1
|
Li CR, Deng YL, Miao Y, Zhang M, Zeng JY, Liu XY, Wu Y, Li YJ, Liu AX, Zhu JQ, Liu C, Zeng Q. Exposures to drinking water disinfection byproducts and kidney function in Chinese women. ENVIRONMENTAL RESEARCH 2024; 244:117925. [PMID: 38103773 DOI: 10.1016/j.envres.2023.117925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Disinfection byproducts (DBPs), the ubiquitous contaminants in drinking water, have been shown to impair renal function in experimental studies. However, epidemiological evidence is sparse. OBJECTIVE To investigate exposures to DBPs in associations with renal function among women. METHODS A total of 920 women from December 2018 to January 2020 were abstracted from the Tongji Reproductive and Environmental (TREE) Study, an ongoing cohort study in Wuhan, China. Urine samples were gathered at baseline recruitment and analyzed for dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) as biomarkers of DBP exposures. Serum uric acid (UA), creatinine, and estimated glomerular filtration rate (eGFR) were measured as indicators of renal function. Multivariate linear regression and restricted cubic spline (RCS) models were conducted to assess urinary DCAA and TCAA concentrations in associations with renal function indicators. Stratified analyses by age and body mass index (BMI) were also performed. RESULTS We found null evidence of urinary TCAA in associations with renal function indicators. However, elevated urinary DCAA tertiles were related to decreased eGFR (β = -1.78%, 95% CI: 3.21%, -0.36%, comparing the upper vs. lower tertile; P for trend = 0.01). This inverse association still existed when urinary DCAA concentration was treated as a continuous variable, and the dose-response relationship was linear based on the RCS model (P for overall association = 0.002 and P for non-linear associations = 0.44). In the stratified analyses, we found an association of urinary DCAA concentration with decreased UA level among women <30 years but an association with increased UA level among women ≥30 years (P for interaction = 0.04). CONCLUSION Urinary DCAA but not TCAA was associated with impaired renal function among women undergoing assisted reproductive technology.
Collapse
Affiliation(s)
- Cheng-Ru Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Ying Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang-Juan Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - A-Xue Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jin-Qin Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
2
|
Stacpoole PW. Clinical physiology and pharmacology of GSTZ1/MAAI. Biochem Pharmacol 2023; 217:115818. [PMID: 37742772 DOI: 10.1016/j.bcp.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Herein I summarize the physiological chemistry and pharmacology of the bifunctional enzyme glutathione transferase zeta 1 (GSTZ1)/ maleylacetoacetate isomerase (MAAI) relevant to human physiology, drug metabolism and disease. MAAI is integral to the catabolism of the amino acids phenylalanine and tyrosine. Genetic or pharmacological inhibition of MAAI can be pathological in animals. However, to date, no clinical disease consequences are unequivocally attributable to inborn errors of this enzyme. MAAI is identical to the zeta 1 family isoform of GST, which biotransforms the investigational drug dichloroacetate (DCA) to the endogenous compound glyoxylate. DCA is a mechanism-based inhibitor of GSTZ1 that significantly reduces its rate of metabolism and increases accumulation of potentially harmful tyrosine intermediates and of the heme precursor δ-aminolevulinic acid (δ-ALA). GSTZ1 is most abundant in rodent and human liver, with its concentration several fold higher in cytoplasm than in mitochondria. Its activity and protein expression are dependent on the age of the host and the intracellular level of chloride ions. Gene association studies have linked GSTZ1 or its protein product to various physiological traits and pathologies. Haplotype variations in GSTZ1 influence the rate of DCA metabolism, enabling a genotyping strategy to allow potentially safe, precision-based drug dosing in clinical trials.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Departments of Medicine and Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32601, USA.
| |
Collapse
|
3
|
Squirewell EJ, Smeltz MG, Rowland-Faux L, Horne LP, Stacpoole PW, James MO. Effects of Multiple Doses of Dichloroacetate on GSTZ1 Expression and Activity in Liver and Extrahepatic Tissues of Young and Adult Rats. Drug Metab Dispos 2020; 48:1217-1223. [PMID: 32873593 PMCID: PMC7589944 DOI: 10.1124/dmd.120.000142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Glutathione transferase zeta 1 (GSTZ1), expressed in liver and several extrahepatic tissues, catalyzes dechlorination of dichloroacetate (DCA) to glyoxylate. DCA inactivates GSTZ1, leading to autoinhibition of its metabolism. DCA is an investigational drug for treating several congenital and acquired disorders of mitochondrial energy metabolism, including cancer. The main adverse effect of DCA, reversible peripheral neuropathy, is more common in adults treated long-term than in children, who metabolize DCA more quickly after multiple doses. One dose of DCA to Sprague Dawley rats reduced GSTZ1 expression and activity more in liver than in extrahepatic tissues; however, the effects of multiple doses of DCA that mimic its therapeutic use have not been studied. Here, we examined the expression and activity of GSTZ1 in cytosol and mitochondria of liver, kidney, heart, and brain 24 hours after completion of 8-day oral dosing of 100 mg/kg per day sodium DCA to juvenile and adult Sprague Dawley rats. Activity was measured with DCA and with 1,2-epoxy-3-(4-nitrophenoxy)propane (EPNPP), reported to be a GSTZ1-selective substrate. In DCA-treated rats, liver retained higher expression and activity of GSTZ1 with DCA than other tissues, irrespective of rodent age. DCA-treated juvenile rats retained more GSTZ1 activity with DCA than adults. Consistent with this finding, there was less measurable DCA in tissues of juvenile than adult rats. DCA-treated rats retained activity with EPNPP, despite losing over 98% of GSTZ1 protein. These data provide insight into the differences between children and adults in DCA elimination under a therapeutic regimen and confirm that the liver contributes more to DCA metabolism than other tissues. SIGNIFICANCE STATEMENT: Dichloroacetate (DCA) is one of few drugs exhibiting higher clearance from children than adults, after repeated doses, for reasons that are unclear. We hypothesized that juveniles retain more glutathione transferase zeta 1 (GSTZ1) than adults in tissues after multiple DCA doses and found this was the case for liver and kidney, with rat as a model to assess GSTZ1 protein expression and activity with DCA. Although 1,2-epoxy-3-(4-nitrophenoxy)propane was reported to be a selective GSTZ1 substrate, its activity was not reduced in concert with GSTZ1 protein.
Collapse
Affiliation(s)
- Edwin J Squirewell
- Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
| | - Marci G Smeltz
- Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
| | - Laura Rowland-Faux
- Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
| | - Lloyd P Horne
- Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
| | - Peter W Stacpoole
- Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
| | - Margaret O James
- Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
| |
Collapse
|
4
|
Jahn SC, Smeltz MG, Hu Z, Rowland-Faux L, Zhong G, Lorenzo RJ, Cisneros KV, Stacpoole PW, James MO. Regulation of dichloroacetate biotransformation in rat liver and extrahepatic tissues by GSTZ1 expression and chloride concentration. Biochem Pharmacol 2018; 152:236-243. [PMID: 29626439 DOI: 10.1016/j.bcp.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/02/2018] [Indexed: 01/14/2023]
Abstract
Biotransformation of dichloroacetate (DCA) to glyoxylate by hepatic glutathione transferase zeta 1 (GSTZ1) is considered the principal determinant of the rate of plasma clearance of the drug. However, several other organismal and subcellular factors are also known to influence DCA metabolism. We utilized a female rat model to study these poorly understood processes. Rats aged 4 weeks (young) and 42-52 weeks (adult) were used to model children and adults, respectively. Hepatic chloride concentrations, which influence the rate of GSTZ1 inactivation by DCA, were lower in rat than in human tissues and rats did not show the age dependence previously seen in humans. We found GSTZ1 expression and activity in rat brain, heart, and kidney cell-free homogenates that were age-dependent. GSTZ1 expression in brain was higher in young rats than adult rats, whereas cardiac and renal GSTZ1 expression levels were higher in adult than young rats. GSTZ1 activity with DCA could not be measured accurately in kidney cell-free homogenates due to rapid depletion of glutathione by γ-glutamyl transpeptidase. Following oral administration of DCA, 100 mg/kg, to rats, GSTZ1 expression and activity were reduced in all rat tissues, but chloride concentrations were not affected. Together, these data extend our understanding of factors that determine the in vivo kinetics of DCA.
Collapse
Affiliation(s)
- Stephan C Jahn
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Marci G Smeltz
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Zhiwei Hu
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Laura Rowland-Faux
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Guo Zhong
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Ryan J Lorenzo
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Katherine V Cisneros
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Peter W Stacpoole
- Department of Medicine, University of Florida, Gainesville, FL 32610, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
5
|
A Mechanism-Based Pharmacokinetic Enzyme Turnover Model for Dichloroacetic Acid Autoinhibition in Rats. J Pharm Sci 2017; 106:1396-1404. [PMID: 28163135 DOI: 10.1016/j.xphs.2017.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/18/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022]
Abstract
Dichloroacetic acid (DCA), a halogenated organic acid, is a pyruvate dehydrogenase kinase inhibitor that has been used to treat congenital or acquired lactic acidosis and is currently in early-phase clinical trials for cancer treatment. DCA was found to inhibit its own metabolism by irreversibly inactivating glutathione transferase zeta 1 (GSTZ1-1), resulting in nonlinear kinetics and abnormally high accumulation ratio after repeated dosing. In this analysis, a semi-mechanistic pharmacokinetic enzyme turnover model was developed for the first time to capture DCA autoinhibition, gastrointestinal region-dependent absorption, and time-dependent change in bioavailability in rats. The maximum rate constant for DCA-induced GSTZ1-1 inactivation is estimated to be 0.96/h, which is 110 times that of the rate constant for GSTZ1-1 natural degradation (0.00875/h). The model-predicted DCA concentration that corresponds to 50% of maximum enzyme inhibition (EC50) is 4.32 mg/L. The constructed pharmacokinetic enzyme turnover model, when applied to human data, could be used to predict the accumulation of DCA after repeated oral dosing, guide selection of dosing regimens in clinical studies, and facilitate clinical development of DCA.
Collapse
|
6
|
Garon EB, Christofk HR, Hosmer W, Britten CD, Bahng A, Crabtree MJ, Hong CS, Kamranpour N, Pitts S, Kabbinavar F, Patel C, von Euw E, Black A, Michelakis ED, Dubinett SM, Slamon DJ. Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer. J Cancer Res Clin Oncol 2014; 140:443-52. [PMID: 24442098 DOI: 10.1007/s00432-014-1583-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Dichloroacetate (DCA) is a highly bioavailable small molecule that inhibits pyruvate dehydrogenase kinase, promoting glucose oxidation and reversing the glycolytic phenotype in preclinical cancer studies. We designed this open-label phase II trial to determine the response rate, safety, and tolerability of oral DCA in patients with metastatic breast cancer and advanced stage non-small cell lung cancer (NSCLC). MATERIALS AND METHODS This trial was conducted with DCA 6.25 mg/kg orally twice daily in previously treated stage IIIB/IV NSCLC or stage IV breast cancer. Growth inhibition by DCA was also evaluated in a panel of 54 NSCLC cell lines with and without cytotoxic chemotherapeutics (cisplatin and docetaxel) in normoxic and hypoxic conditions. RESULTS AND CONCLUSIONS Under normoxic conditions in vitro, single-agent IC50 was >2 mM for all evaluated cell lines. Synergy with cisplatin was seen in some cell lines under hypoxic conditions. In the clinical trial, after seven patients were enrolled, the study was closed based on safety concerns. The only breast cancer patient had stable disease after 8 weeks, quickly followed by progression in the brain. Two patients withdrew consent within a week of enrollment. Two patients had disease progression prior to the first scheduled scans. Within 1 week of initiating DCA, one patient died suddenly of unknown cause and one experienced a fatal pulmonary embolism. We conclude that patients with previously treated advanced NSCLC did not benefit from oral DCA. In the absence of a larger controlled trial, firm conclusions regarding the association between these adverse events and DCA are unclear. Further development of DCA should be in patients with longer life expectancy, in whom sustained therapeutic levels can be achieved, and potentially in combination with cisplatin.
Collapse
Affiliation(s)
- Edward B Garon
- Division of Hematology/Oncology, Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Stacpoole PW. The dichloroacetate dilemma: environmental hazard versus therapeutic goldmine--both or neither? ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:155-8. [PMID: 20920954 PMCID: PMC3040600 DOI: 10.1289/ehp.1002554] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/04/2010] [Indexed: 05/23/2023]
Abstract
BACKGROUND Dichloroacetate (DCA) is known to environmental scientists as a by-product of water chlorination and as a metabolite of industrial solvents, including Superfund chemicals. In contrast, DCA is studied by clinical investigators for its therapeutic potential in several life-threatening conditions, including genetic mitochondrial diseases, pulmonary arterial hypertension, and cancer. Thus, DCA holds an almost unique position at the interface between environmental science and allopathic medicine. OBJECTIVE I critically reviewed laboratory and clinical pharmacological research on DCA to address questions about the current and future status of DCA in relation to human health. DISCUSSION Recent information on the clinical toxicogenetics of DCA is interpreted particularly in light of its use as an investigational drug. Adverse effects from chronic DCA exposure have been identified in several target organs in animals. However, in humans, toxicity has so far been limited to reversible effects on the nervous system and liver. DCA is primarily biotransformed to glyoxylate by the bifunctional enzyme glutathione transferase zeta1 and maleylacetoacetate isomerase (GSTz1/MAAI), which also catalyzes the penultimate step in the phenylalanine and tyrosine catabolic pathway. DCA is a suicide inhibitor of GSTz1/MAAI, which can result in delayed plasma clearance of DCA and the accumulation of potentially toxic tyrosine intermediates. Age and GSTz1/MAAI haplotype can markedly affect the toxicokinetics of DCA in humans and rodents. CONCLUSIONS I have defined new potential avenues of research that focus on discrete human populations that may be at increased health risk or that may receive increased health benefit from chronic exposure to DCA at both environmentally and clinically relevant concentrations.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine, Division of Endocrinology and Metabolism, College of Medicine, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
8
|
Non-Hodgkin's Lymphoma Reversal with Dichloroacetate. JOURNAL OF ONCOLOGY 2010; 2010. [PMID: 20886020 PMCID: PMC2945664 DOI: 10.1155/2010/414726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 07/23/2010] [Indexed: 02/06/2023]
Abstract
In June 2007, a 48-year-old male patient, diagnosed with Stage 4 Non-Hodgkin's Follicular Lymphoma (NHL), was treated for 3 months with conventional chemotherapy resulting in a complete remission. Almost one year later tumors returned in the nasopharynx and neck lymph glands. Refusing all suggested chemotherapies, the patient began self-administering dichloroacetate (DCA) 900 mg daily with a PET scan showing complete remission four months later. Since his last PET scan, May, 2009, he remains tumor-free from continuous DCA usage.
Collapse
|
9
|
Shroads AL, Guo X, Dixit V, Liu HP, James MO, Stacpoole PW. Age-dependent kinetics and metabolism of dichloroacetate: possible relevance to toxicity. J Pharmacol Exp Ther 2008; 324:1163-71. [PMID: 18096758 PMCID: PMC2613565 DOI: 10.1124/jpet.107.134593] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dichloroacetate (DCA) is an investigational drug for certain metabolic diseases. It is biotransformed principally by the zeta-1 family isoform of glutathione transferase (GSTz1), also known as maleylacetoacetate isomerase (MAAI), which catalyzes the penultimate step in tyrosine catabolism. DCA causes a reversible peripheral neuropathy in several species, including humans. However, recent clinical trials indicate that adults are considerably more susceptible to this adverse effect than children. We evaluated the kinetics and biotransformation of DCA and its effects on tyrosine metabolism in nine patients treated for 6 months with 25 mg/kg/day and in rats treated for 5 days with 50 mg/kg/day. We also measured the activity and expression of hepatic GSTz1/MAAI. Chronic administration of DCA causes a striking age-dependent decrease in its plasma clearance and an increase in its plasma half-life in patients and rats. Urinary excretion of unchanged DCA in rats increases with age, whereas oxalate, an end product of DCA metabolism, shows the opposite trend. Low concentrations of monochloroacetate (MCA), which is known to be neurotoxic, increase as a function of age in the urine of dosed rats. MCA was detectable in plasma only of older animals. Hepatic GSTz1/MAAI-specific activity was inhibited equally by DCA treatment among all age groups, whereas plasma and urinary levels of maleylacetone, a natural substrate for this enzyme, increased with age. We conclude that age is an important variable in the in vivo metabolism and elimination of DCA and that it may account, in part, for the neurotoxicity of this compound in humans and other species.
Collapse
Affiliation(s)
- Albert L Shroads
- Departments of Medicine, University of Florida Colleges of Medicine and Pharmacy, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
10
|
Li T, Schultz I, Keys DA, Campbell JL, Fisher JW. Quantitative evaluation of dichloroacetic acid kinetics in human--a physiologically based pharmacokinetic modeling investigation. Toxicology 2007; 245:35-48. [PMID: 18242812 DOI: 10.1016/j.tox.2007.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022]
Abstract
Dichloroacetic acid is a common disinfection by-product in surface waters and is a probable minor metabolite of trichloroethylene. Dichloroacetic acid (DCA) liver carcinogenicity has been demonstrated in rodents but epidemiological evidence in humans is not available. High doses of DCA ( approximately 50mg/kg) are used clinically to treat metabolic acidosis. Biotransformation of DCA by glutathione transferase zeta (GSTzeta) in the liver is the major elimination pathway in humans. GSTzeta is also inactivated by DCA, leading to slower systemic clearance and nonlinear pharmacokinetics after multiple doses. A physiologically based pharmacokinetic (PBPK) model was developed to quantitatively describe DCA biotransformation and kinetics in humans administered DCA by intravenous infusion and oral ingestion. GSTzeta metabolism was described using a Michaelis-Menten equation coupled with rate constants to account for normal GSTzeta synthesis, degradation and irreversible covalent binding and inhibition by the glutathione-bound-DCA intermediate. With some departures between observation and model prediction, the human DCA PBPK model adequately predicted the DCA plasma kinetics over a 20,000-fold range in administered doses. Apparent inhibition of GSTzeta mediated metabolism of DCA was minimal for low doses of DCA (microg/kg day), but was significant for therapeutic doses of DCA. Plasma protein binding of DCA was assumed to be an important factor influencing the kinetics of low doses of DCA (microg/kg day). Polymorphisms of GSTzeta may help explain inter-individual variability in DCA plasma kinetics and warrants evaluation. In conclusion, using a previously published rodent DCA PBPK model (Keys, D.A., Schultz, I.R., Mahle, D.A., Fisher, J.W., 2004. A quantitative description of suicide inhibition of dichloroacetic acid in rats and mice. Toxicol. Sci. 82, 381-393) and this human DCA PBPK model, human equivalent doses (HEDs) were calculated for a 10% increase in mice hepatic liver cancer (2.1mg/kg day). The HEDs for the dosimetrics, area-under-the-concentration-curve (AUC) for total and free DCA in plasma, AUC of DCA in liver and amount of DCA metabolized per day were 0.02, 0.1, 0.1 and 1.0mg/kg day, respectively. Research on the mechanism of action of DCA and the relevance of mouse liver cancer is needed to better understand which dosimetric may be appropriate for extrapolation from animal studies to human.
Collapse
Affiliation(s)
- Ting Li
- University of Georgia, Department of Pharmaceutical and Biomedical Sciences, R.C. Wilson Pharmacy Building, Athens, GA 30602-2351, United States
| | | | | | | | | |
Collapse
|
11
|
Jia M, Coats B, Chadha M, Frentzen B, Perez-Rodriguez J, Chadik PA, Yost RA, Henderson GN, Stacpoole PW. Human kinetics of orally and intravenously administered low-dose 1,2-(13)C-dichloroacetate. J Clin Pharmacol 2007; 46:1449-59. [PMID: 17101744 DOI: 10.1177/0091270006292627] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dichloroacetate (DCA) is a putative environmental hazard, owing to its ubiquitous presence in the biosphere and its association with animal and human toxicity. We sought to determine the kinetics of environmentally relevant concentrations of 1,2-(13)C-DCA administered to healthy adults. Subjects received an oral or intravenous dose of 2.5 microg/kg of 1,2-(13)C-DCA. Plasma and urine concentrations of 1,2-(13)C-DCA were measured by a modified gas chromatography-tandem mass spectrometry method. 1,2-(13)C-DCA kinetics was determined by modeling using WinNonlin 4.1 software. Plasma concentrations of 1,2-(13)C-DCA peaked 10 minutes and 30 minutes after intravenous or oral administration, respectively. Plasma kinetic parameters varied as a function of dose and duration. Very little unchanged 1,2-(13)C-DCA was excreted in urine. Trace amounts of DCA alter its own kinetics after short-term exposure. These findings have important implications for interpreting the impact of this xenobiotic on human health.
Collapse
Affiliation(s)
- Minghong Jia
- General Clinical Research Center, University of Florida, 1600 Archer Road, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zolodz MD, Jia M, Liu H, Henderson GN, Stacpoole PW. A GC–MS/MS method for the quantitative analysis of low levels of the tyrosine metabolites maleylacetone, succinylacetone, and the tyrosine metabolism inhibitor dichloroacetate in biological fluids and tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 837:125-32. [PMID: 16713404 DOI: 10.1016/j.jchromb.2006.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/12/2006] [Accepted: 04/18/2006] [Indexed: 11/16/2022]
Abstract
We developed a sensitive method to quantitate the tyrosine metabolites maleylacetone (MA) and succinylacetone (SA) and the tyrosine metabolism inhibitor dichloroacetate (DCA) in biological specimens. Accumulation of these metabolites may be responsible for the toxicity observed when exposed to DCA. Detection limits of previous methods are 200 ng/mL (1.2 pmol/microL) (MA) and 2.6 microg/mL (16.5 pmol/microL) (SA) but the metabolites are likely present in lower levels in biological specimens. To increase sensitivity, analytes were extracted from liver, urine, plasma and cultured nerve cells before and after dosing with DCA, derivatized to their pentafluorobenzyl esters, and analyzed via GC-MS/MS.
Collapse
Affiliation(s)
- Melissa D Zolodz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|