1
|
Tekşen Y, Gündüz MK, Berikten D, Özatik FY, Aydın HE. Peganum harmala L. seed extract attenuates anxiety and depression in rats by reducing neuroinflammation and restoring the BDNF/TrkB signaling pathway and monoamines after exposure to chronic unpredictable mild stress. Metab Brain Dis 2024; 39:1523-1541. [PMID: 39172328 DOI: 10.1007/s11011-024-01416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Depression is a mental disorder characterised by persistent low mood, anhedonia and cognitive impairment that affects an estimated 3.8% of the world's population, including 5% of adults. Peganum harmala L. (P. harmala) is a medicinal plant and has been reported to be effective against Alzheimer's disease, Parkinson's disease and depression. The present study was aimed to evaluate the behavioral and pharmacological effects of P. harmala seed extract in rats exposed to chronic unpredictable mild stress (CUMS) in vivo and to investigate the mechanism of action. CUMS-exposed rats were treated with P. harmala extract (75 and 150 mg/kg, i.p.) for 2 weeks. HPLC analysis was used to determine the concentration of harmaline and harmine alkaloids in the extract. Heavy metal analysis in seeds was performed by ICP-MS. Our results showed that P. harmala at the dose of 150 mg/kg significantly reduced the depressive-like behaviors in CUMS-exposed rats, as evidenced by increased sucrose consumption in the sucrose preference test (SPT), decreased immobility time in the forced swim test (FST) and plasma corticosterone levels, increased the time spent in open arms in the elevated plus maze (EPM), and improved memory and learning in the passive avoidance test (PAT). In addition, P. harmala decreased monoamine oxidase-A (MAO-A) levels, and increased serotonin (5-HT), dopamine (DA), and noradrenaline (NA) levels in the brains of rats exposed to CUMS. P. harmala decreased the expression of the pro-inflammatory transcription factor nuclear factor-κB (NF-κB), and increased the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) in rat brain. Furthermore, P. harmala improved brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) protein expression in rat brain. In conclusion, P. harmala at a dose of 150 mg/kg is more effective in preventing depressive-like behavior in CUMS-exposed rats by improving neurotransmitter levels, reducing oxidative stress, suppressing neuroinflammation and activating the BDNF/TrkB pathway, all of which are important in the pathogenesis of depression.
Collapse
Affiliation(s)
- Yasemin Tekşen
- Faculty of Medicine, Department of Pharmacology, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye.
| | - Meliha Koldemir Gündüz
- Faculty of Engineering and Natural Sciences, Department of Basic Sciences of Engineering, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye
| | - Derya Berikten
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kütahya, Türkiye
| | - Fikriye Yasemin Özatik
- Faculty of Medicine, Department of Pharmacology, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye
| | - Hasan Emre Aydın
- Faculty of Medicine, Department of Neurosurgery, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kütahya, Türkiye
| |
Collapse
|
2
|
Zhi J, Yin L, Zhang Z, Lv Y, Wu F, Yang Y, Zhang E, Li H, Lu N, Zhou M, Hu Q. Network pharmacology-based analysis of Jin-Si-Wei on the treatment of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117291. [PMID: 37925002 DOI: 10.1016/j.jep.2023.117291] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jin-Si-Wei (JSW), a traditional Chinese medicine (TCM) formula, have cognitive enhancing effect and delay the memory decline in an animal model of AD, which has been reported. However, the therapeutic mechanism of JSW in the treatment of AD remains unclear. AIM OF THE STUDY This study aimed to verify the pharmacodynamics of JSW in the treatment of AD, and to explore its potential mechanism based on network pharmacology, molecular docking and experimental validation both in vitro and in vivo. MATERIALS AND METHODS In this study, the underlying mechanism of JSW against AD was investigated by the integration of network pharmacology. Then, the core pathways and biological process of JSW were verified by experiment, including behavioral test and pathological and biochemical assays with 6-month-old APPswe/PS1ΔE9 transgenic (APP/PS1) mice in vivo and verified with Aβ1-42-stimulated SH-SY5Y cells in vitro. At last, molecular docking was used to show the binding activity of each active ingredient to the core genes of JSW treatment in AD. RESULTS A Drug-Ingredient-Target network was established, which included 363 ingredients and 116 targets related to the JSW treatment of AD. The main metabolic pathway of JSW treatment for AD is neuroactive ligand-receptor interaction pathway, and biological processes are mainly involved in Aβ metabolic process. In vivo experiments, compared with APP/PS1 mice, the cognitive and memory ability of mice was significantly improved after JSW administration. In brain tissue of APP/PS1 mice, JSW could increase the contents of low-density lipoprotein receptor-related protein 1 (LRP-1), enkephalinase (NEP) and Acetyl choline (ACh), and decrease the contents of Aβ1-42, amyloid precursor protein (APP) and receptor for advanced glycation end products (RAGE), decrease the vitality of cholinesterase (AChE) and choline acetyltransferase (ChAT). Besides, JSW could increase α-secretase expression and decrease β/γ-secretase expression, and improve the number and morphology of synapses in CA1 region of the hippocampus of APP/PS1 mice. In vitro experiments, Drug-Containing Serum (JSW-serum) has a neuroprotective effect by reducing the apoptosis on Aβ1-42-stimulated SH-SY5Y cells. Molecular docking results showed that 2-Isopropyl-8-methylphenanthrene-3,4-dione had strong binding activity with PTGS2, which maybe a potential ingredient for the treatment of AD. CONCLUSIONS JSW improves AD in APP/PS1 mice, and this therapeutic effect may be achieved in part by altering the neuroactive ligand-receptor interaction pathway.
Collapse
Affiliation(s)
- Jiayi Zhi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Li Yin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zhoudong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, PR China
| | - Yaozhong Lv
- Nanjing Central Hospital, Nanjing, 210018, PR China
| | - Fan Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yang Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Enming Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, PR China.
| | - Ning Lu
- Nanjing Central Hospital, Nanjing, 210018, PR China.
| | - Mengze Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Qinghua Hu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| |
Collapse
|
3
|
Berdasco C, Pinto A, Blake MG, Correa F, Carbajosa NAL, Celi AB, Geoghegan PA, Cangelosi A, Nuñez M, Gironacci MM, Goldstein J. Cognitive Deficits Found in a Pro-inflammatory State are Independent of ERK1/2 Signaling in the Murine Brain Hippocampus Treated with Shiga Toxin 2 from Enterohemorrhagic Escherichia coli. Cell Mol Neurobiol 2023; 43:2203-2217. [PMID: 36227397 PMCID: PMC11412172 DOI: 10.1007/s10571-022-01298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) produces hemorrhagic colitis, hemolytic uremic syndrome (HUS), and acute encephalopathy. The mortality rate in HUS increases significantly when the central nervous system (CNS) is involved. Besides, EHEC also releases lipopolysaccharide (LPS). Many reports have described cognitive dysfunctions in HUS patients, the hippocampus being one of the brain areas targeted by EHEC infection. In this context, a translational murine model of encephalopathy was employed to establish the deleterious effects of Stx2 and the contribution of LPS in the hippocampus. The purpose of this work is to elucidate the signaling pathways that may activate the inflammatory processes triggered by Stx2, which produces cognitive alterations at the level of the hippocampus. Results demonstrate that Stx2 produced depression-like behavior, pro-inflammatory cytokine release, and NF-kB activation independent of the ERK1/2 signaling pathway, while co-administration of Stx2 and LPS reduced memory index. On the other hand, LPS activated NF-kB dependent on ERK1/2 signaling pathway. Cotreatment of Stx2 with LPS aggravated the pathologic state, while dexamethasone treatment succeeded in preventing behavioral alterations. Our present work suggests that the use of drugs such as corticosteroids or NF-kB signaling inhibitors may serve as neuroprotectors from EHEC infection.
Collapse
Affiliation(s)
- Clara Berdasco
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica "Houssay" - CONICET (IFIBIO), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alipio Pinto
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica "Houssay" - CONICET (IFIBIO), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariano G Blake
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología y Biofísica "Houssay" - CONICET (IFIBIO), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos - CONICET (CEFyBO), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nadia A Longo Carbajosa
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas - CONICET (IQUIFIB), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana B Celi
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica "Houssay" - CONICET (IFIBIO), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia A Geoghegan
- Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán" - ANLIS - Centro Nacional de Control de Calidad de Biológicos, Buenos Aires, Argentina
| | - Adriana Cangelosi
- Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán" - ANLIS - Centro Nacional de Control de Calidad de Biológicos, Buenos Aires, Argentina
| | - Myriam Nuñez
- Cátedra de Matemáticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela M Gironacci
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas - CONICET (IQUIFIB), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Goldstein
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica "Houssay" - CONICET (IFIBIO), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Pourié G, Guéant JL, Quadros EV. Behavioral profile of vitamin B 12 deficiency: A reflection of impaired brain development, neuronal stress and altered neuroplasticity. VITAMINS AND HORMONES 2022; 119:377-404. [PMID: 35337627 DOI: 10.1016/bs.vh.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Our understanding of brain biology and function is one of the least characterized and therefore, there are no effective treatments for most of neurological disorders. The influence of vitamins, and particularly vitamin B12, in neurodegenerative disease is demonstrated but largely unresolved. Behaviors are often quantified to attest brain dysfunction alone or in parallel with neuro-imaging to identify regions involved. Nevertheless, attention should be paid to extending observations made in animal models to humans, since, first, behavioral tests have to be adjusted in each model to address the initial question and second, because brain analysis should not be conducted for a whole organ but rather to specific sub-structures to better define function. Indeed, cognitive functions such as psychiatric disorders and learning and memory are often cited as the most impacted by a vitamin B12 deficiency. In addition, differential dysfunctions and mechanisms could be defined according sub-populations and ages. Vitamin B12 enters the cell bound to Transcobalamin, through the Transcobalamin Receptor and serves in two cell compartments, the lipid metabolism in the mitochondrion and the one-carbon metabolism involved in methylation reactions. Dysfunctions in these mechanisms can lead to two majors outcomes; axons demyelinisation and upregulation of cellular stress involving mislocalization of RNA binding proteins such as the ELAVL1/HuR or the dysregulation of pro- or anti-oxidant NUDT15, TXNRD1, VPO1 and ROC genes. Finally, it appears that apart from developmental problems that have to be identified and treated as early as possible, other therapeutic approaches for behavioral dysfunctions should investigate cellular methylation, oxidative and endoplasmic reticulum stress and mitochondrial function.
Collapse
Affiliation(s)
- Grégory Pourié
- Université de Lorraine, Inserm, UMRS 1256, NGERE-Nutrition, Genetics, and Environmental Risk Exposure, Nancy, France.
| | - Jean-Louis Guéant
- Université de Lorraine, Inserm, UMRS 1256, NGERE-Nutrition, Genetics, and Environmental Risk Exposure, Nancy, France; CHRU-Nancy, National Center of Inborn Errors of Metabolism, Nancy, France
| | - Edward V Quadros
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
5
|
Mundorf A, Bölükbas I, Freund N. Maternal separation: Does it hold the potential to model consequences of postpartum depression? Dev Psychobiol 2022; 64:e22219. [PMID: 35050513 DOI: 10.1002/dev.22219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
The postpartum period is a sensitive time where women are especially vulnerable to develop postpartum depression (PPD), with 10%-15% of women affected. This review investigates whether the maternal separation (MS) paradigm in rodents holds the potential to help to understand mothers suffering from PPD. MS is a well-established stress model to investigate effects on infants, whereas effects on the dam are often overlooked. The database PubMed was searched for studies investigating effects of daily MS within the first weeks after parturition on dams in rats and mice and compared to findings in PPD mothers. MS was categorized as brief MS (5-45 min) with or without handling of pups and long MS (3-4 h and longer). MS alters maternal care, depressive-like behavior, anxiety, and aggression; leads to alterations in neuronal gene expression; and affects hormone and neurotransmitter levels similar to observations in PPD patients. Even though there are disparities between human and rodent mothers, with some results differing in directionality, as well as the reason for separation (self-induced in PPD, externally induced in MS), the overall effects found on neurobiological, hormonal, and behavioral levels mostly coincide. Thus, the MS paradigm can add relevant knowledge to existing PPD animal models, further advancing the study of PPD.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany.,Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Ibrahim Bölükbas
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Abstract
Heterocyclic aromatic amines (HAAs) are mainly formed in the pyrolysis process during high-temperature cooking of meat. Meat consumption is very typical of the western diet, and the amount of meat consumption in the eastern countries is growing rapidly; HAAs represents widespread exposure. HAAs are classified as possible human carcinogens; numerous epidemiological studies have demonstrated regular consumption of meat with HAAs as risk factor for cancers. Specific HAAs have received major attention. For example, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine has been extensively studied as a genotoxicant and mutagen, with emergent literature on neurotoxicity. Harmane has been extensively studied for a role in essential tremors and potentially Parkinson's disease (PD). Harmane levels have been demonstrated to be elevated in blood and brain in essential tremor patients. Meat consumption has been implicated in the etiology of neurodegenerative diseases; however, the role of toxicants formed during meat preparation has not been studied. Epidemiological studies are currently examining the association between HAAs and risk of neurodegenerative diseases such as essential tremors and PD. Studies from our laboratory and others have provided strong evidence that HAA exposure produces PD and Alzheimer's disease-relevant neurotoxicity in cellular and animal models. In this review, we summarize and critically evaluate previous studies on HAA-induced neurotoxicity and the molecular basis of potential neurotoxic effects of HAAs. The available studies provide strong support for the premise that HAAs may impact neurological function and that addressing gaps in understanding of adverse neurological outcomes is critical to determine whether these compounds are modifiable risk factors.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Hamieh AM, Mallaret G, Meleine M, Lashermes A, Roumeau S, Boudieu L, Barbier J, Aissouni Y, Ardid D, Gewirtz AT, Carvalho FA, Marchand F. Toll-like receptor 5 knock-out mice exhibit a specific low level of anxiety. Brain Behav Immun 2021; 93:226-237. [PMID: 33516921 DOI: 10.1016/j.bbi.2021.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
While toll-like receptors (TLRs), which mediate innate immunity, are known to play an important role in host defense, recent work suggest their involvement in some integrated behaviors, including anxiety, depressive and cognitive functions. Here, we investigated the potential involvement of the flagellin receptor, TLR5, in anxiety, depression and cognitive behaviors using male TLR5 knock-out (KO) mice. We aobserved a specific low level of basal anxiety in TLR5 KO mice with an alteration of the hypothalamo-pituitary axis (HPA) response to acute restraint stress, illustrated by a decrease of both plasma corticosterone level and c-fos expression in the hypothalamic paraventricular nucleus where TLR5 was expressed, compared to WT littermates. However, depression and cognitive-related behaviors were not different between TLR5 KO and WT mice. Nor there were significant changes in the expression of some cytokines (IL-6, IL-10 and TNF-α) and other TLRs (TLR2, TLR3 and TLR4) in the prefrontal cortex, amygdala and hippocampus of TLR5 KO mice compared to WT mice. Moreover, mRNA expression of BDNF and glucocorticoid receptors in the hippocampus and amygdala, respectively, was not different. Finally, acute intracerebroventricular administration of flagellin, a specific TLR5 agonist, or chronic neomycin treatment did not exhibit a significant main effect, only a significant main effect of genotype was observed between TLR5 KO and WT mice. Together, those findings suggest a previously undescribed and specific role of TLR5 in anxiety and open original prospects in our understanding of the brain-gut axis function.
Collapse
Affiliation(s)
- A M Hamieh
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France; Porsolt SAS, Glatigné, 53940 Le Genest-Saint-Isle, France
| | - G Mallaret
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - M Meleine
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - A Lashermes
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - S Roumeau
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - L Boudieu
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - J Barbier
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - Y Aissouni
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - D Ardid
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - A T Gewirtz
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States
| | - F A Carvalho
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France
| | - F Marchand
- Université Clermont Auvergne, Inserm U1107 NEURO-DOL, Pharmacologie fondamentale et clinique de la douleur, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
8
|
Lv J, Chen L, Zhu N, Sun Y, Pan J, Gao J, Liu J, Liu G, Tao Y. Beta amyloid-induced time-dependent learning and memory impairment: involvement of HPA axis dysfunction. Metab Brain Dis 2020; 35:1385-1394. [PMID: 32860609 DOI: 10.1007/s11011-020-00613-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022]
Abstract
Aβ aggregation is one of the pathological biomarkers of Alzheimer's disease (AD). However, the possible mechanism related to Aβ-induced pathological signaling pathway is still unknown. In the present study, Aβ1-42-induced time-dependent memory impairment and its possible relationship to hypothalamic-pituitary-adrenal (HPA) axis hyperactivity were examined. Aβ1-42-treated mice significantly impaired acquisition activity in the learning curve at 10 days, 1 and 4 months in the Morris water-maze (MWM) task. This learning activity was back to normal at 8 months after Aβ1-42 treatment. In the probe trial test, Aβ1-42-treated mice needed longer latencies to touch the precious platform location and fewer numbers of crossing from 10 days to 4 months after microinjection. This Aβ1-42 induced memory loss was consistent with the results of the step-down passive avoidance test. The HPA axis related parameters, such as corticosterone (CORT) level in the serum, glucocorticoid receptor (GR) and corticotropin-releasing factor receptor (CRF-R) expression in the frontal cortex and hippocampus increased in Aβ1-42-treated mice from 10 days to 4 months. While the downstream molecules phosphorylation of cyclic AMP response element binding (pCREB) and brain-derived neurotrophic factor (BDNF) expression decreased during this time. These effects were back to normal 8 months after treatment with Aβ1-42. Altogether, our results suggested that Aβ1-42 induced significant learning and memory impairment, which is involved in HPA axis dysfunction.
Collapse
Affiliation(s)
- Jinpeng Lv
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, 213000, China
| | - Ling Chen
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Naping Zhu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yindi Sun
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jianchun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jinsheng Gao
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030000, China
| | - Jianwu Liu
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, 213000, China
| | - Guangjun Liu
- The Second People's Hospital of Changzhou, Affiliate Hospital of NanJing Medical University, Changzhou, 213000, China.
| | - Yuanxiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
9
|
Ruan L, Du K, Tao M, Shan C, Ye R, Tang Y, Pan H, Lv J, Zhang M, Pan J. Phosphodiesterase-2 Inhibitor Bay 60-7550 Ameliorates Aβ-Induced Cognitive and Memory Impairment via Regulation of the HPA Axis. Front Cell Neurosci 2019; 13:432. [PMID: 31632240 PMCID: PMC6783519 DOI: 10.3389/fncel.2019.00432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023] Open
Abstract
The dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis is often seen in Alzheimer's disease (AD) patients with cognitive deficits. Selective inhibition of phosphodiesterase (PDE) 4 and 5 has already proven to be effective in reducing beta-amyloid 1-42 (Aβ1-42)-mediated pathology by regulating corticotropin-releasing factor (CRF) and glucocorticoid receptor (GR) expression, suggesting that PDE-dependent signaling is involved in Aβ1-42-induced HPA axis dysfunction. However, nausea and vomiting are the side effects of some PDE4 inhibitors, which turn our attention to other PDEs. PDE2 are highly expressed in the hippocampus and cortex, which associate with learning and memory, but not in the area postrema that would cause vomiting. The present study suggested that microinjection of Aβ1-42 to the intracerebroventricle induced learning and memory impairments and dysregulation of the HPA axis by increased expression of CRF and GR. However, the PDE2 inhibitor Bay 60-7550 significantly ameliorated the learning and memory impairment in the Morris water maze (MWM) and step-down passive avoidance tests. The Aβ1-42-induced increased CRF and GR levels were also reversed by the treatment with Bay 60-7550. These Bay 60-7550's effects were prevented by pretreatment with the PKG inhibitor KT5823. Moreover, the Bay 60-7550-induced downstream phosphorylation of cyclic AMP response element binding (pCREB) and brain-derived neurotrophic factor (BDNF) expression was also prevented (or partially prevented) by KT5823 or the PKA inhibitor H89. These results may lead to the discovery of novel strategies for the treatment of age-related cognitive disorders, such as AD, which affects approximately 44 million people worldwide.
Collapse
Affiliation(s)
- Lina Ruan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Kai Du
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Mengjia Tao
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chunyan Shan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Ruixuan Ye
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yali Tang
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Hanbo Pan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Jinpeng Lv
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Meixi Zhang
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China.,Pingyang County Hospital of Traditional Chinese Medicine, Pingyang County, China
| | - Jianchun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Nasehi M, Hasanvand S, Khakpai F, Zarrindast MR. The effect of CA1 dopaminergic system on amnesia induced by harmane in mice. Acta Neurol Belg 2019; 119:369-377. [PMID: 29767374 DOI: 10.1007/s13760-018-0926-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmane-induced amnesia were examined in mice. We used a single-trial step-down inhibitory avoidance task for the assessment of memory acquisition in adult male mice. Our data indicated that pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) impaired memory acquisition. Moreover, intra-CA1 administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/mouse), dopamine D1 receptor antagonist, SCH23390 (0.25 µg/mouse), dopamine D2 receptor agonist, quinpirole (0.125 and 0.25 µg/mouse) and dopamine D2 receptor antagonist, sulpiride (0.2 and 0.4 µg/mouse) decreased the learning of a single-trial inhibitory avoidance task. Furthermore, pre-training intra-CA1 injection of sub-threshold doses of SKF38393 (0.0625 µg/mouse) or sulpiride (0.1 µg/mouse) increased pre-training harmane (4 and 8 mg/kg, i.p.)-induced amnesia. On the other hand, pre-training intra-CA1 injection of a sub-threshold dose of SCH23390 (0.0625 µg/mouse) reversed amnesia induced by an effective dose of harmane (12 mg/kg; i.p.). In addition, Pre-training intra-CA1 injection of quinpirole (0.0625 µg/mouse) had no effect on memory impairment induced by harmane. These findings indicate the involvement of CA1 dopaminergic system on harmane-induced impairment of memory acquisition.
Collapse
|
11
|
Qin T, Fu X, Yu J, Zhang R, Deng X, Fu Q, Ma Z, Ma S. Modification of GSK3β/β-catenin signaling on saikosaponins-d-induced inhibition of neural progenitor cell proliferation and adult neurogenesis. Toxicology 2019; 424:152233. [DOI: 10.1016/j.tox.2019.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
|
12
|
Zarrindast MR, Khakpai F. The modulatory role of nicotine on cognitive and non-cognitive functions. Brain Res 2019; 1710:92-101. [DOI: 10.1016/j.brainres.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
|
13
|
Wang L, Fang J, Jiang H, Wang Q, Xue S, Li Z, Liu R. 7-Pyrrolidinethoxy-4'-Methoxyisoflavone Prevents Amyloid β-Induced Injury by Regulating Histamine H3 Receptor-Mediated cAMP/CREB and AKT/GSK3β Pathways. Front Neurosci 2019; 13:334. [PMID: 31024245 PMCID: PMC6468582 DOI: 10.3389/fnins.2019.00334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 01/18/2023] Open
Abstract
In studies on the treatment of Alzheimer’s disease (AD), in which cognition is enhanced even modestly or selectively, it has been considered that the histamine H3 receptor (H3R) may be a potential target. In this study, we aimed at evaluating the ability of 7-pyrrolidinethoxy-4′-methoxyisoflavone (indicated as LC1405), a novel potential H3R antagonist identified from our H3R antagonist screening system, to ameliorate amyloid β (Aβ)-induced cognitive deficits, and to explore the underlying mechanisms that are related to H3R-modulated signaling. Our results demonstrated that LC1405 effectively reduced the progression of Aβ-associated disorders, such as improved learning and memory capabilities, preserved tissues from suffering neurodegeneration and ultrastructural abnormalities, and ameliorated cholinergic dysfunction in an APP/PS1 double transgenic mouse model of AD. In an in vitro model, LC1405 protected neuronal cells against copper-induced Aβ toxicity, as demonstrated by the improvement in cell viability and decrease in neuronal apoptotic ratio. In addition, treatment with LC1405 resulted in the up-regulation of acetylcholine (ACh) or histamine release and provided neuroprotection through cellular signaling cascades involving H3R-mediated cAMP/CREB and AKT/GSK3β pathways. Furthermore, the beneficial effects of LC1405 on Aβ-mediated toxicity and H3R-mediated cAMP/CREB and AKT/GSK3β axes were reversed after pharmacological activation of H3R. In conclusion, our results demonstrated that LC1405 blocked Aβ-induced toxicity through H3R-modulated signaling transduction both in vitro and in vivo. The results also suggested that LC1405 might have translational potential as a complementary therapy to control disease progression in AD patients who developed cognitive deficits with H3R-related ACh neurotransmission abnormality.
Collapse
Affiliation(s)
- Linlin Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiansong Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hailun Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Situ Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Nasehi M, Shirkhodaei A, Ebrahimi-Ghiri M, Zarrindast MR. Abolishment of fear memory-disruptive effects REM sleep deprivation by harmane. Biomed Pharmacother 2019; 109:1563-1568. [DOI: 10.1016/j.biopha.2018.10.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022] Open
|
15
|
Xu Y, Zhu N, Xu W, Ye H, Liu K, Wu F, Zhang M, Ding Y, Zhang C, Zhang H, O'Donnell J, Pan J. Inhibition of Phosphodiesterase-4 Reverses Aβ-Induced Memory Impairment by Regulation of HPA Axis Related cAMP Signaling. Front Aging Neurosci 2018; 10:204. [PMID: 30087608 PMCID: PMC6066959 DOI: 10.3389/fnagi.2018.00204] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
Beta amyloid peptides (Aβ) are found to be associated with dysfunction of hypothalamic-pituitary-adrenal axis (HPA axis) that leads to memory and cognitive deficits in patients with Alzheimer's disease (AD). Phosphodiesterase 4 (PDE4) inhibitors increase the intracellular cAMP activities, which may ameliorate cognitive deficits associated with AD. However, it remains unclear whether PDE4-mediated reversal of cognitive impairment in mouse model of AD is related to HPA axis and downstream cAMP-dependent pathway. The present study investigated the effects of PDE4 inhibitor rolipram on Aβ1-42-induced cognitive dysfunction and its underlying mechanisms. The step-down passive avoidance (PA) and Morris water-maze (MWM) tests were conducted 1 week (1 W), 2 months (2 M), and 6 months (6 M) after intracerebroventricular microjection (i.c.v.) of Aβ1-42. The results suggested that memory impairment emerged as early as 1 W, peaked at 2 M, and lasted until 6 M after injection. Chronic treatment with rolipram (0.1, 0.5, 1.0 mg/kg/d, i.p.) for 2 weeks (i.e., treatment started at 1.5 months after Aβ1-42 microinjection) dose-dependently improved memory performance in both MWM and PA tests. Moreover, rolipram reversed the Aβ-induced increases in serum corticosterone (CORT), corticotropin-releasing factor, and glucocorticoid receptors (CRF-R and GR) levels, whereas it decreases in brain-derived neurotropic factor (BDNF) and the ratio of pCREB to CREB expression. These effects of rolipram were prevented by pre-treatment with PKA inhibitor H89. The findings indicated that the protective effects of rolipram against Aβ1-42-induced memory deficits might involve HPA axis and cAMP-CREB-BDNF signaling.
Collapse
Affiliation(s)
- Ying Xu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Naping Zhu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Wen Xu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Han Ye
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Kaiping Liu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Feiyan Wu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Meixi Zhang
- Pingyang Hospital of Traditional Chinese Medicine, Pingyang, China
| | - Yun Ding
- Hangzhou Geriatric Hospital, Hangzhou, China
| | - Chong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Hanting Zhang
- Departments of Behavioral Medicine, Psychiatry and Physiology, and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - James O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jiangchun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Nasehi M, Ghadimi F, Khakpai F, Zarrindast MR. Interaction between harmane, a class of β-carboline alkaloids, and the CA1 serotonergic system in modulation of memory acquisition. Neurosci Res 2017; 122:17-24. [PMID: 28380327 DOI: 10.1016/j.neures.2017.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 03/19/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
Abstract
This study set to assess the involvement of dorsal hippocampus (CA1) serotonergic system on harmane induced memory acquisition deficit. We used one trial step-down inhibitory avoidancetask to evaluate memory retention and then, open field test to evaluate locomotor activity in adult male NMRI mice. The results showed that pre-training intra-peritoneal (i.p.) administration of harmane (12mg/kg) induced impairment of memory acquisition. Pre-training intra-CA1 administration of 5-HT1B/1D receptor agonist (CP94253; 0.5 and 5ng/mouse) and 5-HT2A/2B/2C receptor agonist (α-methyl 5-HT; 50ng/mouse) impaired memory acquisition. Furthermore, intra-CA1 administration of 5-HT1B/1D receptor antagonist (GR127935; 0.5ng/mouse) and 5-HT2 receptor antagonist (cinancerine; 5ng/mouse) improved memory acquisition. In addition, pre-training intra-CA1 injection of sub-threshold dose of CP94253 (0.05ng/mouse) and α-methyl 5-HT (5ng/mouse) potentiated impairment of memory acquisition induced by harmane (12mg/kg, i.p.). On the other hand, pre-training intra-CA1 infusion of sub-threshold dose of GR127935 (0.05ng/mouse) and cinancerine (0.5ng/mouse) with the administration of harmane (12mg/kg, i.p.) weakened impairment of memory acquisition. Moreover, all above doses of drugs did not change locomotor activity. The present findings suggest that there is an interaction between harmane and the CA1 serotonergic system in modulation of memory acquisition.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Ghadimi
- Department of Biology, Faculty of Basic Sciences, Kharazmi (TarbiatMoalem) University Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Hu P, Li Z, Chen M, Sun Z, Ling Y, Jiang J, Huang C. Structural elucidation and protective role of a polysaccharide from Sargassum fusiforme on ameliorating learning and memory deficiencies in mice. Carbohydr Polym 2016; 139:150-8. [PMID: 26794958 DOI: 10.1016/j.carbpol.2015.12.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 11/26/2022]
Abstract
A fucoidan, Sargassum fusiforme polysaccharide 65 (SFPS65) A, was isolated from a brown alga (S. fusiforme). SFPS65A had an estimated molecular weight of 90kDa and showed αD(20) -74.3288 (c 0.05, H2O). SFPS65A is composed of fucose, galactose, xylose, glucose, glucuronic acid, and mannose in the ratio of 19.23:9.58:6.64:1:6.52:2.57. The structural features of SFPS65A were investigated using composition analysis, methylation analysis, infrared spectrum, nuclear magnetic resonance spectroscopy, and electrospray ionization quadruple time-of-flight tandem mass spectroscopy. Results showed that SFPS65A has a main chain composed of →3)-β-l-Fucp-(1→3,4)-β-l-Fucp-(1→3,4)-β-l-Fucp-(1→ and connected with →3,4)-α-d-GlcAp-(1→, →4)-β-d-Xylp-(1→, →4)-α-d-Galp-(1→, →3,6)-α-d-Manp-(1→ alternately. The branches at O-3 of the fucosyl residue and O-3 of the hexosyl residues may include sulfate, →4)-β-l-Fucp-(1→, β-d-Xylp-(1→, and β-d-Xylp-(1→. SFPS65A exhibited an activity on Alzheimer's disease in vivo in the pharmacological experiments by increasing the cognitive abilities of scopolamine-, ethanol-, and sodium nitrite-treated mice against memory deficits.
Collapse
Affiliation(s)
- Pei Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd., Zhangjiang, Pudong, Shanghai 201203, People's Republic of China; Department of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Zhixiong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd., Zhangjiang, Pudong, Shanghai 201203, People's Republic of China
| | - Mingcang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd., Zhangjiang, Pudong, Shanghai 201203, People's Republic of China
| | - Zhaolin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd., Zhangjiang, Pudong, Shanghai 201203, People's Republic of China
| | - Yun Ling
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, People's Republic of China
| | - Jian Jiang
- Department of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China.
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd., Zhangjiang, Pudong, Shanghai 201203, People's Republic of China.
| |
Collapse
|
18
|
Kangarlu-Haghighi K, Oryan S, Nasehi M, Zarrindast MR. The effect of BLA GABA(A) receptors in anxiolytic-like effect and aversive memory deficit induced by ACPA. EXCLI JOURNAL 2015; 14:613-26. [PMID: 26648818 PMCID: PMC4669909 DOI: 10.17179/excli2015-201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/09/2015] [Indexed: 11/10/2022]
Abstract
The roles of GABAergic receptors of the Basolateral amygdala (BLA) in the cannabinoid CB1 receptor agonist (arachydonilcyclopropylamide; ACPA)-induced anxiolytic-like effect and aversive memory deficit in adult male mice were examined in elevated plus-maze task. Results showed that pre-test intra-peritoneal injection of ACPA induced anxiolytic-like effect (at dose of 0.05 mg/kg) and aversive memory deficit (at doses of 0.025 and 0.05 mg/kg). The results revealed that Pre-test intra-BLA infusion of muscimol (GABAA receptor agonist; at doses of 0.1 and 0.2 µg/mouse) or bicuculline (GABAA receptor antagonist; at all doses) impaired and did not alter aversive memory, respectively. All previous GABA agents did not have any effects on anxiety-like behaviors. Interestingly, pretreatment with a sub-threshold dose of muscimol (0.025 µg/mouse) and bicuculline (0.025 µg/mouse) did not alter anxiolytic-like behaviors induced by ACPA, while both drugs restored ACPA-induced amnesia. Moreover, muscimol or bicuculline increased and decreased ACPA-induced locomotor activity, respectively. Finally the data may indicate that BLA GABAA receptors have critical and different roles in anxiolytic-like effect, aversive memory deficit and locomotor activity induced by ACPA.
Collapse
Affiliation(s)
| | - Shahrbanoo Oryan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Medical Genomics Research Center and School of Advanced Sciences in Medicine, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Medical Genomics Research Center and School of Advanced Sciences in Medicine, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran ; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran ; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran ; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
19
|
Nasehi M, Meskarian M, Khakpai F, Zarrindast MR. Harmaline-induced amnesia: Possible role of the amygdala dopaminergic system. Neuroscience 2015; 312:1-9. [PMID: 26556066 DOI: 10.1016/j.neuroscience.2015.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022]
Abstract
In this study, we examined the effect of bilateral intra-basolateral amygdala (intra-BLA) microinjections of dopamine receptor agents on amnesia induced by a β-carboline alkaloid, harmaline in mice. We used a step-down method to assess memory and then, hole-board method to assess exploratory behaviors. The results showed that pre-training intra-BLA injections of dopamine D1 receptor antagonist and agonist (SCH23390 (0.5μg/mouse) and SKF38393 (0.5μg/mouse), respectively) impaired memory acquisition. In contrast, pre-training intra-BLA injections of dopamine D2 receptor antagonist and agonist (sulpiride and quinpirole, respectively) have no significant effect on memory acquisition. Pre-training intra-peritoneal (i.p.) injection of harmaline (1mg/kg) decreased memory acquisition. However, co-administration of SCH 23390 (0.01μg/mouse) with different doses of harmaline did not alter amnesia. Conversely, pre-training intra-BLA injection of SKF38393 (0.1μg/mouse), sulpiride (0.25μg/mouse) or quinpirole (0.1μg/mouse) reversed harmaline (1mg/kg, i.p.)-induced amnesia. Furthermore, all above doses of drugs had no effect on locomotor activity. In conclusion, the dopamine D1 and D2 receptors of the BLA may be involved in the impairment of memory acquisition induced by harmaline.
Collapse
Affiliation(s)
- M Nasehi
- Cognitive and Neruroscience Research Center, CNRC, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - M Meskarian
- Department of Biology, Faculty of Basic Sciences, Northern Branch, Islamic Azad University, Tehran, Iran
| | - F Khakpai
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - M-R Zarrindast
- Cognitive and Neruroscience Research Center, CNRC, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology and Iranian National Center for Addiction Studies, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
20
|
The modulatory effect of CA1 GABAb receptors on ketamine-induced spatial and non-spatial novelty detection deficits with respect to Ca2+. Neuroscience 2015; 305:157-68. [DOI: 10.1016/j.neuroscience.2015.07.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022]
|
21
|
The effect of CA1 dopaminergic system in harmaline-induced amnesia. Neuroscience 2015; 285:47-59. [DOI: 10.1016/j.neuroscience.2014.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022]
|
22
|
Nasehi M, Jamshidi-Mehr M, Khakpai F, Zarrindast MR. Possible involvement of CA1 5-HT1B/1D and 5-HT2A/2B/2C receptors in harmaline-induced amnesia. Pharmacol Biochem Behav 2014; 125:70-77. [DOI: 10.1016/j.pbb.2014.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 07/25/2014] [Accepted: 08/24/2014] [Indexed: 01/18/2023]
|
23
|
Chen X, Cai F, Guo S, Ding F, He Y, Wu J, Liu C. Protective Effect of Flos Puerariae Extract Following Acute Alcohol Intoxication in Mice. Alcohol Clin Exp Res 2014; 38:1839-46. [DOI: 10.1111/acer.12437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/26/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Xiao Chen
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders; Hubei University of Science and Technology; Xianning China
| | - Fei Cai
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders; Hubei University of Science and Technology; Xianning China
| | - Shuang Guo
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders; Hubei University of Science and Technology; Xianning China
| | - Fang Ding
- Xianning Central Hospital; Xianning China
| | - Yi He
- Xianning Central Hospital; Xianning China
| | - Jiliang Wu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders; Hubei University of Science and Technology; Xianning China
| | - Chao Liu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders; Hubei University of Science and Technology; Xianning China
| |
Collapse
|
24
|
Swimming improves the emotional memory deficit by scopolamine via mu opioid receptors. Physiol Behav 2014; 128:237-46. [DOI: 10.1016/j.physbeh.2014.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/29/2013] [Accepted: 02/04/2014] [Indexed: 11/23/2022]
|
25
|
Chegini HR, Nasehi M, Zarrindast MR. Differential role of the basolateral amygdala 5-HT3 and 5-HT4 serotonin receptors upon ACPA-induced anxiolytic-like behaviors and emotional memory deficit in mice. Behav Brain Res 2014; 261:114-26. [DOI: 10.1016/j.bbr.2013.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
|
26
|
Suggesting a possible role of CA1 histaminergic system in harmane-induced amnesia. Neurosci Lett 2013; 556:5-9. [DOI: 10.1016/j.neulet.2013.09.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/21/2013] [Accepted: 09/27/2013] [Indexed: 11/21/2022]
|
27
|
Involvement of opioidergic and nitrergic systems in memory acquisition and exploratory behaviors in cholestatic mice. Behav Pharmacol 2013; 24:180-94. [PMID: 23604167 DOI: 10.1097/fbp.0b013e3283618aab] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bile duct ligation (BDL) is an animal model used in cholestatic disease research. Both opioidergic and nitrergic systems are known to be involved in cholestasis. The aim of this study was to investigate the possible interaction between these two systems in BDL-induced memory formation and exploratory behaviors in mice. Male mice weighing 25-30 g were divided into nonoperated controls, sham-operated, and BDL groups. One-trial step-down and hole-board paradigms were used to assess memory acquisition and exploratory behaviors, respectively. Cholestasis did not alter memory acquisition while increasing exploratory behaviors 7 days after BDL. A pretraining intraperitoneal injection of L-arginine (50, 100, and 200 mg/kg), L-NG-nitroarginine methyl ester (L-NAME) (5, 10, 20, and 40 mg/kg), or naloxone (0.125, 0.25, and 0.5 mg/kg) did not alter memory acquisition or exploratory behaviors, whereas morphine (5 and 7.5 mg/kg) decreased memory acquisition in sham-operated animals. Moreover, although injection of L-NAME and naloxone exerted no effect on memory acquisition in the 7 days post-BDL mice, L-arginine (100 and 200 mg/kg) and morphine (2.5, 5, and 7.5 mg/kg) injection reduced it. In contrast, L-NAME and naloxone, but not morphine or L-arginine, reduced the BDL-induced exploratory behaviors. Coadministration of subthreshold doses of morphine (1.25 mg/kg) and L-arginine (50 mg/kg) caused a memory deficit in 7 days post-BDL mice. However, the memory deficit induced by the effective doses of morphine (2.5 mg/kg) or L-arginine (200 mg/kg) in these mice was restored by the administration of either naloxone (0.5 mg/kg) or L-NAME (40 mg/kg). In addition, naloxone and L-NAME reduced the exploratory behaviors in L-arginine-pretreated mice but not in morphine-pretreated mice. We conclude that there appears to be a synergistic effect between opioidergic and nitrergic systems on memory acquisition and exploratory behaviors in cholestatic mice.
Collapse
|
28
|
Nasehi M, Amin Yavari S, Zarrindast MR. Synergistic effects between CA1 mu opioid and dopamine D1-like receptors in impaired passive avoidance performance induced by hepatic encephalopathy in mice. Psychopharmacology (Berl) 2013; 227:553-66. [PMID: 23404062 DOI: 10.1007/s00213-013-2987-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 01/14/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIM Numerous investigations have indicated that hepatic encephalopathy (HE) alters the levels of various neurotransmitters. However, comprehensive data regarding the effects of CA1 opioidergic and dopaminergic (DAergic) systems on HE-induced amnesia are still lacking. METHODS Following intra-dorsal hippocampal (CA1) injection of mu opioid and dopamine D1- and D2-like receptors antagonists in male mice, one-trial step-down and hole-board paradigms were used to assess memory and exploratory behaviors, respectively. RESULTS Our data demonstrated that HE impairs memory 24 days after bile duct ligation (BDL). Furthermore, while the higher dose of DA D1-like receptor antagonist (SCH23390, 0.5 μg/mouse) induced amnesia and anxiogenic-like behaviors, mu receptor antagonist (naloxone: 0.0125, 0.025 and 0.05 μg/mouse) and DA D2-like receptor antagonist (sulpiride: 0.0625, 0.125 and 0.25 μg/mouse) by themselves, could not exert an effect on memory performance in passive avoidance task. On the other hand, pre-test injection of all drugs reversed the HE-induced amnesia 24 days after BDL, while having no effect on exploratory behaviors. Pre-test co-administration of the subthreshold dose SCH23390 (0.25 μg/mouse) and sulpiride (0.0625 μg/mouse) or naloxone (0.0125 μg/mouse) could likewise reverse the BDL-induced amnesia. However, when the subthreshold sulpiride plus naloxone were co-administered, BDL-induced amnesia was not blocked. CONCLUSIONS Memory performance is impaired 24 days post BDL and CA1 mu opioid and DA D1-like receptors antagonist synergistic effects are likely involved in this phenomenon.
Collapse
MESH Headings
- Animals
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/physiopathology
- Disease Models, Animal
- Dopamine Antagonists/administration & dosage
- Dopamine Antagonists/pharmacology
- Drug Synergism
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Hepatic Encephalopathy/metabolism
- Hepatic Encephalopathy/physiopathology
- Hepatic Encephalopathy/psychology
- Male
- Memory/drug effects
- Memory/physiology
- Memory Disorders/metabolism
- Memory Disorders/physiopathology
- Memory Disorders/psychology
- Mice
- Mice, Inbred Strains
- Narcotic Antagonists/administration & dosage
- Narcotic Antagonists/pharmacology
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Mohammad Nasehi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Garmsar branch, Semnan, Iran
| | | | | |
Collapse
|
29
|
Nasehi M, Piri M, Abdollahian M, Zarrindast MR. Involvement of nitrergic system of CA1in harmane induced learning and memory deficits. Physiol Behav 2013; 109:23-32. [DOI: 10.1016/j.physbeh.2012.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/18/2012] [Accepted: 10/19/2012] [Indexed: 01/09/2023]
|
30
|
Effect of harmane, an endogenous β-carboline, on learning and memory in rats. Pharmacol Biochem Behav 2013; 103:666-71. [DOI: 10.1016/j.pbb.2012.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 11/20/2022]
|