1
|
Segev G, Cortellini S, Foster JD, Francey T, Langston C, Londoño L, Schweighauser A, Jepson RE. International Renal Interest Society best practice consensus guidelines for the diagnosis and management of acute kidney injury in cats and dogs. Vet J 2024; 305:106068. [PMID: 38325516 DOI: 10.1016/j.tvjl.2024.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/10/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Acute kidney injury (AKI) is defined as an injury to the renal parenchyma, with or without a decrease in kidney function, as reflected by accumulation of uremic toxins or altered urine production (i.e., increased or decreased). AKI might result from any of several factors, including ischemia, inflammation, nephrotoxins, and infectious diseases. AKI can be community- or hospital-acquired. The latter was not previously considered a common cause for AKI in animals; however, recent evidence suggests that the prevalence of hospital-acquired AKI is increasing in veterinary medicine. This is likely due to a combination of increased recognition and awareness of AKI, as well as increased treatment intensity (e.g., ventilation and prolonged hospitalization) in some veterinary patients and increased management of geriatric veterinary patients with multiple comorbidities. Advancements in the management of AKI, including the increased availability of renal replacement therapies, have been made; however, the overall mortality of animals with AKI remains high. Despite the high prevalence of AKI and the high mortality rate, the body of evidence regarding the diagnosis and the management of AKI in veterinary medicine is very limited. Consequently, the International Renal Interest Society (IRIS) constructed a working group to provide guidelines for animals with AKI. Recommendations are based on the available literature and the clinical experience of the members of the working group and reflect consensus of opinion. Fifty statements were generated and were voted on in all aspects of AKI and explanatory text can be found either before or after each statement.
Collapse
Affiliation(s)
- Gilad Segev
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Israel.
| | - Stefano Cortellini
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Jonathan D Foster
- Department of Nephrology and Urology, Friendship Hospital for Animals, Washington DC, USA
| | - Thierry Francey
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
| | - Catherine Langston
- Veterinary Clinical Science, The Ohio State University, Columbus, OH, USA
| | - Leonel Londoño
- Department of Critical Care, Capital Veterinary Specialists, Jacksonville, FL, USA
| | - Ariane Schweighauser
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
| | - Rosanne E Jepson
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| |
Collapse
|
2
|
Principi N, Petropulacos K, Esposito S. Impact of Pharmacogenomics in Clinical Practice. Pharmaceuticals (Basel) 2023; 16:1596. [PMID: 38004461 PMCID: PMC10675377 DOI: 10.3390/ph16111596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Polymorphisms of genes encoding drug metabolizing enzymes and transporters can significantly modify pharmacokinetics, and this can be associated with significant differences in drug efficacy, safety, and tolerability. Moreover, genetic variants of some components of the immune system can explain clinically relevant drug-related adverse events. However, the implementation of drug dose individualization based on pharmacogenomics remains scarce. In this narrative review, the impact of genetic variations on the disposition, safety, and tolerability of the most commonly prescribed drugs is reported. Moreover, reasons for poor implementation of pharmacogenomics in everyday clinical settings are discussed. The literature analysis showed that knowledge of how genetic variations can modify the effectiveness, safety, and tolerability of a drug can lead to the adjustment of usually recommended drug dosages, improve effectiveness, and reduce drug-related adverse events. Despite some efforts to introduce pharmacogenomics in clinical practice, presently very few centers routinely use genetic tests as a guide for drug prescription. The education of health care professionals seems critical to keep pace with the rapidly evolving field of pharmacogenomics. Moreover, multimodal algorithms that incorporate both clinical and genetic factors in drug prescribing could significantly help in this regard. Obviously, further studies which definitively establish which genetic variations play a role in conditioning drug effectiveness and safety are needed. Many problems must be solved, but the advantages for human health fully justify all the efforts.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
3
|
Lea-Henry TN, Carland JE, Stocker SL, Sevastos J, Roberts DM. Clinical Pharmacokinetics in Kidney Disease: Fundamental Principles. Clin J Am Soc Nephrol 2018; 13:1085-1095. [PMID: 29934432 PMCID: PMC6032582 DOI: 10.2215/cjn.00340118] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Kidney disease is an increasingly common comorbidity that alters the pharmacokinetics of many drugs. Prescribing to patients with kidney disease requires knowledge about the drug, the extent of the patient's altered physiology, and pharmacokinetic principles that influence the design of dosing regimens. There are multiple physiologic effects of impaired kidney function, and the extent to which they occur in an individual at any given time can be difficult to define. Although some guidelines are available for dosing in kidney disease, they may be on the basis of limited data or not widely applicable, and therefore, an understanding of pharmacokinetic principles and how to apply them is important to the practicing clinician. Whether kidney disease is acute or chronic, drug clearance decreases, and the volume of distribution may remain the same or increase. Although in CKD, these changes progress relatively slowly, they are dynamic in AKI, and recovery is possible depending on the etiology and treatments. This, and the use of kidney replacement therapies further complicate attempts to quantify drug clearance at the time of prescribing and dosing in AKI. The required change in the dosing regimen can be estimated or even quantitated in certain instances through the application of pharmacokinetic principles to guide rational drug dosing. This offers an opportunity to provide personalized medical care and minimizes adverse drug events from either under- or overdosing. We discuss the principles of pharmacokinetics that are fundamental for the design of an appropriate dosing regimen in this review.
Collapse
Affiliation(s)
- Tom N. Lea-Henry
- Nephrology and Transplantation Unit, John Hunter Hospital, Newcastle, New South Wales, Australia
- Department of Renal Medicine, The Canberra Hospital, Woden, Australian Capital Territory, Australia; and
| | - Jane E. Carland
- Departments of Clinical Pharmacology and Toxicology and
- Department of Medicine, St. Vincent’s Clinical School, St. Vincent’s Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie L. Stocker
- Departments of Clinical Pharmacology and Toxicology and
- Department of Medicine, St. Vincent’s Clinical School, St. Vincent’s Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | - Jacob Sevastos
- Nephrology and Renal Transplantation, St. Vincent’s Hospital, Darlinghurst, New South Wales, Australia
- Department of Medicine, St. Vincent’s Clinical School, St. Vincent’s Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | - Darren M. Roberts
- Departments of Clinical Pharmacology and Toxicology and
- Department of Renal Medicine, The Canberra Hospital, Woden, Australian Capital Territory, Australia; and
- Medical School, Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
4
|
A survey of renal impairment pharmacokinetic studies for new oncology drug approvals in the USA from 2010 to early 2015: a focus on development strategies and future directions. Anticancer Drugs 2017; 28:677-701. [PMID: 28542036 PMCID: PMC5515635 DOI: 10.1097/cad.0000000000000513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The US Food and Drug Administration (FDA) issued a guidance document in 2010 on pharmacokinetic (PK) studies in renal impairment (RI) on the basis of observations that substances such as uremic toxins might result in altered drug metabolism and excretion. No specific recommendations for oncology drugs were included. We surveyed the publicly available FDA review documents of 29 small molecule oncology drugs approved between 2010 and the first quarter of 2015. The objectives were as follows: (i) summarize the impact of RI on PK at the time of the initial new drug application; (ii) identify limitations of the guidance; and (iii) outline an integrated approach to study the impact of RI on these drugs. Our survey indicates that the current FDA guidance does not appear to provide clear strategic or decision pathways for RI studies in terms of small molecule oncology drugs. The FDA review documents indicate an individualized approach to the review because of the complex pharmacologic nature of these drugs and patient populations. Overall, the strategy for carrying out a RI study during clinical development or as a postmarketing study requires integration with the totality of data, including mass balance, absolute bioavailability, drug–drug interaction, hepatic dysfunction, population PK, exposure–response analysis, the therapeutic window for best guidance, and determination of the optimal doses for special oncology populations.
Collapse
|
5
|
Rodieux F, Wilbaux M, van den Anker JN, Pfister M. Effect of Kidney Function on Drug Kinetics and Dosing in Neonates, Infants, and Children. Clin Pharmacokinet 2015; 54:1183-204. [PMID: 26138291 PMCID: PMC4661214 DOI: 10.1007/s40262-015-0298-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neonates, infants, and children differ from adults in many aspects, not just in age, weight, and body composition. Growth, maturation and environmental factors affect drug kinetics, response and dosing in pediatric patients. Almost 80% of drugs have not been studied in children, and dosing of these drugs is derived from adult doses by adjusting for body weight/size. As developmental and maturational changes are complex processes, such simplified methods may result in subtherapeutic effects or adverse events. Kidney function is impaired during the first 2 years of life as a result of normal growth and development. Reduced kidney function during childhood has an impact not only on renal clearance but also on absorption, distribution, metabolism and nonrenal clearance of drugs. 'Omics'-based technologies, such as proteomics and metabolomics, can be leveraged to uncover novel markers for kidney function during normal development, acute kidney injury, and chronic diseases. Pharmacometric modeling and simulation can be applied to simplify the design of pediatric investigations, characterize the effects of kidney function on drug exposure and response, and fine-tune dosing in pediatric patients, especially in those with impaired kidney function. One case study of amikacin dosing in neonates with reduced kidney function is presented. Collaborative efforts between clinicians and scientists in academia, industry, and regulatory agencies are required to evaluate new renal biomarkers, collect and share prospective pharmacokinetic, genetic and clinical data, build integrated pharmacometric models for key drugs, optimize and standardize dosing strategies, develop bedside decision tools, and enhance labels of drugs utilized in neonates, infants, and children.
Collapse
Affiliation(s)
- Frederique Rodieux
- Department of Pediatric Clinical Pharmacology, Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, CH-4056, Basel, Switzerland.
| | - Melanie Wilbaux
- Department of Pediatric Clinical Pharmacology, Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, CH-4056, Basel, Switzerland
| | - Johannes N van den Anker
- Department of Pediatric Clinical Pharmacology, Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, CH-4056, Basel, Switzerland.
- Division of Pediatric Clinical Pharmacology, Children's National Health System, Washington, DC, USA.
- Intensive Care, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Marc Pfister
- Department of Pediatric Clinical Pharmacology, Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, CH-4056, Basel, Switzerland
- Quantitative Solutions LP, Menlo Park, CA, USA
| |
Collapse
|
6
|
Pfister M, Nolin TD, Arya V. Optimizing drug development and use in patients with kidney disease: opportunities, innovations, and challenges. J Clin Pharmacol 2012; 52:4S-6S. [PMID: 22232753 DOI: 10.1177/0091270011415414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|