlettaz A, Buisson C, Lecoq AM, Mongongu C. Glucocorticoid administration in athletes: Performance, metabolism and detection. Steroids 2016; 115:193-202. [PMID: 27643452 DOI: 10.1016/j.steroids.2016.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022]
Abstract
It is generally acknowledged in the sporting world that glucocorticoid (GC) use enhances physical performance. This pharmacological class is therefore banned by the World Anti-Doping Agency (WADA) in in-competition samples after systemic but not local (defined as any route other than oral, intravenous, intramuscular or rectal) administration, which thus allows athletes to use GCs for therapeutic purposes. According to the 2016 WADA list, the urine reporting level for all GCs is set at 30ng/ml to distinguish between the authorized and banned routes of administration. The actual data on the ergogenic effects of GC intake are nevertheless fairly recent, with the first study showing improved physical performance with systemic GC administration dating back only to 2007. Moreover, the studies over the last decade coupling ergogenic and metabolic investigations in humans during and after GC intake have shown discrepant results. Similarly, urine discrimination between banned and authorized GC use remains complex, but it seems likely to be improved thanks to new analytical studies and the inclusion of the authorized GC uses (local routes of administration and out-of-competition samples) in the WADA monitoring program. In this review, we first summarize the current knowledge on the ergogenic and metabolic GC effects in humans during various types of exercise. We then present the antidoping legislation and methods of analysis currently used to detect GC abuse and conclude with some practical considerations and perspectives.
Collapse
Affiliation(s)
- Katia Collomp
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France; CIAMS, Université Orléans, 45067 Orléans, France; Département des Analyses, Agence Française de Lutte contre le Dopage, 92290 Chatenay-Malabry, France.
| | - Alexandre Arlettaz
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France; CIAMS, Université Orléans, 45067 Orléans, France
| | - Corinne Buisson
- Département des Analyses, Agence Française de Lutte contre le Dopage, 92290 Chatenay-Malabry, France
| | - Anne-Marie Lecoq
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France; CIAMS, Université Orléans, 45067 Orléans, France
| | - Cynthia Mongongu
- Département des Analyses, Agence Française de Lutte contre le Dopage, 92290 Chatenay-Malabry, France
| |
Collapse
|
6
|
Jia A, Wu S, Daniels KD, Snyder SA. Balancing the Budget: Accounting for Glucocorticoid Bioactivity and Fate during Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2870-80. [PMID: 26840181 DOI: 10.1021/acs.est.5b04893] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Numerous studies have identified the presence and bioactivity of glucocorticoid receptor (GR) active substances in water; however, the identification and activity-balance of GR compounds remained elusive. This study determined the occurrence and attenuation of GR bioactivity and closed the balance by determining those substances responsible. The observed in vitro GR activity ranged from 39 to 155 ng dexamethasone-equivalent/L (ng Dex-EQ/L) in the secondary effluents of four wastewater treatment plants. Monochromatic ultraviolet light of 80 mJ/cm(2) disinfection dose was efficient for GR activity photolysis, whereas chlorination could not appreciably attenuate the observed GR activity. Ozonation was effective only at relatively high dose (ozone/TOC 1:1). Microfiltration membranes were not efficient for GR activity attenuation; however, reverse osmosis removed GR activity to levels below the limits of detection. A high-sensitivity liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was then developed to screen 27 GR agonists. Twelve were identified and quantified in effluents at summed concentrations of 9.6-21.2 ng/L. The summed Dex-EQ of individual compounds based on their measured concentrations was in excellent agreement with the Dex-EQ obtained from bioassay, which demonstrated that the detected glucocorticoids can entirely explain the observed GR bioactivity. Four synthetic glucocorticoids (triamcinolone acetonide, fluocinolone acetonide, clobetasol propionate, and fluticasone propionate) predominantly accounted for GR activity. These data represent the first known publication where a complete activity balance has been determined for GR agonists in an aquatic environment.
Collapse
Affiliation(s)
- Ai Jia
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Shimin Wu
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Kevin D Daniels
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Shane A Snyder
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| |
Collapse
|
7
|
|
8
|
Wetmore BA, Wambaugh JF, Allen B, Ferguson SS, Sochaski MA, Setzer RW, Houck KA, Strope CL, Cantwell K, Judson RS, LeCluyse E, Clewell HJ, Thomas RS, Andersen ME. Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing. Toxicol Sci 2015; 148:121-36. [PMID: 26251325 PMCID: PMC4620046 DOI: 10.1093/toxsci/kfv171] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio (AER) useful for a risk-based ranking strategy. As ToxCast efforts expand (ie, Phase II) beyond food-use pesticides toward a wider chemical domain that lacks exposure and toxicity information, prediction tools become increasingly important. In this study, in vitro hepatic clearance and plasma protein binding were measured to estimate OEDs for a subset of Phase II chemicals. OEDs were compared against high-throughput (HT) exposure predictions generated using probabilistic modeling and Bayesian approaches generated by the U.S. Environmental Protection Agency (EPA) ExpoCast program. This approach incorporated chemical-specific use and national production volume data with biomonitoring data to inform the exposure predictions. This HT exposure modeling approach provided predictions for all Phase II chemicals assessed in this study whereas estimates from regulatory sources were available for only 7% of chemicals. Of the 163 chemicals assessed in this study, 3 or 13 chemicals possessed AERs < 1 or < 100, respectively. Diverse bioactivities across a range of assays and concentrations were also noted across the wider chemical space surveyed. The availability of HT exposure estimation and bioactivity screening tools provides an opportunity to incorporate a risk-based strategy for use in testing prioritization.
Collapse
Affiliation(s)
- Barbara A Wetmore
- *The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709-2137;
| | - John F Wambaugh
- United States Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, Research Triangle Park, North Carolina 27711; and
| | - Brittany Allen
- *The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Stephen S Ferguson
- Life Technologies, ADME/Tox Division of the Primary and Stem Cell Systems Business Unit, Durham, North Carolina 27703
| | - Mark A Sochaski
- *The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709-2137
| | - R Woodrow Setzer
- United States Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, Research Triangle Park, North Carolina 27711; and
| | - Keith A Houck
- United States Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, Research Triangle Park, North Carolina 27711; and
| | - Cory L Strope
- *The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Katherine Cantwell
- *The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Richard S Judson
- United States Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, Research Triangle Park, North Carolina 27711; and
| | - Edward LeCluyse
- *The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Harvey J Clewell
- *The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709-2137
| | - Russell S Thomas
- *The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709-2137; United States Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, Research Triangle Park, North Carolina 27711; and
| | - Melvin E Andersen
- *The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709-2137
| |
Collapse
|
9
|
Matabosch X, Pozo OJ, Pérez-Mañá C, Papaseit E, Marcos J, Segura J, Ventura R. Evaluation of the reporting level to detect triamcinolone acetonide misuse in sports. J Steroid Biochem Mol Biol 2015; 145:94-102. [PMID: 25260353 DOI: 10.1016/j.jsbmb.2014.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/04/2014] [Accepted: 09/21/2014] [Indexed: 11/16/2022]
Abstract
Triamcinolone acetonide (TA) is prohibited in sport competitions using systemic administrations (e.g., intramuscular, IM), and it is allowed by other routes (e.g., intranasal, IN, or topical, TOP). A reporting level of 30 ng/mL is used to discriminate between forbidden and allowed administrations. We examined urinary profiles of TA metabolites after TOP, IN and IM administrations to evaluate the suitability of the current reporting level and to define the best criteria to discriminate between these administrations. TA was administered to healthy volunteers by different routes: a single IM dose (n=2), IN doses for three days (n=6), and TOP doses for five days followed by a single IM dose (n=8). Urine samples were collected at different time intervals and they were analyzed by liquid chromatography-tandem mass spectrometry to measure TA and eight metabolites. After TOP and IN administrations, concentrations of the metabolites were significantly lower (p<0.05) than after IM administrations. Concentrations of TA after IM administration were lower than 30 ng/mL for all volunteers (range 0.7-29.7 ng/mL), and they were lower than 5 ng/mL after multiple IN or TOP doses (0.1-3.6 ng/mL and 0-1.7 ng/mL, respectively). For 6β-hydroxy-TA, the main TA metabolite, greater concentrations were obtained: 10.7-469.1 ng/mL, 2.2-90.6 ng/mL and 0-57.2 ng/mL after IM, IN and TOP administrations, respectively. These results suggest that the current reporting level is not suitable to detect forbidden IM administration of TA. A lower concentration of the parent drug or the use of specific metabolites could discriminate IM from TOP or IN administrations.
Collapse
Affiliation(s)
- Xavier Matabosch
- Bioanalysis Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Oscar J Pozo
- Bioanalysis Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Clara Pérez-Mañá
- Human Pharmacology and Neurosciences Research Group, IMIM, Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Esther Papaseit
- Human Pharmacology and Neurosciences Research Group, IMIM, Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Josep Marcos
- Bioanalysis Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Jordi Segura
- Bioanalysis Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Rosa Ventura
- Bioanalysis Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
10
|
Matabosch X, Pozo OJ, Papaseit E, Farré M, Marcos J, Segura J, Ventura R. Detection and characterization of triamcinolone acetonide metabolites in human urine by liquid chromatography/tandem mass spectrometry after intramuscular administration. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1829-1839. [PMID: 25559453 DOI: 10.1002/rcm.6965] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 06/04/2023]
Abstract
RATIONALE Glucocorticosteroids are prohibited in sports when used by systemic administrations (e.g. intramuscular, IM), whereas they are allowed using other ways of administration. Strategies to discriminate between administrations routes have to be developed by doping control laboratories. For this reason, the metabolism of triamcinolone acetonide (TA), one of the most used glucocorticosteroids, was studied using liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS). METHODS Urine samples obtained after IM administration of TA were analyzed using two sample treatments: (a) hydrolysis with β-glucuronidase enzymes and liquid-liquid extraction under alkaline conditions, and (b) liquid-liquid extraction under acidic conditions. The extracts were analyzed by LC/MS/MS. RESULTS TA, commercially available metabolites (6β-hydroxytriamcinolone acetonide, 6β-OH-TA, and triamcinolone), and their C20-reduced derivatives showed characteristic fragmentation behavior. Besides common product ions and neutral losses for corticosteroids containing fluorine, additional characteristic neutral losses (58 Da, loss of acetone; 44 Da, loss of acetaldehyde) were observed in positive electrospray ionization. Based on that behavior, two complementary approaches were applied to detect TA metabolites: (a) open detection by precursor ion and neutral loss scan methods and (b) targeted detection by selected reaction monitoring methods (SRM) containing theoretical ion transitions of the potential metabolites. Two main compounds, TA and 6β-OH-TA, and nine minor potential metabolites, were detected by open screening methods. Using SRM, two additional metabolites were detected. Some of the metabolites were characterized using reference standards and, for the rest of metabolites, feasible structures were proposed based on mass spectrometric data. CONCLUSIONS Metabolites resulting from hydroxylation in C-6, oxidation of the 11-hydroxyl group, reduction of the Δ(4) double bond and oxidation of the side chain were detected. Some of them have not been previously described. Excretion profiles of the detected metabolites after IM administration are presented.
Collapse
Affiliation(s)
- Xavier Matabosch
- Bioanalysis Research Group, IMIM, Institut Hospital del Mar d'Investigacions Mèdiques, Doctor Aiguader 88, 08003, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Chang CW, Huang TY, Tseng YC, Chang-Chien GP, Lin SF, Hsu MC. Positive doping results caused by the single-dose local injection of triamcinolone acetonide. Forensic Sci Int 2014; 244:1-6. [PMID: 25126738 DOI: 10.1016/j.forsciint.2014.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
Abstract
Triamcinolone acetonide (TA) is classified as an S9 glucocorticoid in the 2014 Prohibited List published by the World Anti-Doping Agency, which caused it to be prohibited in-competition when administered orally, intravenously, intramuscularly or rectally. The Minimum Required Performance Level (MRPL) for the detection and identification of glucocorticoids is 30 ng/mL. Other common local injection routes, such as intraarticular, intratendinous, or intrabursal injection, are not prohibited. The purpose of this study was to analyze the TA and triamcinolone (T) concentrations in urine after a single injection of TA in patients to determine if it would produce a positive result. This study was performed on 40 patients with sports injuries or joint pains. TA was administered locally (doses varied from 12 to 80 mg). Samples were extracted using a solid-phase extraction column, followed by hydrolysis and liquid extraction using diethyl ether. The elution solvents were collected and dried. The dried residue was reconstituted and assayed by performing liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive ionization mode using electrospray ionization and multiple-reaction monitoring as the acquisition mode. The results demonstrated that the concentrations of both TA and T in urine exceeded the MRPL (30 ng/mL) after a single local injection. We obtained positive results for TA in 25 patients, and a positive result for T in one patient. Furthermore, the metabolic situation of TA, a long-acting glucocorticoid, was not an exact linear model. The highest concentrations of TA and T appeared 1-4h after injection. This information could be useful for limiting the misuse of TA by athletes. We suggest that athletes be aware when using TA injections during a competition period and obtain approval for therapeutic use exemption prior to using TA.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Sports Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd., Sanmin, Kaohsiung 807, Taiwan, ROC
| | - Tai-Yuan Huang
- Department of Orphopedic Surgery, Yuan's General Hospital, 162, Cheng-Kung 1st Rd., Lingya, Kaohsiung 802, Taiwan, ROC
| | - Yi-Chun Tseng
- Graduate Institute of Sports Science, National Taiwan Sport University, 250, Wen-Hua 1st Rd., Kweishan, Taoyuan County 333, Taiwan, ROC
| | - Guo-Ping Chang-Chien
- Super Micro Mass Research & Technology Center, Cheng Shiu University, 840, Cheng-Cing Rd., Niaosong Township, Kaohsiung 833, Taiwan, ROC
| | - Su-Fan Lin
- Super Micro Mass Research & Technology Center, Cheng Shiu University, 840, Cheng-Cing Rd., Niaosong Township, Kaohsiung 833, Taiwan, ROC
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd., Sanmin, Kaohsiung 807, Taiwan, ROC.
| |
Collapse
|
12
|
García-Martín E, Canto G, Agúndez JAG. Metabolic considerations of drugs in the treatment of allergic diseases. Expert Opin Drug Metab Toxicol 2013; 9:1437-52. [PMID: 23902458 DOI: 10.1517/17425255.2013.823400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The clinical management of allergic diseases involves a number of drugs, most of which are extensively metabolized. This review aims to analyze the metabolism and the clinical implications of altered metabolism for these drugs. AREAS COVERED The authors present an overview of current knowledge of the metabolism of: antihistamine drugs, glucocorticoids, inhaled β-2 bronchodilators, anticholinergics and other drugs used in allergic diseases, such as cromoglycate, omalizumab, montelukast and epinephrine. Polymorphic drug metabolism is relevant for chlorpheniramine, loratadine and montelukast. Inhibition of drug metabolism is relevant for loratadine, methylprednisolone, fluticasone, mometasone, triamcinolone or prednisolone. Polymorphic pre-systemic metabolism may be relevant to budesonide, fluticasone, beclomethasone, mometasone or salmeterol. The authors also discuss the current information on gene variations according to the 1,000 genomes catalog and other databases. Finally, the authors review the clinical implications of these variations with a particular regard to drugs used in the management of allergic diseases. EXPERT OPINION Most drugs used in allergic diseases are extensively metabolized. Drug interaction or adverse reactions related to altered metabolism are relevant issues that should be considered in the management of allergic diseases. However, much additional research is required before defining pharmacogenomic biomarkers for the management of drugs used in allergic diseases.
Collapse
Affiliation(s)
- Elena García-Martín
- University of Extremadura, Department of Biochemistry & Molecular Biology , Avda. de la Universidad s/n, E-10071, Cáceres , Spain +34927257000 ext 89676 ;
| | | | | |
Collapse
|
13
|
Athanasiadis Y, Tsatsos M, Sharma A, Hossain P. Subconjunctival Triamcinolone Acetonide in the Management of Ocular Inflammatory Disease. J Ocul Pharmacol Ther 2013; 29:516-22. [DOI: 10.1089/jop.2012.0208] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Michael Tsatsos
- NHS Foundation Trust Eye Unit, University Hospital Southampton, Southampton, United Kingdom
| | - Anant Sharma
- Moorfields Eye Hospital NHS Foundation Trust, Bedford, United Kingdom
| | - Parwez Hossain
- NHS Foundation Trust Eye Unit, University Hospital Southampton, Southampton, United Kingdom
| |
Collapse
|
14
|
Saberi P, Phengrasamy T, Nguyen DP. Inhaled corticosteroid use in HIV-positive individuals taking protease inhibitors: a review of pharmacokinetics, case reports and clinical management. HIV Med 2013; 14:519-29. [PMID: 23590676 DOI: 10.1111/hiv.12039] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2013] [Indexed: 11/29/2022]
Abstract
As a consequence of inhibition of the hepatic cytochrome P450 3A4 isozyme, treatment with HIV protease inhibitors can result in significant drug-drug interactions. One noteworthy interaction is between protease inhibitors and inhaled or intranasal corticosteroids. This interaction can result in adrenal insufficiency and iatrogenic Cushing's syndrome (with symptoms such as rapid weight gain, obesity, facial hirsutism and swelling), as well as hypertension, osteoporosis and decreased CD4 cell count. In this paper, we review and unite pharmacokinetic data, case reports and current research regarding this drug-drug interaction in order to suggest options for the clinical management of HIV-positive patients requiring treatment with protease inhibitors and inhaled or intranasal corticosteroids.
Collapse
Affiliation(s)
- P Saberi
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
15
|
Athanasiadis I, de Wit D, Patel AK, Sharma A. Subconjunctival Injection of Triamcinolone Acetonide in the Management of Corneal Graft Rejection and New Vessels. J Clin Pharmacol 2013; 52:607-12. [DOI: 10.1177/0091270011400073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Moore CD, Roberts JK, Orton CR, Murai T, Fidler TP, Reilly CA, Ward RM, Yost GS. Metabolic pathways of inhaled glucocorticoids by the CYP3A enzymes. Drug Metab Dispos 2013; 41:379-89. [PMID: 23143891 PMCID: PMC3558858 DOI: 10.1124/dmd.112.046318] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 11/09/2012] [Indexed: 11/22/2022] Open
Abstract
Asthma is one of the most prevalent diseases in the world, for which the mainstay treatment has been inhaled glucocorticoids (GCs). Despite the widespread use of these drugs, approximately 30% of asthma sufferers exhibit some degree of steroid insensitivity or are refractory to inhaled GCs. One hypothesis to explain this phenomenon is interpatient variability in the clearance of these compounds. The objective of this research is to determine how metabolism of GCs by the CYP3A family of enzymes could affect their effectiveness in asthmatic patients. In this work, the metabolism of four frequently prescribed inhaled GCs, triamcinolone acetonide, flunisolide, budesonide, and fluticasone propionate, by the CYP3A family of enzymes was studied to identify differences in their rates of clearance and to identify their metabolites. Both interenzyme and interdrug variability in rates of metabolism and metabolic fate were observed. CYP3A4 was the most efficient metabolic catalyst for all the compounds, and CYP3A7 had the slowest rates. CYP3A5, which is particularly relevant to GC metabolism in the lungs, was also shown to efficiently metabolize triamcinolone acetonide, budesonide, and fluticasone propionate. In contrast, flunisolide was only metabolized via CYP3A4, with no significant turnover by CYP3A5 or CYP3A7. Common metabolites included 6β-hydroxylation and Δ(6)-dehydrogenation for triamcinolone acetonide, budesonide, and flunisolide. The structure of Δ(6)-flunisolide was unambiguously established by NMR analysis. Metabolism also occurred on the D-ring substituents, including the 21-carboxy metabolites for triamcinolone acetonide and flunisolide. The novel metabolite 21-nortriamcinolone acetonide was also identified by liquid chromatography-mass spectrometry and NMR analysis.
Collapse
Affiliation(s)
- Chad D Moore
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
While angiogenesis is one of the factors associated with the development of CNV due to age-related macular degeneration (AMD), inflammation and oxidative stress also appear to play a role. Treatment of CNV with intravitreal anti-vascular endothelial growth factor monotherapy is currently the standard of care. However, not all patients respond to monotherapy, and combination therapy may target the CNV through multiple mechanisms, thus reducing treatment frequency or improving visual outcome. Photodynamic therapy (with regular or reduced fluence), as well as intravitreal steroids are used in combination with anti-VEGF therapy. This paper reviews the many clinical trials that have been performed utilizing several combinations of double and triple therapy. While combination therapy is biologically justifiable, further study is required to determine correct combinations and dosage.
Collapse
Affiliation(s)
- Steven M Couch
- Mayo Clinic, Department of Ophthalmology, Rochester, MN 55905, USA
| | | |
Collapse
|
18
|
Yilmaz T, Cordero-Coma M, Federici TJ. Pharmacokinetics of triamcinolone acetonide for the treatment of macular edema. Expert Opin Drug Metab Toxicol 2011; 7:1327-35. [PMID: 21790508 DOI: 10.1517/17425255.2011.606215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The use of intravitreal triamcinolone acetonide (TA) for the treatment of various types of macular edema has been widespread, particularly for the last decade. Currently, there is a scant amount of evidence-based literature evaluating the pharmacokinetic profile of TA despite clinical data showing the efficacy of intravitreal TA for multiple forms of macular edema. AREAS COVERED This paper is an extensive review of human and experimental studies published on the pharmacokinetics of TA for the treatment of macular edema. The literature search was conducted via OVID, TRIP Database and EMBASE, up to April 2011. EXPERT OPINION The pharmacokinetic profile of TA is unpredictable and the agent has a time-limited therapeutic action due to its relatively short half-life. This has led to the need for repeated injections. Future research should investigate the pharmacokinetic profiles of TA when administered intravitreally, as well as through alternate routes in more robust studies.
Collapse
Affiliation(s)
- Taygan Yilmaz
- Stony Brook University, Department of Ophthalmology, 33 Research Way, East Setauket, NY 11733, USA.
| | | | | |
Collapse
|
19
|
Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, Aleo MD. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol 2011; 24:1345-410. [PMID: 21702456 DOI: 10.1021/tx200168d] [Citation(s) in RCA: 500] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because of a preconceived notion that eliminating reactive metabolite (RM) formation with new drug candidates could mitigate the risk of idiosyncratic drug toxicity, the potential for RM formation is routinely examined as part of lead optimization efforts in drug discovery. Likewise, avoidance of "structural alerts" is almost a norm in drug design. However, there is a growing concern that the perceived safety hazards associated with structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be over exaggerated. In addition, the multifactorial nature of idiosyncratic toxicity is now well recognized based upon observations that mechanisms other than RM formation (e.g., mitochondrial toxicity and inhibition of bile salt export pump (BSEP)) also can account for certain target organ toxicities. Hence, fundamental questions arise such as: When is a molecule that contains a structural alert (RM positive or negative) a cause for concern? Could the molecule in its parent form exert toxicity? Can a low dose drug candidate truly mitigate metabolism-dependent and -independent idiosyncratic toxicity risks? In an effort to address these questions, we have retrospectively examined 68 drugs (recalled or associated with a black box warning due to idiosyncratic toxicity) and the top 200 drugs (prescription and sales) in the United States in 2009 for trends in physiochemical characteristics, daily doses, presence of structural alerts, evidence for RM formation as well as toxicity mechanism(s) potentially mediated by parent drugs. Collectively, our analysis revealed that a significant proportion (∼78-86%) of drugs associated with toxicity contained structural alerts and evidence indicating that RM formation as a causative factor for toxicity has been presented in 62-69% of these molecules. In several cases, mitochondrial toxicity and BSEP inhibition mediated by parent drugs were also noted as potential causative factors. Most drugs were administered at daily doses exceeding several hundred milligrams. There was no obvious link between idiosyncratic toxicity and physicochemical properties such as molecular weight, lipophilicity, etc. Approximately half of the top 200 drugs for 2009 (prescription and sales) also contained one or more alerts in their chemical architecture, and many were found to be RM-positive. Several instances of BSEP and mitochondrial liabilities were also noted with agents in the top 200 category. However, with relatively few exceptions, the vast majority of these drugs are rarely associated with idiosyncratic toxicity, despite years of patient use. The major differentiating factor appeared to be the daily dose; most of the drugs in the top 200 list are administered at low daily doses. In addition, competing detoxication pathways and/or alternate nonmetabolic clearance routes provided suitable justifications for the safety records of RM-positive drugs in the top 200 category. Thus, while RM elimination may be a useful and pragmatic starting point in mitigating idiosyncratic toxicity risks, our analysis suggests a need for a more integrated screening paradigm for chemical hazard identification in drug discovery. Thus, in addition to a detailed assessment of RM formation potential (in relationship to the overall elimination mechanisms of the compound(s)) for lead compounds, effects on cellular health (e.g., cytotoxicity assays), BSEP inhibition, and mitochondrial toxicity are the recommended suite of assays to characterize compound liabilities. However, the prospective use of such data in compound selection will require further validation of the cellular assays using marketed agents. Until we gain a better understanding of the pathophysiological mechanisms associated with idiosyncratic toxicities, improving pharmacokinetics and intrinsic potency as means of decreasing the dose size and the associated "body burden" of the parent drug and its metabolites will remain an overarching goal in drug discovery.
Collapse
Affiliation(s)
- Antonia F Stepan
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Oliver A, Kertes PJ. The intravitreal use of corticosteroids. EXPERT REVIEW OF OPHTHALMOLOGY 2010. [DOI: 10.1586/eop.10.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Boyce M, Malone ED, Anderson LB, Park S, Godden SM, Jenner F, Trumble TN. Evaluation of diffusion of triamcinolone acetonide from the distal interphalangeal joint into the navicular bursa in horses. Am J Vet Res 2010; 71:169-75. [PMID: 20113224 DOI: 10.2460/ajvr.71.2.169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether triamcinolone acetonide diffuses from the distal interphalangeal joint (DIPJ) to the navicular bursa, diffusion is direct or systemic, and addition of sodium hyaluronan has an effect on diffusion in horses. ANIMALS 11 adult horses without forelimb lameness. PROCEDURES 1 randomly chosen forelimb DIPJ of each horse received an injection of 10 mg of triamcinolone acetonide plus 20 mg of sodium hyaluronan (group 1), and the contralateral forelimb DIPJ received an injection of 10 mg of triamcinolone acetonide plus 2 mL of lactated Ringer's solution (group 2). Synovial fluid samples were taken from both forelimb navicular bursae and 1 hind limb navicular bursa (systemic control group) at 6 hours. Triamcinolone acetonide concentrations in synovial fluid were quantified by use of high-performance liquid chromatography plus tandem mass spectrometry. Data were logarithmically transformed, and contrast analysis was performed on the 3 groups. RESULTS Triamcinolone acetonide was detected in navicular bursal samples in all groups. Groups 1 and 2 had significantly greater concentrations of triamcinolone acetonide than the systemic control group. There was no significant difference between groups 1 and 2. CONCLUSIONS AND CLINICAL RELEVANCE Triamcinolone acetonide diffused directly from the DIPJ into the navicular bursa in clinically normal horses, and diffusion was not affected by addition of hyaluronan. Injection into the DIPJ with triamcinolone acetonide or a triamcinolone acetonide-hyaluronan combination can potentially be used for treatment of navicular syndrome, but further studies are needed to determine whether triamcinolone acetonide diffuses similarly in horses with navicular syndrome.
Collapse
Affiliation(s)
- Mary Boyce
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Peters RJB, van Engelen MC, Touber ME, Georgakopoulus C, Nielen MWF. Searching for in silico predicted metabolites and designer modifications of (cortico)steroids in urine by high-resolution liquid chromatography/time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:2329-2337. [PMID: 19575408 DOI: 10.1002/rcm.4153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glucocorticosteroids are a restricted class of substances and appear on the 'in-competition' prohibited list of the World Anti-Doping Agency (WADA). Analysis of glucocorticosteroids is complicated since they show significant phase 1 and 2 metabolism in the human body and are excreted into urine in concentrations in the microg/L range. Full scan, high-resolution time-of-flight mass spectrometry analysis generates information on all ionisable components in urine, including known and unknown metabolites of steroids and even designer modifications of anabolic steroids. However, evaluation of the data obtained can be difficult and time-consuming because of the need to differentiate between endogenous components and compounds of interest. MetaboLynx, a spectral and chromatographic search program, was modified for the determination of in silico predicted metabolites of glucocorticosteroids and designer modifications of anabolic steroids in human urine. Spiked urine samples were successfully screened for known components in a targeted approach and for unknown species in a non-targeted approach using data filtering to limit potential false-positives. A simplified combined approach of targeted and untargeted screening was used for the detection of metabolites and designer modifications of existing compounds. This approach proved successful and showed its strength in the detection of tetrahydrogestrinone (THG), a designer modification of gestrinone. THG was positively detected in a spiked urine sample and correctly identified as a twofold hydrogenation of gestrinone. The developed screening method can easily be adapted to specific needs and it is envisaged that a similar approach would be amendable to the discovery of metabolites or designer modifications of other compounds of interest.
Collapse
Affiliation(s)
- Ruud J B Peters
- RIKILT - Institute of Food Safety, P.O. Box 230, 6700 AE Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Intraocular sustained-release delivery systems for triamcinolone acetonide. Pharm Res 2009; 26:770-84. [PMID: 19184374 DOI: 10.1007/s11095-008-9812-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 12/11/2008] [Indexed: 02/06/2023]
Abstract
Recently, the use of triamcinolone acetonide (TA) injection has increased dramatically in treatment for several ocular diseases. Among them, macular diseases such as macular edema due to diabetic retinopathy, venous occlusive diseases, ocular inflammation and age-related macular degeneration (AMD) are very common vision threatening disorders and are great challenges to treat. In these types of chronic retinal diseases, repeated intraocular injections of TA are often required which increases the likelihood of complications. In order to achieve sustained-release, maintain therapeutic levels of TA over longer times and reduce frequency of intravitreal injections, researchers are investigating different implantable devices or injectable systems. However, as of yet, there is no sustained-release product for TA available on the commercial market. This review discusses and compares different sustained-release devices or injectable systems that are currently being developed.
Collapse
|
24
|
Couch SM, Bakri SJ. Intravitreal triamcinolone for intraocular inflammation and associated macular edema. Clin Ophthalmol 2009; 3:41-7. [PMID: 19668543 PMCID: PMC2708981 DOI: 10.2147/opth.s4477] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Triamcinolone acetonide (TA) is a corticosteroid that has many uses in the treatment of ocular diseases because of its potent anti-inflammatory and anti-permeability actions. Intraocular inflammation broadly referred to as uveitis can result from several causes, including the immune system and after ophthalmic surgery. One of the most common reasons for vision loss with uveitis is macular edema. TA has been used for many years as an intravitreal injection for the treatment of ocular diseases. Several case control studies have been reported showing the efficacy of TA in the treatment of intraocular inflammation and associated macular edema caused by Behcet's disease, Vogt-Koyanagi-Harada syndrome, sympathetic ophthalmia and white dot syndromes. It has also been shown efficacious in cases of pars planitis and idiopathic posterior uveitis. Some authors have reported its use in postoperative cystoid macular edema. Many of the studies on the use of TA in controlling intraocular inflammation and concomitant macular edema showed its effect to be transient in many patients requiring reinjection. Complications can arise from intravitreal injection of TA including elevated intraocular pressure and cataract. Rarely, it can be associated with infectious and non-infectious endophthalmitis. TA may be useful as an adjuvant in the treatment of uveitis and its associated macular edema, especially in patients resistant or intolerant to standard treatment.
Collapse
Affiliation(s)
| | - Sophie J Bakri
- Correspondence: Sophie J Bakri, 200 First Street SW, Rochester, MN 55905, USA, Email
| |
Collapse
|
25
|
Slavine NV, Antich PP. Practical method for radioactivity distribution analysis in small-animal PET cancer studies. Appl Radiat Isot 2008; 66:1861-9. [PMID: 18667322 PMCID: PMC2644068 DOI: 10.1016/j.apradiso.2008.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 03/12/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
We present a practical method for radioactivity distribution analysis in small-animal tumors and organs using positron emission tomography imaging with a calibrated source of known activity and size in the field of view. We reconstruct the imaged mouse together with a source under the same conditions, using an iterative method, Maximum likelihood expectation-maximization with system modeling, capable of delivering high-resolution images. Corrections for the ratios of geometrical efficiencies, radioisotope decay in time and photon attenuation are included in the algorithm. We demonstrate reconstruction results for the amount of radioactivity within the scanned mouse in a sample study of osteolytic and osteoblastic bone metastasis from prostate cancer xenografts. Data acquisition was performed on the small-animal PET system, which was tested with different radioactive sources, phantoms and animals to achieve high sensitivity and spatial resolution. Our method uses high-resolution images to determine the volume of organ or tumor and the amount of their radioactivity has the possibility of saving time, effort and the necessity to sacrifice animals. This method has utility for prognosis and quantitative analysis in small-animal cancer studies, and will enhance the assessment of characteristics of tumor growth, identifying metastases, and potentially determining the effectiveness of cancer treatment. The possible application for this technique could be useful for the organ radioactivity dosimetry studies.
Collapse
Affiliation(s)
- Nikolai V Slavine
- Department of Radiology, Advanced Radiological Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390-9058, USA.
| | | |
Collapse
|
26
|
Roffey SJ, Obach RS, Gedge JI, Smith DA. What is the Objective of the Mass Balance Study? A Retrospective Analysis of Data in Animal and Human Excretion Studies Employing Radiolabeled Drugs. Drug Metab Rev 2008; 39:17-43. [PMID: 17364879 DOI: 10.1080/03602530600952172] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mass balance excretion studies in laboratory animals and humans using radiolabeled compounds represent a standard part of the development process for new drugs. From these studies, the total fate of drug-related material is obtained: mass balance, routes of excretion, and, with additional analyses, metabolic pathways. However, rarely does the mass balance in radiolabeled excretion studies truly achieve 100% recovery. Many definitions of cutoff criteria for mass balance that identify acceptable versus unacceptable recovery have been presented as ad hoc statements without a strong rationale. To address this, a retrospective analysis was undertaken to explore the overall performance of mass balance studies in both laboratory animal species and humans using data for 27 proprietary compounds within Pfizer and extensive review of published studies. The review has examined variation in recovery and the question of whether low recovery was a cause for concern in terms of drug safety. Overall, mean recovery was greater in rats and dogs than in humans. When the circulating half-life of total radioactivity is greater than 50 h, the recovery tends to be lower. Excretion data from the literature were queried as to whether drugs linked with toxicities associated with sequestration in tissues or covalent binding exhibit low mass balance. This was not the case, unless the sequestration led to a long elimination half-life of drug-related material. In the vast majority of cases, sequestration or concentration of drug-related material in an organ or tissue was without deleterious effect and, in some cases, was related to the pharmacological mechanism of action. Overall, from these data, recovery of radiolabel would normally be equal to or greater than 90%, 85%, and 80% in rat, dog, and human, respectively. Since several technical limitations can underlie a lack of mass balance and since mass balance data are not sensitive indicators of the potential for toxicity arising via tissue sequestration, absolute recovery in humans should not be used as a major decision criteria as to whether a radiolabeled study has met its objectives. Instead, the study should be seen as an integral part of drug development answering four principal questions: 1) Is the proposed clearance mechanism sufficiently supported by the identities of the drug-related materials in excreta, so as to provide a complete understanding of clearance and potential contributors to interpatient variability and drug-drug interactions? 2) What are the drug-related entities present in circulation that are the active principals contributing to primary and secondary pharmacology? 3) Are there findings (low extraction recovery of radiolabel from plasma, metabolite structures indicative of chemically reactive intermediates) that suggest potential safety issues requiring further risk assessment? 4) Do questions 2 and 3 have appropriate preclinical support in terms of pharmacology, safety pharmacology, and toxicology? Only if one or more of these four questions remain unanswered should additional mass balance studies be considered.
Collapse
Affiliation(s)
- Sarah J Roffey
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Sandwich, Kent, UK
| | | | | | | |
Collapse
|
27
|
Abstract
Triamcinolone acetonide has been effectively used in ocular therapeutics for over 50 years. Its use has increased dramatically in recent years for periocular and intraocular treatment of retinal vasculature disease and uveitis. This comprehensive review discusses the pharmacokinetics of triamcinolone acetonide and summarizes its uses in a number of diseases, both intraocular and extraocular. It discusses side effects and their management. Finally, it discusses the controversy over its use.
Collapse
Affiliation(s)
- C M Jermak
- Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | |
Collapse
|
28
|
Rojas C, Nagaraja NV, Webb AI, Derendorf H. Microdialysis of triamcinolone acetonide in rat muscle. J Pharm Sci 2003; 92:394-7. [PMID: 12532388 DOI: 10.1002/jps.10284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The objective of this study was to compare plasma and muscle concentrations of triamcinolone acetonide (TA) in the rat by microdialysis. Microdialysis experiments were carried out at steady state in rats after an initial I.V. bolus 50 mg/kg of the phosphate ester of TA (TAP) followed by 23 mg/kg/h infusion. In vivo recovery was calculated by retrodialysis. The concentration determined at steady state in microdialysate, corrected for recovery, was 2.73 +/- 0.42 microg/mL compared to 21.9 +/- 2.3 microg/mL in plasma. The pharmacokinetics of TA in plasma was described by an open two-compartment model with a terminal half-life of 2.7 h. The clearance of TA in rats determined by compartmental analysis was 0.94 L/h/kg. The measured microdialysate levels of TA in muscle, corrected for recovery, were comparable to the predicted free drug levels in the peripheral compartment. Protein binding in rat plasma, measured by ultrafiltration, was 90.1%. The microdialysis in vivo recovery in muscle was similar to the in vitro recovery under stirred conditions. The results show the applicability of microdialysis to measure free tissue concentrations of TA in rats.
Collapse
Affiliation(s)
- Cioli Rojas
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
29
|
Garner RC, Goris I, Laenen AAE, Vanhoutte E, Meuldermans W, Gregory S, Garner JV, Leong D, Whattam M, Calam A, Snel CAW. Evaluation of accelerator mass spectrometry in a human mass balance and pharmacokinetic study-experience with 14C-labeled (R)-6-[amino(4- chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1- methyl-2(1H)-quinolinone (R115777), a farnesyl transferase inhibitor. Drug Metab Dispos 2002; 30:823-30. [PMID: 12065441 DOI: 10.1124/dmd.30.7.823] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accelerator mass spectrometry (AMS) has been used in a human mass balance and metabolism study to analyze samples taken from four healthy male adult subjects administered nanoCurie doses of the farnesyl transferase inhibitor 14C-labeled (R)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone ([14C]R115777). Plasma, urine, and feces samples were collected at fixed timepoints after oral administration of 50 mg [14C]R115777 (25.4 Bq/mg or 687 pCi/mg i.e., equivalent to 76.257 x 10(3) dpm) per subject. AMS analysis showed that drug-related (14)C was present in the plasma samples with C(max) values ranging from 1.6055 to 2.9074 dpm/ml (1.0525-1.9047 microg/ml) at t(max) = 2 to 3 h. The C(max) values for acetonitrile extracts of plasma samples ranged from 0.3724 to 0.7490 dpm/ml in the four male subjects. Drug-related 14C was eliminated from the body both in the urine and the feces, with a mean total recovery of 79.8 +/- 12.9% in the feces and 13.7 +/- 6.2% in the urine. The majority of drug-related radioactivity in urine and feces was excreted within the first 48 h. High-performance liquid chromatography (HPLC)-AMS profiles were generated from radioactive parent drug plus metabolites from pooled diluted urine, plasma, and methanolic feces extracts and matched to retention times of synthetic reference substances, postulated as metabolites. All HPLC separations used no more than 5 dpm injected on-column. The radioactive metabolite profiles obtained compared well with those obtained using liquid chromatography/tandem mass spectometry. This study demonstrates the use of AMS in a human phase I study in which the administered radioactive dose was at least 1000-fold lower than that used for conventional radioactive studies.
Collapse
|