1
|
Ertik O, Tunali S, Acar ET, Bal-Demirci T, Ülküseven B, Yanardag R. Antioxidant Activity and Protective Effects of an Oxovanadium (IV) Complex on Heart and Aorta Injury of STZ-Diabetic Rats. Biol Trace Elem Res 2024; 202:2085-2099. [PMID: 37603267 DOI: 10.1007/s12011-023-03802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Diabetic people have a much higher rate of cardiovascular disease than healthy people. Therefore, heart and aortic tissues are target tissues in diabetic research. In recent years, the synthesis of new vanadium complexes and investigation of their antidiabetic/lowering effect on the blood glucose levels and antioxidant properties are increasing day by day. Our study aimed to examine the effects of synthesized oxovanadium (IV) complex of 2-[(2,4-dihydroxybenzylidene]hydrazine-1-[(N-(2-hydroxybenzylidene)](S-methyl)carbothioamide [VOL] on diabetic heart and aortic tissues, as well as in vitro lactate dehydrogenase (LDH) and myeloperoxidase (MPO) inhibition, antioxidant properties, and reducing power. Electrochemical characterization of the VOL was carried out by using Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV) methods. In addition, in silico drug-likeness and ADME prediction were also investigated. For in vivo study, male Swiss albino rats were randomly selected and separated into four groups which are control, control + VOL, diabetic and diabetic + VOL. After the experimental procedure, biochemical parameters were investigated in homogenates of heart and aorta tissues. The results showed that VOL has a protective effect on heart and aortic tissue against oxidative stress. According to electrochemical experiments, one reversible oxidative couple and one irreversible reductive response were observed for the complex. In addition, in vitro LDH and MPO inhibition of VOL was examined. It was found that VOL had a protective effect on heart and aortic tissues of diabetic rats, and caused the inhibition of LDH and MPO in in vitro studies. On the other hand, evaluating the synthesized VOL according to in silico drug-likeness and absorption, distribution, metabolism, and excretion (ADME) prediction, it was found that VOL has drug-like properties and exhibited high gastrointestinal absorption. The VOL had a therapeutic impact on the heart and aortic tissues of diabetic rats, according to the findings.
Collapse
Affiliation(s)
- Onur Ertik
- Division of Biochemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey.
| | - Sevim Tunali
- Division of Biochemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| | - Elif Turker Acar
- Division of Physical Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| | - Tulay Bal-Demirci
- Division of Inorganic Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| | - Bahri Ülküseven
- Division of Inorganic Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| | - Refiye Yanardag
- Division of Biochemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| |
Collapse
|
2
|
Ladagu AD, Olopade FE, Chazot P, Oyagbemi AA, Ohiomokhare S, Folarin OR, Gilbert TT, Fuller M, Luong T, Adejare A, Olopade JO. Attenuation of Vanadium-Induced Neurotoxicity in Rat Hippocampal Slices (In Vitro) and Mice (In Vivo) by ZA-II-05, a Novel NMDA-Receptor Antagonist. Int J Mol Sci 2023; 24:16710. [PMID: 38069032 PMCID: PMC10706475 DOI: 10.3390/ijms242316710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Exposure to heavy metals, such as vanadium, poses an ongoing environmental and health threat, heightening the risk of neurodegenerative disorders. While several compounds have shown promise in mitigating vanadium toxicity, their efficacy is limited. Effective strategies involve targeting specific subunits of the NMDA receptor, a glutamate receptor linked to neurodegenerative conditions. The potential neuroprotective effects of ZA-II-05, an NMDA receptor antagonist, against vanadium-induced neurotoxicity were explored in this study. Organotypic rat hippocampal slices, and live mice, were used as models to comprehensively evaluate the compound's impact. Targeted in vivo fluorescence analyses of the hippocampal slices using propidium iodide as a marker for cell death was utilized. The in vivo study involved five dams, each with eight pups, which were randomly assigned to five experimental groups (n = 8 pups). After administering treatments intraperitoneally over six months, various brain regions were assessed for neuropathologies using different immunohistochemical markers. High fluorescence intensity was observed in the hippocampal slices treated with vanadium, signifying cell death. Vanadium-exposed mice exhibited demyelination, microgliosis, and neuronal cell loss. Significantly, treatment with ZA-II-05 resulted in reduced cellular death in the rat hippocampal slices and preserved cellular integrity and morphological architecture in different anatomical regions, suggesting its potential in countering vanadium-induced neurotoxicity.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| | | | - Paul Chazot
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK;
| | - Ademola A. Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan 200284, Nigeria;
| | - Samuel Ohiomokhare
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK;
| | - Oluwabusayo Racheal Folarin
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| | - Taidinda Tashara Gilbert
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| | - Madison Fuller
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph’s University, Philadelphia, PA 19131, USA; (M.F.); (T.L.)
| | - Toan Luong
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph’s University, Philadelphia, PA 19131, USA; (M.F.); (T.L.)
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA;
| | - James O. Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| |
Collapse
|
3
|
Ścibior A, Llopis J, Dobrakowski PP, Męcik-Kronenberg T. CNS-Related Effects Caused by Vanadium at Realistic Exposure Levels in Humans: A Comprehensive Overview Supplemented with Selected Animal Studies. Int J Mol Sci 2023; 24:ijms24109004. [PMID: 37240351 DOI: 10.3390/ijms24109004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Neurodegenerative disorders, which are currently incurable diseases of the nervous system, are a constantly growing social concern. They are progressive and lead to gradual degeneration and/or death of nerve cells, resulting in cognitive deterioration or impaired motor functions. New therapies that would ensure better treatment results and contribute to a significant slowdown in the progression of neurodegenerative syndromes are constantly being sought. Vanadium (V), which is an element with a wide range of impacts on the mammalian organism, is at the forefront among the different metals studied for their potential therapeutic use. On the other hand, it is a well-known environmental and occupational pollutant and can exert adverse effects on human health. As a strong pro-oxidant, it can generate oxidative stress involved in neurodegeneration. Although the detrimental effects of vanadium on the CNS are relatively well recognized, the role of this metal in the pathophysiology of various neurological disorders, at realistic exposure levels in humans, is not yet well characterized. Hence, the main goal of this review is to summarize data on the neurological side effects/neurobehavioral alterations in humans, in relation to vanadium exposure, with the focus on the levels of this metal in biological fluids/brain tissues of subjects with some neurodegenerative syndromes. Data collected in the present review indicate that vanadium cannot be excluded as a factor playing a pivotal role in the etiopathogenesis of neurodegenerative illnesses, and point to the need for additional extensive epidemiological studies that will provide more evidence supporting the relationship between vanadium exposure and neurodegeneration in humans. Simultaneously, the reviewed data, clearly showing the environmental impact of vanadium on health, suggest that more attention should be paid to chronic diseases related to vanadium and to the assessment of the dose-response relationship.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów St. 1J, 20-708 Lublin, Poland
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, 18016 Granada, Spain
| | - Paweł Piotr Dobrakowski
- Psychology Institute, Humanitas University in Sosnowiec, Jana Kilińskiego St. 43, 41-200 Sosnowiec, Poland
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 3 Maja St. 13, 41-800 Zabrze, Poland
| |
Collapse
|
4
|
Vasilev D, Dubrovskaya NM, Nalivaeva NN. Caspase Inhibition Restores NEP Expression and Rescues Olfactory Deficit in Rats Caused by Prenatal Hypoxia. J Mol Neurosci 2022; 72:1516-1526. [PMID: 35344141 DOI: 10.1007/s12031-022-01986-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023]
Abstract
Development of the olfactory system begins early in embryogenesis and is important for the survival of new-borns in postnatal life. Olfactory malfunction in early life disrupts development of behavioural patterns while with ageing manifests development of neurodegenerative disorders. Previously, we have shown that prenatal hypoxia in rats leads to impaired olfaction in the offspring and correlates with reduced expression of a neuropeptidase neprilysin (NEP) in the brain structures involved in processing of the olfactory stimuli. Prenatal hypoxia also resulted in an increased activity of caspases in rat brain and its inhibition restored NEP content in the brain tissue and improved rat memory. In this study, we have analysed effects of intraventricular administration of a caspase inhibitor Ac-DEVD-CHO on NEP mRNA expression, the number of dendritic spines and olfactory function of rats subjected to prenatal hypoxia on E14. The data obtained demonstrated that a single injection of the inhibitor on P20 restored NEP mRNA levels and number of dendritic spines in the entorhinal and parietal cortices, hippocampus and rescued rat olfactory function in food search and odour preference tests. The data obtained suggest that caspase activation caused by prenatal hypoxia contributes to the olfactory dysfunction in developing animals and that caspase inhibition restores the olfactory deficit via upregulating NEP expression and neuronal networking. Because NEP is a major amyloid-degrading enzyme, any decrease in its expression and activity not only impairs brain functions but also predisposes to accumulation of the amyloid-β peptide and development of neurodegeneration characteristic of Alzheimer's disease.
Collapse
Affiliation(s)
- Dimitrii Vasilev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez av, Saint Petersburg, 194223, Russia.
| | - Nadezhda M Dubrovskaya
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez av, Saint Petersburg, 194223, Russia
| | - Natalia N Nalivaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez av, Saint Petersburg, 194223, Russia.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
5
|
Rojas-Lemus M, López-Valdez N, Bizarro-Nevares P, González-Villalva A, Ustarroz-Cano M, Zepeda-Rodríguez A, Pasos-Nájera F, García-Peláez I, Rivera-Fernández N, Fortoul TI. Toxic Effects of Inhaled Vanadium Attached to Particulate Matter: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168457. [PMID: 34444206 PMCID: PMC8391836 DOI: 10.3390/ijerph18168457] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Environmental pollution is a worldwide problem recognized by the World Health Organization as a major health risk factor that affects low-, middle- and high-income countries. Suspended particulate matter is among the most dangerous pollutants, since it contains toxicologically relevant agents, such as metals, including vanadium. Vanadium is a transition metal that is emitted into the atmosphere especially by the burning of fossil fuels to which dwellers are exposed. The objective of this literature review is to describe the toxic effects of vanadium and its compounds when they enter the body by inhalation, based especially on the results of a murine experimental model that elucidates the systemic effects that vanadium has on living organisms. To achieve this goal, we reviewed 85 articles on the relevance of vanadium as a component of particulate matter and its toxic effects. Throughout several years of research with the murine experimental model, we have shown that this element generates adverse effects in all the systems evaluated, because it causes immunotoxicity, hematotoxicity, neurotoxicity, nephrotoxicity and reprotoxicity, among other noxious effects. The results with this experimental model add evidence of the effects generated by environmental pollutants and increase the body of evidence that can lead us to make more intelligent environmental decisions for the welfare of all living beings.
Collapse
Affiliation(s)
- Marcela Rojas-Lemus
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Nelly López-Valdez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Patricia Bizarro-Nevares
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Adriana González-Villalva
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Martha Ustarroz-Cano
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Armando Zepeda-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Francisco Pasos-Nájera
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Isabel García-Peláez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico;
| | - Teresa I. Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
- Correspondence:
| |
Collapse
|
6
|
Shabani S. A mechanistic view on the neurotoxic effects of air pollution on central nervous system: risk for autism and neurodegenerative diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6349-6373. [PMID: 33398761 DOI: 10.1007/s11356-020-11620-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Many reports have shown a strong association between exposure to neurotoxic air pollutants like heavy metal and particulate matter (PM) as an active participant and neurological disorders. While the effects of these toxic pollutants on cardiopulmonary morbidity have principally been studied, growing evidence has shown that exposure to polluted air is associated with memory impairment, communication deficits, and anxiety/depression among all ages. So, these toxic pollutants in the environment increase the risk of neurodegenerative disease, ischemia, and autism spectrum disorders (ASD). The precise mechanisms in which air pollutants lead to communicative inability, social inability, and declined cognition have remained unknown. Various animal model studies show that amyloid precursor protein (APP), processing, oxidant/antioxidant balance, and inflammation pathways change following the exposure to constituents of polluted air. In the present review study, we collect the probable molecular mechanisms of deleterious CNS effects in response to various air pollutants.
Collapse
Affiliation(s)
- Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Gallardo-Vera F, Tapia-Rodriguez M, Diaz D, Fortoul van der Goes T, Montaño LF, Rendón-Huerta EP. Vanadium pentoxide increased PTEN and decreased SHP1 expression in NK-92MI cells, affecting PI3K-AKT-mTOR and Ras-MAPK pathways. J Immunotoxicol 2018; 15:1-11. [PMID: 29228829 DOI: 10.1080/1547691x.2017.1404662] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vanadium is an air pollutant that imparts immunosuppressive effects on NK cell immune responses, in part, by dysregulating interleukin (IL)-2/IL-2R-mediated JAK signaling pathways and inducing apoptosis. The aim of the present study was to evaluate effects of vanadium pentoxide (V2O5) on other IL-2 receptor-mediated signaling pathways, i.e. PI3K-AKT-mTOR and Ras-MAPK. Here, IL-2-independent NK-92MI cells were exposed to different V2O5 doses for 24 h periods. Expression of PI3K, Akt, mTOR, ERK1/2, MEK1, PTEN, SHP1, BAD and phosphorylated forms, as well as caspases-3, -8, -9, BAX and BAK in/on the cells were then determined by flow cytometry. The results show that V2O5 was cytotoxic to NK cells in a dose-related manner. Exposure increased BAD and pBAD expression and decreased that of BAK and BAX, but cell death was not related to caspase activation. At 400 µM V2O5, expression of PI3K-p85 regulatory subunit increased 20% and pPI3K 50%, while that of the non-pPI3K 110α catalytic subunit decreased by 20%. At 200 μM, V2O5 showed significant decrease in non-pAkt expression (p < 0.05); the decrease in pAkt expression was significant at 100 μM. Non-pmTOR expression displayed a significant downward trend beginning at 100 μM. Expressions of pMEK-1/2 and pERK-1/2 increased substantially at 200 μM V2O5. No differences were found with non-phosphorylated ERK-1/2. PTEN expression increased significantly at 100 μM V2O5 exposure whereas pPTEN decreased by 18% at 25 μM V2O5 concentrations, but remained unchanged thereafter. Lastly, V2O5 at all doses decreased SHP1 expression and increased expression of its phosphorylated form. These results indicated a toxic effect of V2O5 on NK cells that was due in part to dysregulation of signaling pathways mediated by IL-2 via increased PTEN and decreased SHP1 expression. These results can help to explain some of the known deleterious effects of this particular form of vanadium on innate immune responses.
Collapse
Affiliation(s)
- Francisco Gallardo-Vera
- a Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM , Mexico City , México
| | - Miguel Tapia-Rodriguez
- b Unidad de Microscopia , Instituto de Investigaciones Biomédicas, UNAM , Mexico City , México
| | - Daniel Diaz
- c Facultad de Ciencias , UNAM , Mexico City , México
| | - Teresa Fortoul van der Goes
- a Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM , Mexico City , México
| | - Luis F Montaño
- a Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM , Mexico City , México
| | - Erika P Rendón-Huerta
- a Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM , Mexico City , México
| |
Collapse
|
8
|
Colín‐Barenque L, Bizarro‐Nevares P, González Villalva A, Pedraza‐Chaverri J, Medina‐Campos ON, Jimenez‐Martínez R, Rodríguez‐Rangel DS, Reséndiz S, Fortoul TI. Neuroprotective effect of carnosine in the olfactory bulb after vanadium inhalation in a mouse model. Int J Exp Pathol 2018; 99:180-188. [PMID: 30198103 PMCID: PMC6157302 DOI: 10.1111/iep.12285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 07/07/2018] [Indexed: 12/25/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine) is synthesized in the olfactory system, has antioxidant activity as a scavenger of free radicals and has been reported to have neuroprotective action in diseases which have been attributed to oxidative damage. In neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, impairment of olfactory function has been described. Vanadium derivatives are environmental pollutants, and its toxicity has been associated with oxidative stress. Vanadium toxicity on the olfactory bulb was reported previously. This study investigates the neuroprotective effect of carnosine on the olfactory bulb in a mice model of vanadium inhalation. Male mice were divided into four groups: vanadium pentoxide (V2 O5 ) [0.02 mol/L] inhalation for one hour twice a week; V2 O5 inhalation plus 1 mg/kg of carnosine administered daily; carnosine only, and the control group that inhaled saline. The olfactory function was evaluated using the odorant test. Animals were sacrificed four weeks after exposure. The olfactory bulbs were dissected and processed using the rapid Golgi method; cytological and ultrastructural analysis was performed and malondialdehyde (MDA) concentrations were measured. The results showed evidence of olfactory dysfunction caused by vanadium exposure and also an increase in MDA levels, loss of dendritic spines and necrotic neuronal death in the granule cells. But, in contrast, vanadium-exposed mice treated with carnosine showed an increase in dendritic spines and a decrease in neuronal death and in MDA levels when compared with the group exposed to vanadium without carnosine. These results suggest that dendritic spine loss and ultrastructural alterations in the granule cells induced by vanadium are mediated by oxidative stress and that carnosine may modulate the neurotoxic vanadium action, improving the olfactory function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stefanie Reséndiz
- Departamento de Biología Celular y TisularFacultad de MedicinaUNAMMéxico CityMéxico
| | - Teresa I. Fortoul
- Departamento de Biología Celular y TisularFacultad de MedicinaUNAMMéxico CityMéxico
| |
Collapse
|
9
|
Azeez IA, Olopade F, Laperchia C, Andrioli A, Scambi I, Onwuka SK, Bentivoglio M, Olopade JO. Regional Myelin and Axon Damage and Neuroinflammation in the Adult Mouse Brain After Long-Term Postnatal Vanadium Exposure. J Neuropathol Exp Neurol 2016; 75:843-54. [PMID: 27390101 DOI: 10.1093/jnen/nlw058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Environmental exposure to vanadium occurs in areas of persistent burning of fossil fuels; this metal is known to induce oxidative stress and oligodendrocyte damage. Here, we determined whether vanadium exposure (3 mg/kg) in mice during the first 3 postnatal months leads to a sustained neuroinflammatory response. Body weight monitoring, and muscle strength and open field tests showed reduction of body weight gain and locomotor impairment in vanadium-exposed mice. Myelin histochemistry and immunohistochemistry for astrocytes, microglia, and nonphosphorylated neurofilaments revealed striking regional heterogeneity. Myelin damage involved the midline corpus callosum and fibers in cortical gray matter, hippocampus, and diencephalon that were associated with axonal damage. Astrocyte and microglial activation was identified in the same regions and in the internal capsule; however, no overt myelin and axon damage was observed in the latter. Double immunofluorescence revealed induction of high tumor necrosis factor (TNF) immunoreactivity in reactive astrocytes. Western blotting analysis showed significant induction of TNF and interleukin-1β expression. Together these findings show that chronic postnatal vanadium exposure leads to functional deficit and region-dependent myelin damage that does not spare axons. This injury is associated with glial cell activation and proinflammatory cytokine induction, which may reflect both neurotoxic and neuroprotective responses.
Collapse
Affiliation(s)
- Idris A Azeez
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Funmilayo Olopade
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Claudia Laperchia
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Anna Andrioli
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Ilaria Scambi
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Silas K Onwuka
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Marina Bentivoglio
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - James O Olopade
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO).
| |
Collapse
|
10
|
Aureliano M. Decavanadate Toxicology and Pharmacological Activities: V10 or V1, Both or None? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6103457. [PMID: 26904166 PMCID: PMC4745863 DOI: 10.1155/2016/6103457] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023]
Abstract
This review covers recent advances in the understanding of decavanadate toxicology and pharmacological applications. Toxicological in vivo studies point out that V10 induces several changes in several oxidative stress parameters, different from the ones observed for vanadate (V1). In in vitro studies with mitochondria, a particularly potent V10 effect, in comparison with V1, was observed in the mitochondrial depolarization (IC50 = 40 nM) and oxygen consumption (99 nM). It is suggested that mitochondrial membrane depolarization is a key event in decavanadate induction of necrotic cardiomyocytes death. Furthermore, only decavanadate species and not V1 potently inhibited myosin ATPase activity stimulated by actin (IC50 = 0.75 μM) whereas exhibiting lower inhibition activities for Ca(2+)-ATPase activity (15 μM) and actin polymerization (17 μM). Because both calcium pump and actin decavanadate interactions lead to its stabilization, it is likely that V10 interacts at specific locations with these proteins that protect against hydrolysis but, on the other hand, it may induce V10 reduction to oxidovanadium(IV). Putting it all together, it is suggested that the pharmacological applications of V10 species and compounds whose mechanism of action is still to be clarified might involve besides V10 and V1 also vanadium(IV) species.
Collapse
Affiliation(s)
- M. Aureliano
- Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-135 Faro, Portugal
- CCMar (Centre of Marine Sciences), University of Algarve, Campus of Gambelas, 8005-135 Faro, Portugal
| |
Collapse
|