1
|
Crocetin alleviates the caerulein-induced apoptosis and inflammation in AR42J cells by activating SIRT1 via NF-κB. J Nat Med 2022; 76:410-418. [DOI: 10.1007/s11418-021-01597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
|
2
|
Crocetin Exerts Its Anti-inflammatory Property in LPS-Induced RAW264.7 Cells Potentially via Modulation on the Crosstalk between MEK1/JNK/NF- κB/iNOS Pathway and Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6631929. [PMID: 34545298 PMCID: PMC8449229 DOI: 10.1155/2021/6631929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/17/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
Crocetin is a main bioactive component with a carotenoid skeleton in Gardenia jasminoides, a typical traditional Chinese medicine with a long history in Southeast Asia. Crocetin is being commonly consumed as spices, dyes, and food colorants. Recent pharmacological studies had implied that crocetin may possess potent anti-inflammatory properties; however, the underlying molecular mechanism is not fully elucidated. In the present study, the regulatory effect of crocetin on redox balance was systematically investigated in lipopolysaccharide- (LPS-) stimulated RAW264.7 cells. The results showed that crocetin dose-dependently inhibited LPS-induced nitric oxide production and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells. Molecular data revealed that crocetin exerted its anti-inflammatory property by inhibiting the MEK1/JNK/NF-κB/iNOS pathway and activating the Nrf2/HO-1 pathway. The shRNA-knockdown (KD) of MEK1 and ERK1 confirmed that the activation of MEK1 and inhibition of JNK mediated the anti-inflammatory effect of crocetin. Moreover, the pull-down assay and computational molecule docking showed that crocetin could directly bind to MEK1 and JNK1/2. It is noticed that both KD and knockout (KO) of HO-1 gene blocked this action. More detailed data have shown that HO-1-KO blocked the inhibition of p-IκB-α by crocetin. These data indicated that crocetin exerted its anti-inflammatory property via modulating the crosstalk between the MEK1/JNK/NF-κB/iNOS pathway and the Nrf2/HO-1 pathway, highlighting HO-1 as a major player. Therefore, the present study reveals that crocetin can act as a potential candidate for redox-balancing modulation in charge of its anti-inflammatory and chemopreventive effect, which strengthens its potency in the subsequent clinic application in the near future.
Collapse
|
3
|
Crocetin Improves Dengue Virus-Induced Liver Injury. Viruses 2020; 12:v12080825. [PMID: 32751420 PMCID: PMC7472398 DOI: 10.3390/v12080825] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/11/2023] Open
Abstract
Dengue virus (DENV) infection is one of the most widespread mosquito-borne viral infections. Liver injury is commonly observed in severe DENV infection, and the present study aimed to examine the efficacy of crocetin treatment in an immunocompetent mouse model of DENV infection exhibiting liver injury. The efficacy of crocetin treatment in DENV-induced liver injury was assessed via both transaminase levels and histopathology analysis. A real-time polymerase chain reaction array was then used to describe the expression of 84 apoptosis-related genes. Using real-time RT-PCR and Western blot analysis, the gene expressions of host factors were investigated. Additionally, the effect of crocetin in NF-kB signaling during DENV infection was studied. We did not observe any significant reduction in virus production when DENV-infected mice were treated with crocetin. However, DENV-infected mice treated with crocetin showed reduced DENV-induced apoptosis. The real-time polymerase chain reaction array revealed pro-inflammatory cytokine expressions to be significantly reduced in the crocetin-treated DENV-infected mice. We also found that crocetin could effectively modulate antioxidant status in DENV-infected mice. Moreover, crocetin demonstrated the ability to reduce the nuclear translocation of NF-kB in DENV-infected mice. Our results suggest that crocetin treatment does not inhibit DENV replication in the liver of DENV-infected mice; however, we did find that crocetin improves host responses that reduce liver injury.
Collapse
|
4
|
Gao K, Liu F, Chen X, Chen M, Deng Q, Zou X, Guo H. Crocetin protects against fulminant hepatic failure induced by lipopolysaccharide/D-galactosamine by decreasing apoptosis, inflammation and oxidative stress in a rat model. Exp Ther Med 2019; 18:3775-3782. [PMID: 31616509 PMCID: PMC6781807 DOI: 10.3892/etm.2019.8030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Fulminant hepatic failure (FHF) is a clinical syndrome characterized by sudden and severe liver dysfunction. Apoptosis and inflammation are essential for the pathogenesis of FHF. Crocetin, the major component present in saffron, has been reported to possess anti-inflammatory and antioxidant functions; however, its role in FHF is poorly understood. The aim of this study was to explore the protective effects of crocetin against lipopolysac§§charide (LPS)/D-galactosamine (D-GalN)-induced FHF and the underlying mechanisms in a rat model. For the in vivo study, rats were assigned to the LPS/D-GalN group or to the crocetin pre-treatment+LPS/D- GalN group. Each group was then further divided according to the different LPS/D-GalN treatment times of 0, 6, 12 or 48 h. The results demonstrated that crocetin pre-treatment efficiently protected against LPS/D-GalN-induced FHF by improving liver tissue morphology, reducing total bilirubin generation and decreasing the activities of alanine transaminase and aspartate aminotransferase. Moreover, crocetin pre-treatment significantly decreased hepatocyte apoptosis, p53 mRNA expression and the expression of proteins in the caspase family and the Bcl-2 pro-apoptotic family following LPS/D-GalN treatment. Furthermore, crocetin also decreased the secretion of pro-inflammatory cytokines in the serum and in the liver via suppression of NF-κB activation, and also suppressed hepatic oxidative stress. In conclusion, crocetin protected against LPS/D-GalN-induced FHF and inhibited apoptosis, inflammation and oxidative stress. The underlying mechanisms may be related to the regulation of apoptotic proteins in the caspase family and the Bcl-2 family, as well as the modulation of NF-κB expression. Therefore, crocetin may be used as a novel therapy for preventing FHF.
Collapse
Affiliation(s)
- Ke Gao
- Department of Pathology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Faquan Liu
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Xi Chen
- Department of Ears, Nose and Throat, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518115, P.R. China
| | - Mengxue Chen
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Qingwen Deng
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Xingjian Zou
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Hongxing Guo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| |
Collapse
|
5
|
Moratalla-López N, Bagur MJ, Lorenzo C, Salinas MEMNR, Alonso GL. Bioactivity and Bioavailability of the Major Metabolites of Crocus sativus L. Flower. Molecules 2019; 24:molecules24152827. [PMID: 31382514 PMCID: PMC6696252 DOI: 10.3390/molecules24152827] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/12/2023] Open
Abstract
Crocus sativus L. has been cultivated throughout history to obtain its flowers, whose dried stigmas give rise to the spice known as saffron. Crocetin esters, picrocrocin, and safranal are the main metabolites of this spice, which possess a great bioactivity, although the mechanisms of action and its bioavailability are still to be solved. The rest of the flower is composed by style, tepals, and stamens that have other compounds, such as kaempferol and delphinidin, which have an important antioxidant capacity, and these can be applied in foods, phytopharmaceuticals, and cosmetics. The aim of this work was to provide an updated and critical review of the research on the main compounds of Crocus sativus L. flower, including the adequate analytical methods for their identification and quantification, with a focus on their bioactivity and bioavailability.
Collapse
Affiliation(s)
- Natalia Moratalla-López
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - María José Bagur
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - Cándida Lorenzo
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | | | - Gonzalo L Alonso
- Cátedra de Química Agrícola, ETSI Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| |
Collapse
|
6
|
Hashemi M, Hosseinzadeh H. A comprehensive review on biological activities and toxicology of crocetin. Food Chem Toxicol 2019; 130:44-60. [PMID: 31100302 DOI: 10.1016/j.fct.2019.05.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Natural products with high pharmacological potential and low toxicity have been considered as the novel therapeutic agents. Crocetin is an active constituent of saffron (Crocus sativus L.) stigma, which in its free-acid form is insoluble in water and most organic solvents. Crocetin exhibits various health-promoting properties including anti-tumor, neuroprotective effects, anti-diabetics, anti-inflammatory, anti-hyperlipidemia, etc. These therapeutic effects can be achieved with different mechanisms such as improvement of oxygenation in hypoxic tissues, antioxidant effects, inhibition of pro-inflammatory mediators, anti-proliferative activity and stimulation of apoptosis in cancer cells. It is also worth considering that crocetin could be tolerated without major toxicity at therapeutic dosage in experimental models. In the present review, we discuss the biosynthesis, pharmacokinetic properties of crocetin and provide a comprehensive study on the biological activities and toxicity along with the mechanism of actions and clinical trials data of crocetin.
Collapse
Affiliation(s)
- Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Tawfik SS, Elkady AA, El Khouly WA. Crocin mitigates γ-rays-induced hepatic toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15414-15419. [PMID: 30937741 DOI: 10.1007/s11356-019-04724-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Crocin (C44H64O24) is an isolated bioactive molecule of saffron extract. It has different pharmacological effects such as antioxidant and anti-inflammatory activities. In the present study, radioprotective property of crocin was investigated in the rat liver. Thirty-two rats were equally divided into four groups: (1) control (normal saline), (2) crocin (200 mg/kg), (3) γ-rays (6Gy), and (4) crocin plus γ-rays-treated groups. The liver histopathology, serum transaminases (ALT and AST), alkaline phosphatase (ALP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and hepatic lipid peroxidation, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) have been assessed. The histopathological result of hepatic tissue in group 3 showed hydropic degeneration and this progressed to focal or spotty necrosis through the lobule. Moreover, some sinusoids are distended with blood or with leukocytic infiltrations. Other cases in group 3 showed periportal leukocytic infiltrations and necrosis extended out from the portal tract to involve hepatic lobules with fibrinous necrosis in portal vessels, while the examination of hepatic tissues of group 4 showed reduced deformities, irregular arrangement, congested hepatic vessels, and necrosis in hepatocytes. The results also showed significant decreased level of liver function activities, inflammatory markers, lipid peroxidation, and increased levels of liver antioxidants enzymes in group 4. Crocin showed moderate protective effect against γ-rays-induced liver toxicity. The antioxidant effect of crocin may be a major reason for its positive impact on liver parameters. Graphical abstract .
Collapse
Affiliation(s)
- Sameh Soliman Tawfik
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), P. O. Box 29, Nasr City, Cairo, Egypt.
- Egyptian Atomic Energy Authority, P. O. Box 29, Nasr City, Cairo, Egypt.
| | - Ahmed Amer Elkady
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), P. O. Box 29, Nasr City, Cairo, Egypt
- Egyptian Atomic Energy Authority, P. O. Box 29, Nasr City, Cairo, Egypt
| | - Wael Aly El Khouly
- Egyptian Atomic Energy Authority, P. O. Box 29, Nasr City, Cairo, Egypt
- Radiation Protection Department, Nuclear and Radiological Regulatory Authority (NRRA), P. O. Box 7551, Nasr City, Egypt
| |
Collapse
|
8
|
Pradhan J, Mohanty C, Sahoo SK. Protective efficacy of crocetin and its nanoformulation against cyclosporine A-mediated toxicity in human embryonic kidney cells. Life Sci 2018; 216:39-48. [PMID: 30444987 DOI: 10.1016/j.lfs.2018.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 01/15/2023]
Abstract
AIM This study is aimed to formulate crocetin-loaded lipid Nanoparticles (NPs) and to evaluate its antioxidant properties in a cyclosporine A-mediated toxicity in Human Embryonic Kidney (HEK-293) cells in vitro. MAIN METHODS Crocetin-loaded NPs were prepared followed by physicochemical characterization. In vitro protective efficacy of crocetin and crocetin loaded NPs was investigated in cyclosporine A-mediated toxicity in HEK-293 cells by assessing free radical scavenging, DNA Nicking, cytotoxicity, intracellular Reactive oxygen species (ROS) inhibition, Mitochondrial membrane potential (MMPs) loss and evaluating the activity and expression of antioxidant enzymes and non-enzyme level. Further, we have studied the mechanism of protective activity of crocetin either native or in NPs by studying the expression of phase II detoxifying proteins (HO-1) via Nrf2 mediated regulation. KEY FINDINGS Our results showed that pretreatment with crocetin and crocetin-loaded NPs attenuated the cyclosporine A-mediated toxicity, ROS production and exhibited enhance free radical scavenging ability and cytoprotective activity. Further, the treatment prevented MMPs loss by directly scavenging the ROS and restored the antioxidant enzyme network with normalization of heme oxygenase-1 (HO-1) expression by inhibiting nuclear translocation of Nrf2. SIGNIFICANCE Pretreatment of crocetin and crocetin-loaded NPs provided pronounce protective effect against cyclosporine A-mediated toxicity in HEK-293 cells by nullifying the ROS formation and restored antioxidant network through inhibition of Nrf2 translocation and followed by expression of HO-1. Such an approach may be anticipated to be beneficial for antioxidant therapy.
Collapse
Affiliation(s)
- Jyotsnarani Pradhan
- Institute of Life Sciences, Bhubaneswar, Odisha, India; P.G. Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
9
|
Bukhari SI, Manzoor M, Dhar MK. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother 2018; 98:733-745. [PMID: 29306211 DOI: 10.1016/j.biopha.2017.12.090] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/02/2017] [Accepted: 12/18/2017] [Indexed: 01/28/2023] Open
Abstract
Crocus sativus is an herbaceous plant that belongs to family Iridaceae. It is commonly known as saffron and has been used for medicinal purposes since many centuries in India and other parts of the world. Saffron of commercial importance comprises of dried stigmas of the plant and is rich in flavonoids, vitamins, and carotenoids. Carotenoids represent the main components of saffron and their cleavage results in the formation of apocarotenoids such as crocin, picrocrocin, and safranal. Studies conducted during the past two decades have revealed the immense therapeutic potential of saffron. Most of the therapeutic properties are due to the presence of unique apocarotenoids having strong free radical scavenging activity. The mode of action of these apocarotenoids could be: modulatory effects on detoxifying enzymes involved in combating oxidative stress, decreasing telomerase activity, increased the proapoptotic effect, inhibition of DNA, RNA and protein synthesis, and by a strong binding capacity of crocetin with tRNA. The present review focuses on the therapeutic role of saffron and its bio oxidative cleavage products and also highlights the possible molecular mechanism of action. The findings reported in this review describes the wide range of applications of saffron and attributes its free radical scavenging nature the main property which makes this spice a potent chemotherapeutic agent for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Mahreen Manzoor
- School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - M K Dhar
- School of Biotechnology, University of Jammu, Jammu, 180006, India
| |
Collapse
|
10
|
José Bagur M, Alonso Salinas GL, Jiménez-Monreal AM, Chaouqi S, Llorens S, Martínez-Tomé M, Alonso GL. Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules 2017; 23:E30. [PMID: 29295497 PMCID: PMC5943931 DOI: 10.3390/molecules23010030] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
The spice saffron is made from the dried stigmas of the plant Crocus sativus L. The main use of saffron is in cooking, due to its ability to impart colour, flavour and aroma to foods and beverages. However, from time immemorial it has also been considered a medicinal plant because it possesses therapeutic properties, as illustrated in paintings found on the island of Santorini, dated 1627 BC. It is included in Catalogues of Medicinal Plants and in the European Pharmacopoeias, being part of a great number of compounded formulas from the 16th to the 20th centuries. The medicinal and pharmaceutical uses of this plant largely disappeared with the advent of synthetic chemistry-produced drugs. However, in recent years there has been growing interest in demonstrating saffron's already known bioactivity, which is attributed to the main components-crocetin and its glycosidic esters, called crocins, and safranal-and to the synergy between the compounds present in the spice. The objective of this work was to provide an updated and critical review of the research on the therapeutic properties of saffron, including activity on the nervous and cardiovascular systems, in the liver, its antidepressant, anxiolytic and antineoplastic properties, as well as its potential use as a functional food or nutraceutical.
Collapse
Affiliation(s)
- María José Bagur
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | | | - Antonia M. Jiménez-Monreal
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | - Soukaina Chaouqi
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
- Laboratory of Materials, Environment and Electrochemistry, Faculty of Science, Ibn Tofaïl University, P.O. Box 242, 14000 Kénitra, Morocco
| | - Silvia Llorens
- Department of Medical Sciences, School of Medicine and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 02008 Albacete, Spain;
| | - Magdalena Martínez-Tomé
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | - Gonzalo L. Alonso
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
| |
Collapse
|
11
|
Abstract
PURPOSE The aim of this study is to assess the efficacy of the combination of N-acetylcysteine (NAC) and deferoxamine (DFO) in the resuscitation from hemorrhagic shock in a porcine model of bleeding during hepatectomy. METHODS Twenty-one pigs were divided randomly to three groups: Sham (S) group, n = 5; fluid (F) resuscitation group, n = 8; and fluid plus NAC plus DFO (NAC&DFO) resuscitation group, n = 8. The animals of groups F and NAC&DFO were subjected to left hepatectomy and controlled hemorrhage from the traumatic liver surface. Shock was established within 10 minutes and maintained for 30 minutes at mean arterial pressure (MAP) of 30 to 40 mm Hg. Resuscitation followed the shock period with crystalloids and colloids. Group NAC&DFO received additionally NAC and DFO in doses of 200 mg/kg and 65 mg/kg, respectively. The total time of the experiment was 6 hours. RESULTS Animal weight, blood loss, excised liver mass, and MAP at the end of the shock period were comparable between experimental groups. Group NAC&DFO received significantly lower volume of both crystalloids and colloids (35% and 42% less, respectively) compared to group F. Hepatocellular proliferation (proliferating cell nuclear antigen) was higher in the antioxidant group. Apoptosis, measured by caspase-3, was restored to sham group levels when NAC and DFO were administered. CONCLUSIONS Our experimental study showed that coadministration of NAC and DFO during liver hemorrhage can decrease the amounts of fluids needed for resuscitation. Moreover, the antioxidant combination restores the energy dependent apoptosis and proliferation of the hepatocytes.
Collapse
|
12
|
Crocetin treatment inhibits proliferation of colon cancer cells through down-regulation of genes involved in the inflammation. Saudi J Biol Sci 2017; 25:1767-1771. [PMID: 30591798 PMCID: PMC6303136 DOI: 10.1016/j.sjbs.2017.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/03/2017] [Accepted: 04/09/2017] [Indexed: 01/09/2023] Open
Abstract
Background The current study was designed to investigate the effect of crocetin on the proliferation inhibition of colon cancer cells and the underlying mechanism. Methods MTT assay showed inhibition of proliferation of colon cancer cells in a dose based manner by crocetin treatment. At 30 µM concentration of crocetin proliferation rate of colon cancer cells was reduced to 14% after 24 h. Flow cytometry and fluorescence microscopy revealed induction of apoptosis in colon cancer cells on treatment with crocetin. The tube formation was suppressed significantly in the cultures of HUVEC treated with 30 µM concentration of crocetin compared to the control cultures. Results The results from transwell assay revealed a significant reduction in the population of DU-145 cells passing through filters of transwell on treatment with crocetin compared to the control cells. Treatment of the DU-145 cells with crocetin caused a significant reduction in the expression levels of NF-κB, VEGF and MMP-9. The results from RT-PCR analysis revealed a significant reduction in the expression of genes involved in inflammation including, HMGB1, IL-6 and IL-8 on treatment of DU-145 cells with crocetin. However, the expression of NAG-1 gene was increased by crocetin treatment in DU-145 cells significantly compared to the control cells. Conclusion Crocetin inhibits growth of colon cancer cells and prevents tube formation through induction of apoptosis. Therefore, crocetin can be used efficiently for the treatment of colon cancer.
Collapse
|
13
|
Khorasany AR, Hosseinzadeh H. Therapeutic effects of saffron (Crocus sativus L.) in digestive disorders: a review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:455-69. [PMID: 27403251 PMCID: PMC4923465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Saffron, the dried red-orange stigmas of Crocus sativus L, has been known as a flavoring agent, food coloring and traditional herbal medicine. Pharmacological effects of saffron are mainly attributed to crocin, crocetin, picrocrocin and safranal. These components especially crocin, have significant effects including antidepressant and anticonvulsant, analgesic, anti-cancer and other therapeutic effects on different parts of our body namely cardiovascular, immune, respiratory, genital-urinary and central nervous system. According to the reports and findings, saffron plays a key role to cure different digestive system disorders via chemopreventive, inhibition of cell proliferation, induction of apoptosis, antioxidant effects and radical scavenging, genoprotective property, prevention of lipid peroxidation and anti-inflammatory processes. The outcome of the above mentioned mechanisms shows potential therapeutic properties of saffron against liver cancer, hepatotoxicity, fatty liver, hyperlipidemia, stomach cancer, peptic ulcer, colon cancer, ulcerative colitis, diabetes and pancreas cancer and ileum contractions. According to global statistics, the susceptibility to intestinal diseases is considered as a significant matter and can be important in health planning in any community. Several strategies for treatment and prevention of the digestive system diseases have provided that the use of herbal remedies seems effective and useful. Considering the available findings, the present study aims to introduce saffron as a prophylactic and therapeutic agent against gastrointestinal tract disorders. However, further clinical studies seem necessary in various aspects of saffron effects in different parts of body to verify these findings.
Collapse
Affiliation(s)
- Alireza Rezaee Khorasany
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Hossein Hosseinzadeh. Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38819042; Fax: +98-51-38823251;
| |
Collapse
|
14
|
Llorens S, Mancini A, Serrano-Díaz J, D'Alessandro AM, Nava E, Alonso GL, Carmona M. Effects of Crocetin Esters and Crocetin from Crocus sativus L. on Aortic Contractility in Rat Genetic Hypertension. Molecules 2015; 20:17570-84. [PMID: 26402666 PMCID: PMC6332434 DOI: 10.3390/molecules200917570] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Endothelial dysfunction, characterized by an enhancement in vasoconstriction, is clearly associated with hypertension. Saffron (Crocus sativus L.) bioactive compounds have been recognized to have hypotensive properties. Recently, we have reported that crocetin exhibits potent vasodilator effects on isolated aortic rings from hypertensive rats. In this work, we have aimed to analyze the anticontractile ability of crocetin or crocetin esters pool (crocins) isolated from saffron. Thus, we have studied the effects of saffron carotenoids on endothelium-dependent and -independent regulation of smooth muscle contractility in genetic hypertension. Methods: We have measured the isometric responses of aortic segments with or without endothelium obtained from spontaneously hypertensive rats. The effects of carotenoids were studied by assessing the endothelial modulation of phenylephrine-induced contractions (10−9–10−5 M) in the presence or absence of crocetin or crocins. The role of nitric oxide and prostanoids was analyzed by performing the experiments with L-NAME (NG-nitro-l-arginine methyl ester) or indomethacin (both 10−5 M), respectively. Results: Crocetin, and to a minor extent crocins, diminished the maximum contractility of phenylephrine in intact rings, while crocins, but not crocetin, increased this contractility in de-endothelizated vessels. In the intact vessels, the effect of crocetin on contractility was unaffected by indomethacin but was abolished by L-NAME. However, crocetin but not crocins, lowered the already increased contractility caused by L-NAME. Conclusions: Saffron compounds, but especially crocetin have endothelium-dependent prorelaxing actions. Crocins have procontractile actions that take place via smooth muscle cell mechanisms. These results suggest that crocetin and crocins activate different mechanisms involved in the vasoconstriction pathway in hypertension.
Collapse
Affiliation(s)
- Silvia Llorens
- Department of Medical Sciences, School of Medicine and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Albacete 02006, Spain.
| | - Andrea Mancini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
| | - Jessica Serrano-Díaz
- School of Agricultural Engineering, University of Castilla-La Mancha, Albacete 02071, Spain.
| | - Anna Maria D'Alessandro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
| | - Eduardo Nava
- Department of Medical Sciences, School of Medicine and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Albacete 02006, Spain.
| | - Gonzalo Luis Alonso
- School of Agricultural Engineering, University of Castilla-La Mancha, Albacete 02071, Spain.
| | - Manuel Carmona
- School of Agricultural Engineering, University of Castilla-La Mancha, Albacete 02071, Spain.
- Albacete Science and Technology Park, Paseo de la Innovación 1, Albacete 02006, Spain.
| |
Collapse
|
15
|
Niska K, Santos-Martinez MJ, Radomski MW, Inkielewicz-Stepniak I. CuO nanoparticles induce apoptosis by impairing the antioxidant defense and detoxification systems in the mouse hippocampal HT22 cell line: Protective effect of crocetin. Toxicol In Vitro 2015; 29:663-71. [DOI: 10.1016/j.tiv.2015.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 01/26/2015] [Accepted: 02/08/2015] [Indexed: 11/30/2022]
|
16
|
Li S, Jiang S, Jiang W, Zhou Y, Shen XY, Luo T, Kong LP, Wang HQ. Anticancer effects of crocetin in human esophageal squamous cell carcinoma KYSE-150 cells. Oncol Lett 2015; 9:1254-1260. [PMID: 25663893 PMCID: PMC4315057 DOI: 10.3892/ol.2015.2869] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/09/2014] [Indexed: 12/01/2022] Open
Abstract
Crocetin is the main pharmacologically-active component of saffron and has been considered as a promising candidate for cancer chemoprevention. The purpose of the present study was to investigate the anticancer effects of crocetin and the possible mechanisms of these properties in the esophageal squamous cell carcinoma cell line KYSE-150. The KYSE-150 cells were cultured in Dulbecco’s modified Eagle’s medium and incubated with 0, 12.5, 25, 50, 100 or 200 μmol/l crocetin for 48 h. Cell proliferation was measured using an MTT assay. Hoechst 33258 staining and observation under fluorescent microscopy were used to analyze the proapoptotic effects of crocetin. The migration rate was assessed by a wound-healing assay. The cell cycle distribution was analyzed using flow cytometry analysis subsequent to propidium iodide staining. The expression of B-cell lymphoma-2-associated X protein (Bax) and cleaved caspase 3 was determined by western blot analysis. It was found that treatment of KYSE-150 cells with crocetin for 48 h significantly inhibited the proliferation of the cells in a concentration-dependent manner, and the inhibition of proliferation was associated with S phase arrest. Crocetin was also found to induce morphological changes and cell apoptosis in a dose-dependent manner through increased expression of proapoptotic Bax and activated caspase 3. In addition, crocetin suppressed the migration of KYSE-150 cells. The present study provides evidence that crocetin exerts a prominent chemopreventive effect against esophageal cancer through the inhibition of cell proliferation, migration and induction of apoptosis. These findings reveal that crocetin may be considered to be a promising future chemotherapeutic agent for esophageal cancer therapy.
Collapse
Affiliation(s)
- Sheng Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Sheng Jiang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China ; Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515000, P.R. China
| | - Wei Jiang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yue Zhou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiu-Yin Shen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Luo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ling-Ping Kong
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hua-Qiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
17
|
Bennetts P, Shen Q, Thimmesch AR, Diaz FJ, Clancy RL, Pierce JD. Effects of ubiquinol with fluid resuscitation following haemorrhagic shock on rat lungs, diaphragm, heart and kidneys. Exp Physiol 2014; 99:1007-15. [PMID: 24860150 DOI: 10.1113/expphysiol.2014.078600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Haemorrhagic shock (HS) and fluid resuscitation can lead to increased reactive oxygen species (ROS), contributing to ischaemia-reperfusion injury and organ damage. Ubiquinol is a potent antioxidant that decreases ROS. This study examined the effects of ubiquinol administered with fluid resuscitation following controlled HS. Adult male Sprague-Dawley rats were randomly assigned to treatment [ubiquinol, 1 mg (100 g body weight)(-1)] or control groups. Rats were subjected to 60 min of HS by removing 40% of the total blood volume to a mean arterial pressure ∼45-55 mmHg. The animals were resuscitated with blood and lactated Ringer solution, with or without ubiquinol, and monitored for 120 min. At the end of the experiments, the rats were killed and the lungs, diaphragm, heart and kidneys harvested. Leucocytes were analysed for mitochondrial superoxide at baseline, end of shock and 120 min following fluid resuscitation using MitoSOX Red. Diaphragms were examined for hydrogen peroxide using dihydrofluorescein diacetate and confocal microscopy. The apoptosis in lungs, diaphragm, heart and kidneys was measured using fluorescence microscopy with acridine orange and ethidium bromide. Leucocyte mitochondrial superoxide levels were significantly lower in rats that received ubiquinol than in the control animals. Production of hydrogen peroxide and apoptosis were significantly reduced in the organs of rats treated with ubiquinol. These findings suggest that ubiquinol, administered with fluid resuscitation after HS, attenuates ROS production and apoptosis. Thus, ubiquinol is a potent antioxidant that may be used as a potential treatment to reduce organ injury following haemorrhagic events.
Collapse
Affiliation(s)
- Paul Bennetts
- Department of Nurse Anesthesia Education, University of Kansas, Kansas City, KS, 66160, USA
| | - Qiuhua Shen
- School of Nursing, University of Kansas, Kansas City, KS, 66160, USA
| | | | - Francisco J Diaz
- Department of Biostatistics, University of Kansas, Kansas City, KS, 66160, USA
| | - Richard L Clancy
- Department of Molecular and Integrative Physiology, University of Kansas, Kansas City, KS, 66160, USA
| | - Janet D Pierce
- School of Nursing, University of Kansas, Kansas City, KS, 66160, USA
| |
Collapse
|
18
|
Abstract
Saffron carotenoids, crocin and crocetin, have shown anticancer activity in various animal models of cancer and against different cancerous cell lines. The radical scavenging property and activation of antioxidant defense system are two well-known characteristics of these compounds. However, the results of the studies indicated other mechanisms could also be involved in this function. Insights into various molecular mechanisms of action for crocin and crocetin have been obtained in recent years. The results indicated that despite the structural similarity of crocin and crocetin, their anticancer effects may exert through different mechanisms. Particular interest concerns the ROS-dependent signaling pathways of crocetin. Saffron compounds are safe and may provide inexpensive therapy for treating cancer. They also have protective potential in targeting other disorders including diabetes, Alzheimer's and cardiovascular disease, cognitive deficits, ischemia-induced retinal damage, and many other diseases.
Collapse
Affiliation(s)
- S Zahra Bathaie
- Department of Clinical Biochemistry, Tarbiat Modares University, Tehran, Iran; Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California, USA.
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Bhattacharjee B, Vijayasarathy S, Karunakar P, Chatterjee J. Comparative reverse screening approach to identify potential anti-neoplastic targets of saffron functional components and binding mode. Asian Pac J Cancer Prev 2013; 13:5605-11. [PMID: 23317225 DOI: 10.7314/apjcp.2012.13.11.5605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the last two decades, pioneering research on anti-tumour activity of saffron has shed light on the role of crocetin, picrocrocin and safranal, as broad spectrum anti-neoplastic agents. However, the exact mechanisms have yet to be elucidated. Identification and characterization of the targets of bioactive constituents will play an imperative role in demystifying the complex anti-neoplastic machinery. METHODS In the quest of potential target identification, a dual virtual screening approach utilizing two inverse screening systems, one predicated on idTarget and the other on PharmMapper was here employed. A set of target proteins associated with multiple forms of cancer and ranked by Fit Score and Binding energy were obtained from the two independent inverse screening platforms. The validity of the results was checked by meticulously analyzing the post-docking binding pose of the picrocrocin with Hsp90 alpha in AutoDock. RESULTS The docking pose reveals that electrostatic and hydrogen bonds play the key role in inter-molecular interactions in ligand binding. Picrocrocin binds to the Hsp90 alpha with a definite orientation appropriate for nucleophilic attacks by several electrical residues inside the Hsp90-alpha ATPase catalytic site. CONCLUSION This study reveals functional information about the anti-tumor mechanism of saffron bioactive constituents. Also, a tractable set of anti-neoplastic targets for saffron has been generated in this study which can be further authenticated by in vivo and in vitro experiments.
Collapse
|
20
|
Dietary Crocin Inhibits Colitis and Colitis-Associated Colorectal Carcinogenesis in Male ICR Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:820415. [PMID: 23326291 PMCID: PMC3543809 DOI: 10.1155/2012/820415] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 01/16/2023]
Abstract
A natural carotenoid crocin is contained in saffron and gardenia flowers (crocuses and gardenias) and is used as a food colorant. This study reports the potential inhibitory effects of crocin against inflammation-associated mouse colon carcinogenesis and chemically induced colitis in male ICR mice. In the first experiment, dietary crocin significantly inhibited the development of colonic adenocarcinomas induced by azoxymethane (AOM) and dextran sodium sulfate (DSS) in mice by week 18. Crocin feeding also suppressed the proliferation and immunohistochemical expression of nuclear factor- (NF-) κB but increased the NF-E2-related factor 2 (Nrf2) expression, in adenocarcinoma cells. In the second experiment, dietary feeding with crocin for 4 weeks was able to inhibit DSS-induced colitis and decrease the mRNA expression of tumor necrosis factor α, interleukin- (IL-) 1β, IL-6, interferon γ, NF-κB, cyclooxygenase-2, and inducible nitric oxide synthase in the colorectal mucosa and increased the Nrf2 mRNA expression. Our results suggest that dietary crocin suppresses chemically induced colitis and colitis-related colon carcinogenesis in mice, at least partly by inhibiting inflammation and the mRNA expression of certain proinflammatory cytokines and inducible inflammatory enzymes. Therefore, crocin is a candidate for the prevention of colitis and inflammation-associated colon carcinogenesis.
Collapse
|
21
|
Zaid H, Silbermann M, Ben-Arye E, Saad B. Greco-arab and islamic herbal-derived anticancer modalities: from tradition to molecular mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2012:349040. [PMID: 22203868 PMCID: PMC3235667 DOI: 10.1155/2012/349040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 09/26/2011] [Indexed: 12/30/2022]
Abstract
The incidence of cancer is increasing in the developed countries and even more so in developing countries parallel to the increase in life expectancy. In recent years, clinicians and researchers advocate the need to include supportive and palliative care since the establishment of the diagnosis and throughout the duration of treatment, with the goal of improving patients' quality of life. This patient-centered approach in supportive care is also shared by various traditional and complementary medicine approaches. Traditional Arab-Islamic medicine offers a variety of therapeutic modalities that include herbal, nutritional, and spiritual approaches. Physicians and scholars, such as Avicenna (980-1037), Rhazes (965-915), Al Zahrawi (936-1013), and Ibn al Nafis (1218-1288) referred to cancer etiology in various medicinal texts and suggested both preventive and therapeutic remedies to alleviate suffering. This review presents research data related to the anticancer activities of herbs used in Arab-Islamic medicine and allude to their potential role in improving the quality of life of cancer patients.
Collapse
Affiliation(s)
- Hilal Zaid
- Qasemi Research Center, Al-Qasemi Academy, P.O. Box 124, Baqa El-Gharbia 30100, Israel
- Faculty of Arts and Sciences, Arab American University Jenin, P.O. Box 240, Jenin, Palestine
| | - Michael Silbermann
- Technion—Israel Institute of Technology, Middle East Cancer Consortium, Haifa, Israel
| | - Eran Ben-Arye
- Integrative Oncology Program, The Oncology Service, Lin Medical Center, Clalit Health Services, Western Galilee District, Haifa, Israel
- Complementary and Traditional Medicine Unit, Department of Family Medicine, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel and Clalit Health Services, Western Galilee District, Haifa, Israel
| | - Bashar Saad
- Qasemi Research Center, Al-Qasemi Academy, P.O. Box 124, Baqa El-Gharbia 30100, Israel
- Faculty of Arts and Sciences, Arab American University Jenin, P.O. Box 240, Jenin, Palestine
| |
Collapse
|