1
|
Velasque MJSG, Branchini G, Catarina AV, Bettoni L, Fernandes RS, Da Silva AF, Dorneles GP, da Silva IM, Santos MA, Sumienski J, Peres A, Roehe AV, Kohek MBDF, Porawski M, Nunes FB. Fish Oil - Omega-3 Exerts Protective Effect in Oxidative Stress and Liver Dysfunctions Resulting from Experimental Sepsis. J Clin Exp Hepatol 2023; 13:64-74. [PMID: 36647406 PMCID: PMC9840085 DOI: 10.1016/j.jceh.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/24/2022] [Accepted: 07/03/2022] [Indexed: 01/19/2023] Open
Abstract
Background Sepsis is a severe global health problem, with high morbidity and mortality. In sepsis, one of the main affected organs is the liver. Hepatic alterations characterize a negative prognostic. Omega-3 fatty acids (ω3), eicosapentaenoic acid, and docosahexaenoic acid, are part of the main families of polyunsaturated fatty acids. ω3 has been used in studies as sepsis treatment and as a treatment for non-alcoholic liver disease. Aim We aimed to evaluate the effects of treatment with fish oil (FO) rich in ω3 on liver changes and damage resulting from experimental sepsis. Methodology A model of severe sepsis in Wistar rats was used. Oxidative stress in the liver tissue was evaluated by means of tests of thiobarbituric acid reactive substances, 2,7-dihydrodichlorofluorescein diacetate , catalase, and glutathione peroxidase, in the serum TBARS, DCF, thiols and, to assess liver dysfunction, alanine aminotransferase and aspartate aminotransferase. Hepatic tissue damage was evaluated using H&E histology. Results In assessments of oxidative stress in liver tissue, a protective effect was observed in the tests of TBARS, DCF, CAT, and GPx, when compared the sepsis versus sepsis+ω3 groups. Regarding the oxidative stress in serum, a protective effect of treatment with ω3 was observed in the TBARS, DCF, and thiols assays, in the comparison between the sepsis and sepsis+ω3 groups. ω3 had also a beneficial effect on biochemical parameters in serum in the analysis of ALT, creatinine, urea, and lactate, observed in the comparison between the sepsis and sepsis+ω3 groups. Conclusion The results suggest ω3 as a liver protector during sepsis with an antioxidant effect, alleviating injuries and dysfunctions.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- CAT, catalase
- DCF, 2,7-dihydrodichlorofluorescein diacetate
- DHA, docosahexaenoic acid
- EPA, eicosapentaenoic acid
- FO, fish oil
- GPx, glutathione peroxidase
- GTO, oxaloacetic transaminase
- GTP, pyruvic transaminase
- HE, Hematoxylin and Eosin
- ICON, Intensive Care Over Nations
- ICU, intensive care unit
- IFN- γ, interferon gamma
- Liver injury
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- TBARS, Thiobarbituric Acid Reactive Substances
- TGF-β, transforming growth factor beta
- TNF-α, tumor necrosis factor alpha
- antioxidant
- inflammation
- omega-3
- oxidative stress
- sepsis
- ω3, omega-3
Collapse
Affiliation(s)
- Mary J. Soares Gonçalves Velasque
- Graduate Program in Pathology – Laboratory of Computational, Molecular, and Cellular Biophysics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Gisele Branchini
- Graduate Program in Pathology – Laboratory of Computational, Molecular, and Cellular Biophysics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Anderson V. Catarina
- Graduate Program in Pathology – Laboratory of Computational, Molecular, and Cellular Biophysics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Lais Bettoni
- Graduate Program in Pathology – Laboratory of Computational, Molecular, and Cellular Biophysics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Renata S. Fernandes
- Graduate Program in Health Sciences – Laboratory of Translational Physiology – Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | | | - Gilson P. Dorneles
- Laboratory of Cellular and Molecular Immunology – Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Igor Martins da Silva
- Laboratory of Cellular and Molecular Immunology – Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Maeli A. Santos
- Laboratory of Cellular and Molecular Immunology – Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Juliana Sumienski
- Laboratory of Immunology and Microbiology - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Alessandra Peres
- Laboratory of Cellular and Molecular Immunology – Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Adriana V. Roehe
- Graduate Program in Pathology – Laboratory of Pathology – Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Maria B. da Fonte Kohek
- Laboratory of Cellular and Molecular Immunology – Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Marilene Porawski
- Laboratory of Behavioral and Metabolic Physiology – Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Fernanda B. Nunes
- Graduate Program in Pathology – Laboratory of Computational, Molecular, and Cellular Biophysics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
- Laboratory of Inflammation and Cellular Biophysics - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| |
Collapse
|
2
|
Olvera-Rosales LB, Cruz-Guerrero AE, García-Garibay JM, Gómez-Ruíz LC, Contreras-López E, Guzmán-Rodríguez F, González-Olivares LG. Bioactive peptides of whey: obtaining, activity, mechanism of action, and further applications. Crit Rev Food Sci Nutr 2022; 63:10351-10381. [PMID: 35612490 DOI: 10.1080/10408398.2022.2079113] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive peptides derived from diverse food proteins have been part of diverse investigations. Whey is a rich source of proteins and components related to biological activity. It is known that proteins have effects that promote health benefits. Peptides derived from whey proteins are currently widely studied. These bioactive peptides are amino acid sequences that are encrypted within the first structure of proteins, which required hydrolysis for their release. The hydrolysis could be through in vitro or in vivo enzymatic digestion and using microorganisms in fermented systems. The biological activities associated with bio-peptides include immunomodulatory properties, antibacterial, antihypertensive, antioxidant and opioid, etc. These functions are related to general conditions of health or reduced risk of certain chronic illnesses. To determine the suitability of these peptides/ingredients for applications in food technology, clinical studies are required to evaluate their bioavailability, health claims, and safety of them. This review aimed to describe the biological importance of whey proteins according to the incidence in human health, their role as bioactive peptides source, describing methods, and obtaining technics. In addition, the paper exposes biochemical mechanisms during the activity exerted by biopeptides of whey, and their application trends.
Collapse
Affiliation(s)
- L B Olvera-Rosales
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - A E Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - J M García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
- Departamento de Ciencias de la Alimentación Lerma de Villada, Universidad Autónoma Metropolitana-Lerma, Edo. de México, México
| | - L C Gómez-Ruíz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - E Contreras-López
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - F Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - L G González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
3
|
Moriya T, Fukatsu K, Noguchi M, Nishikawa M, Miyazaki H, Saitoh D, Ueno H, Yamamoto J. Effects of semielemental diet containing whey peptides on Peyer's patch lymphocyte number, immunoglobulin A levels, and intestinal morphology in mice. J Surg Res 2017; 222:153-159. [PMID: 29273366 DOI: 10.1016/j.jss.2017.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/03/2017] [Accepted: 10/12/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Enteral nutrition (EN) is the gold standard of nutritional therapy for critically ill or severely injured patients, because EN promotes gut and hepatic immunity, thereby preventing infectious complications as compared with parenteral nutrition. However, there are many EN formulas with different protein and fat contents. Their effects on gut-associated lymphoid tissue remain unclear. Recently, semielemental diets (SEDs) containing whey peptides as a nitrogen source have been found to be beneficial in patients with malabsorption or pancreatitis. Herein, we examined the influences of various dietary formulations on gut immunity to clarify the advantages of SEDs over elemental diets. METHODS Forty-four male Institute of Cancer Research mice were randomized to four groups: chow (CH: n = 5), intragastric total parenteral nutrition (IG-TPN: n = 13), elemental diet (ED: n = 13), and SED (n = 13). The CH group received CH diet ad libitum, whereas the IG-TPN, ED (Elental, Ajinomoto, Japan), and SED (Peptino, Terumo, Japan) groups were given their respective diets for 5 day via gastrostomy. After 5 days, the mice were killed to obtain whole small intestines. Peyer's patch (PP) lymphocytes were harvested and counted. Their subpopulations were evaluated by flow cytometry. Immunoglobulin A (IgA) levels in intestinal and respiratory tract washings were measured with enzyme-linked immunosorbent assay. Villous height (VH) and crypt depth in the distal intestine were measured by light microscopy. RESULTS SED increased the PP cell number and intestinal or respiratory IgA levels to those of CH mice, while ED partially restored these parameters. The IG-TPN group showed the lowest PP cell number and IgA levels among the four groups. VH was significantly greater in the CH than in the other groups. VH in the ED and SED groups also exceeded in the IG-TPN group, while being similar in these two groups. No significant crypt depth differences were observed among the four groups. CONCLUSIONS SED administration can be recommended for patients unable tolerate complex enteral diets or a normal diet in terms of not only absorption and tolerability but also maintenance of gut immunity.
Collapse
Affiliation(s)
- Tomoyuki Moriya
- Department of Surgery, National Defense Medical College, Saitama, Japan.
| | | | - Midori Noguchi
- Division of Traumatology, National Defense Medical College Research Institute, Saitama, Japan
| | - Makoto Nishikawa
- Department of Surgery, National Defense Medical College, Saitama, Japan
| | - Hiromi Miyazaki
- Division of Traumatology, National Defense Medical College Research Institute, Saitama, Japan
| | - Daizoh Saitoh
- Division of Traumatology, National Defense Medical College Research Institute, Saitama, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Saitama, Japan
| | - Junji Yamamoto
- Department of Surgery, National Defense Medical College, Saitama, Japan
| |
Collapse
|
4
|
Kitsios GD, Morowitz MJ, Dickson RP, Huffnagle GB, McVerry BJ, Morris A. Dysbiosis in the intensive care unit: Microbiome science coming to the bedside. J Crit Care 2017; 38:84-91. [PMID: 27866110 PMCID: PMC5328797 DOI: 10.1016/j.jcrc.2016.09.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022]
Abstract
Complex microbial communities within the human body, constituting the microbiome, have a broad impact on human health and disease. A growing body of research now examines the role of the microbiome in patients with critical illness, such as sepsis and acute respiratory failure. In this article, we provide an introduction to microbiome concepts and terminology and we systematically review the current evidence base of the critical-illness microbiome, including 51 studies in animal models and pediatric and adult critically ill patients. We further examine how this emerging scientific discipline may transform the way we manage infectious and inflammatory diseases in intensive care units. The evolving molecular, culture-independent techniques offer the ability to study microbial communities in unprecedented depth and detail, and in the short-term, may enable us to diagnose and treat infections in critical care more precisely and effectively. Longer term, these tools may also give us insights in the underlying pathophysiology of critical illness and reveal previously unsuspected targets for innovative, microbiome-targeted therapeutics. We finally propose a roadmap for future studies in the field for transforming critical care from its current isolated focus on the host to a more personalized paradigm addressing both human and microbial contributions to critical illness.
Collapse
Affiliation(s)
- Georgios D Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Center for Medicine and the Microbiome, University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA.
| | - Michael J Morowitz
- Center for Medicine and the Microbiome, University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Pediatric Surgery, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bryan J McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Center for Medicine and the Microbiome, University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA.
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Center for Medicine and the Microbiome, University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Bonaterra GA, Driscoll D, Schwarzbach H, Kinscherf R. Krill Oil-In-Water Emulsion Protects against Lipopolysaccharide-Induced Proinflammatory Activation of Macrophages In Vitro. Mar Drugs 2017; 15:md15030074. [PMID: 28294970 PMCID: PMC5367031 DOI: 10.3390/md15030074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Background: Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro. Materials and Methods: Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. Results: KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. Conclusion: KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.
Collapse
Affiliation(s)
- Gabriel A Bonaterra
- Department of Medical Cell Biology, Philipps-University Marburg, Robert-Koch-Straße 8, 35032 Marburg, Germany.
| | - David Driscoll
- Stable Solutions LLC, Easton Industrial Park, 19 Norfolk Avenue, South Easton, MA 02375, USA.
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Philipps-University Marburg, Robert-Koch-Straße 8, 35032 Marburg, Germany.
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Philipps-University Marburg, Robert-Koch-Straße 8, 35032 Marburg, Germany.
| |
Collapse
|
6
|
Wei Y, Gao N, Zhang Z, Zu X, Hu Z, Zhang W, Yin J, Liu X. Metabolic changes at the early stage of sepsis induced by cecal ligation and puncture in rats and the interventional effects of Huang-Lian-Jie-Du-Tang. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:176-182. [DOI: 10.1016/j.jchromb.2015.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/16/2015] [Accepted: 08/07/2015] [Indexed: 12/24/2022]
|
7
|
Sebe M, Tsutsumi R, Yamaguchi S, Horikawa YT, Harada N, Oyama T, Kakuta N, Tanaka K, Tsutsumi YM, Nakaya Y, Sakaue H. The synergystic effects of omega-3 fatty acids against 5-fluorouracil-induced mucosal impairment in mice. BMC Nutr 2016. [DOI: 10.1186/s40795-016-0057-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Marik PE. Feeding critically ill patients the right 'whey': thinking outside of the box. A personal view. Ann Intensive Care 2015; 5:51. [PMID: 26055186 PMCID: PMC4460184 DOI: 10.1186/s13613-015-0051-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/15/2015] [Indexed: 01/02/2023] Open
Abstract
Atrophy of skeletal muscle mass is an almost universal problem in survivors of critical illness and is associated with significant short- and long-term morbidity. Contrary to common practice, the provision of protein/amino acids as a continuous infusion significantly limits protein synthesis whereas intermittent feeding maximally stimulates skeletal muscle synthesis. Furthermore, whey-based protein (high in leucine) increases muscle synthesis compared to soy or casein-based protein. In addition to its adverse effects on skeletal muscle synthesis, continuous feeding is unphysiological and has adverse effects on glucose and lipid metabolism and gastrointestinal function. I propose that critically ill patients' be fed intermittently with a whey-based formula and that such an approach is likely to be associated with better glycemic control, less hepatic steatosis and greater preservation of muscle mass. This paper provides the scientific basis for my approach to intermittent feeding of critically ill patients.
Collapse
Affiliation(s)
- Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, 825 Fairfax Av, Suite 410, Norfolk, VA, 23507, USA,
| |
Collapse
|