1
|
Rana R, Natoli TA, Khandelwal P, Pissios P, Muhammad AB, Chipashvili V, Farrington KP, Zhou W, Zheng G, Bukanov NO, Pocai A, Magnone MC. VEPTP inhibition with an extracellular domain targeting antibody did not restore albuminuria in a mouse model of diabetic kidney disease. Physiol Rep 2024; 12:e70058. [PMID: 39324545 PMCID: PMC11425269 DOI: 10.14814/phy2.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. DKD is a heterogeneous disease with complex pathophysiology where early endothelial dysfunction is associated with disease progression. The Tie2 receptor and Angiopoietin 1 and 2 ligands are critical for maintaining endothelial cell permeability and integrity. Tie2 signaling is negatively regulated by the endothelial specific transmembrane receptor Vascular Endothelial Protein Tyrosine Phosphatase (VEPTP). Genetic deletion of VEPTP protects from hypertension and diabetes induced renal injury in a mouse model of DKD. Here, we show that VEPTP inhibition with an extracellular domain targeting VEPTP antibody induced Tie2 phosphorylation and improved VEGF-A induced vascular permeability both in vitro and in vivo. Treatment with the VEPTP blocking antibody decreased the renal expression of endothelial activation markers (Angpt2, Edn1, and Icam1) but failed to improve kidney function in db/db uninephrectomized ReninAAV DKD mice.
Collapse
Affiliation(s)
- Rajashree Rana
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentSpring HousePennsylvaniaUSA
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentCambridgeMassachusettsUSA
| | - Thomas A. Natoli
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentSpring HousePennsylvaniaUSA
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentCambridgeMassachusettsUSA
| | - Puneet Khandelwal
- Biologics Discovery, Johnson & Johnson Research & DevelopmentSpring HousePennsylvaniaUSA
| | - Pavlos Pissios
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentSpring HousePennsylvaniaUSA
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentCambridgeMassachusettsUSA
| | - Abdul Bari Muhammad
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentSpring HousePennsylvaniaUSA
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentCambridgeMassachusettsUSA
| | - Vaja Chipashvili
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentSpring HousePennsylvaniaUSA
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentCambridgeMassachusettsUSA
| | - Krista P. Farrington
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentSpring HousePennsylvaniaUSA
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentCambridgeMassachusettsUSA
| | - Wen Zhou
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentSpring HousePennsylvaniaUSA
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentCambridgeMassachusettsUSA
| | - Gang Zheng
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentSpring HousePennsylvaniaUSA
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentCambridgeMassachusettsUSA
| | - Nikolay O. Bukanov
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentSpring HousePennsylvaniaUSA
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentCambridgeMassachusettsUSA
| | - Alessandro Pocai
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentSpring HousePennsylvaniaUSA
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentCambridgeMassachusettsUSA
| | - Maria Chiara Magnone
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentSpring HousePennsylvaniaUSA
- Cardiovascular and Metabolism, Johnson & Johnson Research & DevelopmentCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
3
|
Nephroprotective Effects of Semaglutide as Mono- and Combination Treatment with Lisinopril in a Mouse Model of Hypertension-Accelerated Diabetic Kidney Disease. Biomedicines 2022; 10:biomedicines10071661. [PMID: 35884965 PMCID: PMC9313388 DOI: 10.3390/biomedicines10071661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Obesity, hyperglycemia and hypertension are critical risk factors for development of diabetic kidney disease (DKD). Emerging evidence suggests that glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular and renal outcomes in type 2 diabetes patients. Here, we characterized the effect of the long-acting GLP-1R agonist semaglutide alone and in combination with an ACE inhibitor (lisinopril) in a model of hypertension-accelerated, advanced DKD facilitated by adeno-associated virus-mediated renin overexpression (ReninAAV) in uninephrectomized (UNx) female diabetic db/db mice. Methods: Female db/db mice received a single intravenous injection of ReninAAV 1 week prior to UNx. Six weeks post-nephrectomy, db/db UNx-ReninAAV mice were administered (q.d.) vehicle, semaglutide (30 nmol/kg, s.c.) or semaglutide (30 nmol/kg, s.c.) + lisinopril (30 mg/kg, p.o.) for 11 weeks. Endpoints included blood pressure, plasma/urine biochemistry, kidney histopathology and RNA sequencing. Results: Vehicle-dosed db/db UNx-ReninAAV mice developed hallmarks of DKD characterized by severe albuminuria and advanced glomerulosclerosis. Semaglutide robustly reduced hyperglycemia, hypertension and albuminuria concurrent with notable improvements in glomerulosclerosis severity, podocyte filtration slit density, urine/renal kidney injury molecule-1 (KIM-1) levels and gene expression markers of inflammation and fibrogenesis in db/db UNx-ReninAAV mice. Co-administration of lisinopril further ameliorated hypertension and glomerulosclerosis. Conclusions: Semaglutide improves disease hallmarks in the db/db UNx-ReninAAV mouse model of advanced DKD. Further benefits on renal outcomes were obtained by adjunctive antihypertensive standard of care. Collectively, our study supports the development of semaglutide for management of DKD.
Collapse
|
4
|
Wu H, Gonzalez Villalobos R, Yao X, Reilly D, Chen T, Rankin M, Myshkin E, Breyer MD, Humphreys BD. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab 2022; 34:1064-1078.e6. [PMID: 35709763 PMCID: PMC9262852 DOI: 10.1016/j.cmet.2022.05.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
Diabetic kidney disease (DKD) occurs in ∼40% of patients with diabetes and causes kidney failure, cardiovascular disease, and premature death. We analyzed the response of a murine DKD model to five treatment regimens using single-cell RNA sequencing (scRNA-seq). Our atlas of ∼1 million cells revealed a heterogeneous response of all kidney cell types both to DKD and its treatment. Both monotherapy and combination therapies targeted differing cell types and induced distinct and non-overlapping transcriptional changes. The early effects of sodium-glucose cotransporter-2 inhibitors (SGLT2i) on the S1 segment of the proximal tubule suggest that this drug class induces fasting mimicry and hypoxia responses. Diabetes downregulated the spliceosome regulator serine/arginine-rich splicing factor 7 (Srsf7) in proximal tubule that was specifically rescued by SGLT2i. In vitro proximal tubule knockdown of Srsf7 induced a pro-inflammatory phenotype, implicating alternative splicing as a driver of DKD and suggesting SGLT2i regulation of proximal tubule alternative splicing as a potential mechanism of action for this drug class.
Collapse
Affiliation(s)
- Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, MO, USA
| | | | - Xiang Yao
- Tox LJ Janssen Research & Development, La Jolla, CA, USA
| | | | - Tao Chen
- PSTS Janssen Research & Development, Shanghai, China
| | | | | | | | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, MO, USA; Department of Developmental Biology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
5
|
Sembach FE, Ægidius HM, Fink LN, Secher T, Aarup A, Jelsing J, Vrang N, Feldt-Rasmussen B, Rigbolt KTG, Nielsen JC, Østergaard MV. Integrative transcriptomic profiling of a mouse model of hypertension-accelerated diabetic kidney disease. Dis Model Mech 2021; 14:dmm049086. [PMID: 34494644 PMCID: PMC8560499 DOI: 10.1242/dmm.049086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
The current understanding of molecular mechanisms driving diabetic kidney disease (DKD) is limited, partly due to the complex structure of the kidney. To identify genes and signalling pathways involved in the progression of DKD, we compared kidney cortical versus glomerular transcriptome profiles in uninephrectomized (UNx) db/db mouse models of early-stage (UNx only) and advanced [UNxplus adeno-associated virus-mediated renin-1 overexpression (UNx-Renin)] DKD using RNAseq. Compared to normoglycemic db/m mice, db/db UNx and db/db UNx-Renin mice showed marked changes in their kidney cortical and glomerular gene expression profiles. UNx-Renin mice displayed more marked perturbations in gene components associated with the activation of the immune system and enhanced extracellular matrix remodelling, supporting histological hallmarks of progressive DKD in this model. Single-nucleus RNAseq enabled the linking of transcriptome profiles to specific kidney cell types. In conclusion, integration of RNAseq at the cortical, glomerular and single-nucleus level provides an enhanced resolution of molecular signalling pathways associated with disease progression in preclinical models of DKD, and may thus be advantageous for identifying novel therapeutic targets in DKD.
Collapse
Affiliation(s)
- Frederikke E. Sembach
- Gubra ApS, Hørsholm Kongevej 11B, 2970 Hørsholm, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | | | - Thomas Secher
- Gubra ApS, Hørsholm Kongevej 11B, 2970 Hørsholm, Denmark
| | | | - Jacob Jelsing
- Gubra ApS, Hørsholm Kongevej 11B, 2970 Hørsholm, Denmark
| | - Niels Vrang
- Gubra ApS, Hørsholm Kongevej 11B, 2970 Hørsholm, Denmark
| | - Bo Feldt-Rasmussen
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Nephrology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
6
|
Østergaard MV, Secher T, Christensen M, Salinas CG, Roostalu U, Skytte JL, Rune I, Hansen HH, Jelsing J, Vrang N, Fink LN. Therapeutic effects of lisinopril and empagliflozin in a mouse model of hypertension-accelerated diabetic kidney disease. Am J Physiol Renal Physiol 2021; 321:F149-F161. [PMID: 34180715 DOI: 10.1152/ajprenal.00154.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypertension is a critical comorbidity for progression of diabetic kidney disease (DKD). To facilitate the development of novel therapeutic interventions with the potential to control disease progression, there is a need to establish translational animal models that predict treatment effects in human DKD. The present study aimed to characterize renal disease and outcomes of standard of medical care in a model of advanced DKD facilitated by adeno-associated virus (AAV)-mediated renin overexpression in uninephrectomized (UNx) db/db mice. Five weeks after single AAV administration and 4 wk after UNx, female db/db UNx-ReninAAV mice received (PO, QD) vehicle, lisinopril (40 mg/kg), empagliflozin (20 mg/kg), or combination treatment for 12 wk (n = 17 mice/group). Untreated db/+ mice (n = 8) and vehicle-dosed db/db UNx-LacZAAV mice (n = 17) served as controls. End points included plasma, urine, and histomorphometric markers of kidney disease. Total glomerular numbers and individual glomerular volume were evaluated by whole kidney three-dimensional imaging analysis. db/db UNx-ReninAAV mice developed hallmarks of progressive DKD characterized by severe albuminuria, advanced glomerulosclerosis, and glomerular hypertrophy. Lisinopril significantly improved albuminuria, glomerulosclerosis, tubulointerstitial injury, and inflammation. Although empagliflozin alone had no therapeutic effect on renal endpoints, lisinopril and empagliflozin exerted synergistic effects on renal histological outcomes. In conclusion, the db/db UNx-ReninAAV mouse demonstrates good clinical translatability with respect to physiological and histological hallmarks of progressive DKD. The efficacy of standard of care to control hypertension and hyperglycemia provides a proof of concept for testing novel drug therapies in the model.NEW & NOTEWORTHY Translational animal models of diabetic kidney disease (DKD) are important tools in preclinical research and drug discovery. Here, we show that the standard of care to control hypertension (lisinopril) and hyperglycemia (empagliflozin) improves physiological and histopathological hallmarks of kidney disease in a mouse model of hypertension-accelerated progressive DKD. The findings substantiate hypertension and type 2 diabetes as essential factors in driving DKD progression and provide a proof of concept for probing novel drugs for potential nephroprotective efficacy in this model.
Collapse
|
7
|
Huang S, Sheng X, Susztak K. The kidney transcriptome, from single cells to whole organs and back. Curr Opin Nephrol Hypertens 2019; 28:219-226. [PMID: 30844884 PMCID: PMC6761926 DOI: 10.1097/mnh.0000000000000495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Transcriptome analysis of human kidney samples provides an integrated output of genetic, physiological, or environmental inputs. This review summarizes recent findings including gene expression and genetic variation integration, bulk and single cell gene expression analysis, and describes how such studies have improved our understanding of kidney disease development. RECENT FINDINGS Bulk or whole tissue analysis of patient kidney samples identified a large number of genes, whose levels correlate with kidney function and/or structural damage. These genes were enriched for metabolic and immune functions. Using expression quantitative trait analysis, genetic variations-driven gene expression can be identified. Recent developments in single cell sequencing defined cell-type-specific gene expression changes and highlighted specific cell types for disease development. SUMMARY Recent advancement in whole tissue transcriptomics, specifically incorporating genotype information and single cell data have been powerful to identify kidney disease-associated genes, pathways, and cell types.
Collapse
Affiliation(s)
- Shizheng Huang
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Xin Sheng
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|